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Abstract 

 
In this letter, the approximate solution of nonlinear heat diffusion and heat 

transfer and also the energy balance for a differential fin element are developed 
via Homotopy Analysis Method HAM. This method is a strong and easy–to–use 
analytic tool for investigating nonlinear problems, which does not need small 
parