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Abstract

SubGradient based Blind Algorithm (SGBA) has recently been introduced [A.T. Erdogan, C. Kizilkale, Fast and low

complexity blind equalization via subgradient projections, IEEE Trans. Signal Process. 53 (2005) 2513–2524; C. Kizilkale,

A.T. Erdogan, A fast blind equalization method based on subgradient projections, Proceedings of IEEE ICASSP 2004,

Montreal, Canada, vol. 4, pp. 873–876.] as a convex and low complexity approach for the equalization of communications

channels. In this article, we analyze the convergence behavior of the SGBA algorithm for the case where the relaxation rule

is used for the step size. Our analysis shows that the monotonic convergence curve for the mean square distance to the

optimal point is bounded between two geometric-series curves, and the convergence rate is dependent on the eigenvalues of

the correlation matrix of channel outputs. We also provide some simulation examples for the verification of our analytical

results related to the convergence behavior.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Blind equalization has been an active research
field where various algorithms have been proposed.
All of these algorithms exploit pieces of information
available to recover an original source signal from
its linearly distorted version, where the distortion
process is unknown.

In the design of blind algorithms for equalization
we can name two important criteria: convergence
e front matter r 2006 Elsevier B.V. All rights reserved
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behavior and implementation complexity. Conver-
gence behavior is critical as many algorithms suffer
from ill or slow convergence (due to the structure of
their corresponding non-convex cost surfaces [1,2]).
The convergence issue has been addressed in [3],
where the use of convex cost functions was proposed
as a viable solution to the convergence problem.

Implementation complexity is also critical as these
algorithms have target applications that include real-
time communications systems with high symbol
rates. Therefore, for such systems, a fast conver-
gence behavior with minimal computational and
hardware resource consumption is very desirable.

In the field of blind equalization with convex cost
functions, linear programming based algorithms
[4,5] have been proposed. These algorithms solve an
.
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l1 norm based optimization problem, which is
proposed as the convex approach in [3], by casting it
as a linear programming problem, for both symbol
spaced and fractionally spaced channels. However,
their computational complexities are fairly high.

Recently, the SGBA (SubGradient based Blind
Algorithm) algorithm has been introduced [6,7] as
an alternative convex blind equalization method.
The SGBA algorithm is an iterative method with a
very simple update rule and it has a much lower
computational complexity than the linear program-
ming based convex blind approaches. Since the
SGBA algorithm is based on a convex cost surface it
does not suffer from the slow convergence problems
caused by attraction to saddle points (although the
slow convergence due to some other factors such as
near flat regions in the cost function is still a
possibility) and the ill-convergence problems due to
the existence of false minima. Furthermore, the use
of relaxation rule in the SGBA algorithm guaran-
tees convergence with a monotonic decrease in the
distance to the (global) optimal point.

The focus of this article is the analysis of the
convergence of the SGBA algorithm using the
relaxation step size rule. For this purpose, we first
introduce the blind equalization setup and the
SGBA algorithm in Section 2. In Section 3, we
provide a geometric picture for the convergence of
the SGBA algorithm. The mean square convergence
analysis of SGBA is given in Section 4. Section 5
provides some simulation examples related to
convergence behavior. Section 6 is the Conclusion.

2. Blind equalization setup and SGBA algorithm

The equalization setup that we use throughout
the article is shown in Fig. 1. Here
�

xi
fxi 2 f�2 �M þ 1; . . . ; 2 �M � 1gg is the informa-
tion sequence sent by the transmitter,

�
 fhi; i 2 f0; . . . ;Nh � 1gg is the impulse response of
the symbol-spaced channel which is the combina-
tion of the linear distortion caused by the
hi wi

yi zi

CHANNEL EQUALIZER

Fig. 1. The setup for blind equalization.
communication medium and the pulse shaping
filter,

�
 fyig is the input sequence to the equalizer,

�
 fwi; i ¼ 0; . . . ;Nw � 1g is the set of equalizer
coefficients, and w ¼ ½w0 w1 . . . wNw�1�

T is the
equalizer coefficient vector,

�
 fzig is the equalizer output.
The above setup is for real PAM signals,
however, both the setup and the corresponding
convergence analysis can easily be generalized for
complex constellations.

The convex optimization problem, on which the
SGBA algorithm is based, is the minimization of the
infinity-norm of equalizer output under a linear
constraint on equalizer coefficients (such as a fixed
tap constraint) [3]. We can write the corresponding
optimization setting as

min kz� rk1

s.t. wL ¼ 1,

where wL is the fixed tap, frng is a rectangular
window function, with

rn ¼
1 0pnpO� 1;

0 otherwise

�
(1)

and z� r represents the element by element multi-
plication of two discrete time sequences (i.e.,
ðz� rÞk ¼ zkrk). This problem is equivalent to the
minimization of the l1 norm of the finite size vector
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|fflfflfflfflfflffl{zfflfflfflfflfflffl}
w

¼ Cws þ q, ð2Þ

where C is equivalent to Y matrix with ðLþ 1Þth
column deleted, q is the ðLþ 1Þth column of Y, and
ws is w with ðLþ 1Þth element deleted (since
wL ¼ 1).

The SGBA algorithm to solve this optimization
problem is given by the following iterations [7,6]:

wðiþ1Þs ¼ wðiÞs � mðiÞ signðzðiÞ
lðiÞ
ÞCT

lðiÞ;:|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
gðiÞ

, (3)
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where
�
 lðiÞ 2 f0; . . . ;O� 1g is the index where maximum
magnitude output is achieved at the ith iteration.

�
 mðiÞ is the step size at the ith iteration. We will
assume that the relaxation step size rule is used
where

mðiÞ ¼ a
jz
ðiÞ

lðiÞ
j � f opt

kClðiÞ;:k
2
2

, (4)

where f opt is the optimal value of the objective
function. Since f opt is not known a priori, the
step size rule in (4) may appear to be unreason-
able. However, in [6], it is illustrated that through
use of variable target schemes (which does not
require the knowledge of f opt), we can achieve
similar convergence performance as the original
relaxation rule. Therefore, we will use the ideal
relaxation rule in our analysis.

3. A geometric picture for convergence

Based on the update equation in (3), we can write
a recursion for the distance to the optimal point in
the form:

kwðiþ1Þ � woptk
2 ¼ kwðiþ1Þs � ws;optk

2 ð5Þ

¼ kwðiÞs � mðiÞgðiÞ � ws;optk
2 ð6Þ

¼ kwðiÞs � ws;optk
2 � 2mðiÞgðiÞ

T

�ðwðiÞs � ws;optÞ þ mðiÞ
2
kgðiÞk2. ð7Þ

Note that ws;opt is wopt with ðLþ 1Þth element
deleted. Inserting the relaxation step size rule

mðiÞ ¼ gðiÞ
f ðiÞ � f opt

kgðiÞk2
(8)

in (7), we obtain

kwðiþ1Þ � woptk
2

¼ kwðiÞs � ws;optk
2 � 2gi

f ðiÞ � f opt

kgðiÞk2
gðiÞ

T

�ðwðiÞs � ws;optÞ þ gðiÞ
2 ðf

ðiÞ
� f optÞ

2

kgðiÞk2
. ð9Þ

If we look at the inner product gðiÞ
T
ðwðiÞs � ws;optÞ

in the second expression after equality sign in (9), we
can write

gðiÞ
T
wðiÞs ¼ f ðiÞ � signðz

ðiÞ

lðiÞ
ÞqlðiÞ . (10)
Since g is the channel output vector, we can write

g ¼ signðzðiÞÞCx, (11)

where C is obtained by deleting the ðLþ 1Þth row of
the Nw � ðNw þNc � 1Þ channel convolution matrix

H ¼

c0 c1 � � � cNc�1 0 � � � 0

0 c0 � � � cNc�2 cNc�1 � � � 0

..

. . .
. . .

. . .
. . .

. . .
. . .

.

0 0 � � � c0 � � � cNc�2 cNc�1

2
666664

3
777775

(12)

and x is the channel input vector causing the
maximum magnitude output. Since the maximum
magnitude output is achieved when input samples
take the extreme values from the constellation, xis in
(11) are �Ms (since kzk1 ¼

PNc�1
l¼0 jcNc�1jM ¼

kck1M [3]).
We define

z
ðiÞ
opt ¼ Y

ðiÞ

lðiÞ
wopt ð13Þ

¼ xðiÞ
T
HTwopt, ð14Þ

where xðiÞ is a vector formed by �Ms and HTwopt,
which corresponds to the convolution of the
channel impulse response with the optimal equalizer
coefficients, is approximately equal to a scaled delta
function with magnitude f opt=M. This approxima-
tion would be very reasonable as far as the
convergence analysis is concerned especially for
long equalizer lengths as the ISI will decrease with
increasing equalizer lengths. When we consider
large ISI levels (e.g. more than 20 dB) noise term
that will enter in our convergence analysis due to
this approximation will be negligible. Consequently,
we can write the approximation as

z
ðiÞ
opt � signðz

ðiÞ
optÞf opt (15)

from which we obtain

ClðiÞws;opt � signðz
ðiÞ
optÞf opt � qlðiÞ (16)

and therefore

gðiÞ
T
ws;opt ¼ signðzðiÞÞClðiÞws;opt

� signðzðiÞÞsignðz
ðiÞ
optÞf opt � signðzðiÞÞqlðiÞ .

ð17Þ

As a result, combining (10) with (17), the inner
product in (9) can be approximated as

gðiÞ
T
ðwðiÞs � ws;optÞ � ðf

ðiÞ
� signðzðiÞÞsignðz

ðiÞ
optÞf optÞ.

(18)
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Fig. 2. The geometrical picture of updates for gi ¼ 1.
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If signðzðiÞÞ ¼ signðz
ðiÞ
optÞ, which is true when wðiÞ is

at the vicinity of wopt, (9) can be rewritten as

kwðiþ1Þ � woptk
2 � kwðiÞs � ws;optk

2 � gðiÞð2� gðiÞÞ

�
ðf ðiÞ � f optÞ

2

kgðiÞk2

� kwðiÞs � ws;optk
2 � gðiÞð2� gðiÞÞ

�
jgðiÞ

T
ðwðiÞs � ws;optÞj

2

kgðiÞk2
ð19Þ

� kwðiÞs � ws;optk
2 1� gðiÞð2� gðiÞÞ

 

�
jgðiÞ

T
ðwðiÞs � ws;optÞj

2

kgðiÞk2kw
ðiÞ
s � ws;optk

2

!
. ð20Þ

If Yi denotes the angle between the vectors ðwopt �

wðiÞÞ and gðiÞ, then

j cosðYiÞj ¼
jgðiÞ

T
ðwðiÞs � ws;optÞj

kgðiÞkkw
ðiÞ
s � ws;optk

. (21)

Therefore, with gðiÞ ¼ 1, (20) simplifies to

kwðiþ1Þ � woptk
2 � kwðiÞ � woptk

2ð1� cos2 ðYiÞÞ ð22Þ

� kwðiÞ � woptk
2sin2 ðYiÞ. ð23Þ

The geometrical picture corresponding to the
gðiÞ ¼ 1 case is illustrated in Fig. 2, for a two
dimensional ws. It can be seen from this figure that a
right triangle is formed with the edges wðiþ1Þs � ws;opt,
wðiþ1Þs � wðiÞs and wðiÞs � ws;opt, where the right angle is
between wðiþ1Þs � wðiÞs and wðiþ1Þs � ws;opt. We should
note that, for gðiÞa1, the resulting triangle would
not be a right triangle.

In the case where signðzðiÞÞasignðz
ðiÞ
optÞ, then

kwðiþ1Þ � woptk
2

� kwðiÞs � ws;optk
2

� 1� gðiÞð2� gðiÞÞ
jgðiÞ

T
ðwðiÞs � ws;optÞj

2

kgðiÞk2kw
ðiÞ
s � ws;optk

2

 !

� 4gðiÞf opt

f ðiÞ � f opt

kgðiÞk2
, ð24Þ

which corresponds to even faster convergence than
(20), and for gðiÞ ¼ 1,

kwðiþ1Þ � woptk
2 � kwðiÞ � woptk

2 sin2 ðYiÞ � 4f opt

�
f ðiÞ � f opt

kgðiÞk2
. ð25Þ
4. Mean square deviation of the equalizer coefficients

In order to obtain a recursion expression for the
mean square deviation of equalizer coefficient
vector from the optimum value, we first take the
expected value of both sides of (19) (where we
implicitly assume that signðzðiÞÞ ¼ signðz

ðiÞ
optÞ which

holds true when wðiÞ is in the vicinity of wopt and
which gives a pessimistic rate of convergence):

Eðkwðiþ1Þ � woptk
2Þ

� EðkwðiÞs � ws;optk
2Þ

� gðiÞð2� gðiÞÞE
jgðiÞ

T
ðwðiÞs � ws;optÞj

2

kgðiÞk2

 !
. ð26Þ

To get a more compact expression for the rightmost
expectation, we assume that gðiÞ and ws;opt � wðiÞs are
independent. This is a usual simplifying assumption
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in the convergence analysis of various adaptive
algorithms (e.g. LMS) (see for example, discussions
in [8,9]), where the assumption is often justified by
the slower change in ws;opt � wðiÞs in comparison to
the change in gðiÞ. Although this assumption may
not be strictly correct, the simulation results in
Section 5 show that the analysis based on this
assumption provides a close characterization of the
convergence behavior. Under this assumption we
can write

E
jgðiÞ

T
ðwðiÞs � ws;optÞj

2

kgðiÞk2

 !

� EððwðiÞs � ws;optÞ
TE

gðiÞgðiÞ
T

gðiÞ
T
gðiÞ

 !
ðwðiÞs � ws;optÞÞ,ð27Þ

from which we obtain

lmin E
gðiÞgðiÞ

T

kgðiÞk2

 ! !
EðkwðiÞ � woptk

2Þ

pE
jgðiÞ

T
ðwðiÞ � woptÞj

2

kgðiÞk2

 !

plmax E
gðiÞgðiÞ

T

kgðiÞk2

 ! !
EðkwðiÞ � woptk

2Þ. ð28Þ

We make the following approximation to obtain a
more explicit expression for the convergence rate
bounds:

E
gðiÞgðiÞ

T

kgðiÞk2

 !
�

EðgðiÞgðiÞ
T
Þ

EðkgðiÞk2Þ
¼

Rg

s2g
. (29)

Hence, we can rewrite the range in (28) as

lminðRgÞ

s2g
pE

jgðiÞ
T
ðwðiÞ � woptÞj

2

kgðiÞk2

 !
p

lmaxðRgÞ

s2g
.

(30)

As stated previously, g is generated by x vector
whose elements are �Ms. Furthermore, we assume
that the elements of x are uncorrelated with each
other. Based on this data model the covariance
matrix Rg can be written as

Rg ¼M2CCT (31)

and

s2g ¼M2TrfCCT
g. (32)
As a result, we can write the recursion for the mean
square deviation of the equalizer coefficients as

Eðkwðiþ1Þ � woptk
2Þ ¼ EðkwðiÞ � woptk

2Þ

�ð1� cos2 ðYiÞÞ, ð33Þ

where

lminðCC
T
Þ

TrfCCT
g
pcos2 ðYiÞp

lmaxðCC
T
Þ

TrfCCT
g
. (34)

Alternatively, in terms of the singular values of the
channel convolution matrix, we can write

sminðCÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2minðCÞ þ � � � þ s2maxðCÞ

q
pj cosðYiÞj

p
smaxðCÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2minðCÞ þ � � � þ s2maxðCÞ

q . ð35Þ

5. Examples

In this section, we will test the validity of the
bounds obtained by our mean square deviation
analysis in Section 4. For that purpose, we simulate
the SGBA algorithm using the relaxation step size
rule for some sample channels. In these simulations,
we record the distance to the optimal point at each
iteration. Upper bound and lower bound curves are
obtained by using the best case and worst case
geometric convergence rates suggested by (35).

For the first example, we consider ‘‘the good
quality phone channel’’ in [10] whose impulse
response is shown in Fig. 3. The distance-to-
optimal-point convergence curve for this channel
is shown in Fig. 4, where the upper and lower
bounds obtained in the previous section are also
shown. It is clear from this figure that the
convergence curve closely follows the lower (fast
convergence) curve at the initial segment of the
convergence process, and then it becomes parallel to
the upper (slow convergence) curve. Therefore, we
can conclude that the convergence behavior of the
SGBA for this sample channel fits well to our
analysis results.

As the second example, we consider an auto-
regressive channel with transfer function

HðzÞ ¼
1

1þ 0:3z�1 � 0:28z�2
. (36)
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The convergence curve for this example is shown
in Fig. 5. Similar to the previous example, the
convergence curve first follows the fast convergence
curve and then the convergence rate decreases.

Based on both examples, and various simulation
trials for some example channels, we can conclude
that upper and lower bound convergence curves
obtained by (35) provide reasonable bounds for the
convergence behavior of the SGBA.

6. Conclusion

In this article, we provided a convergence analysis
for the SGBA algorithm. We first obtained the
geometric picture corresponding to the updates,
where the monotonic decrease in distance to the
optimal equalizer can be easily visualized. The scale
of reduction in distance is dependent on the angle
between the current error and the corresponding
subgradient vectors.

We also analyzed the mean square convergence
behavior for the distance to the optimal point by
making some reasonable approximations. Based on
this analysis, we could show that the convergence
curve is upper and lower bounded by two geo-
metric-series curves whose geometric factors are
dependent on the singular values of the channel
mapping matrix corresponding to the variable taps.

The simulation results validate both the smooth-
monotonic convergence behavior of the SGBA
algorithm and the applicability of the geometric-
series bounds obtained by our analysis.
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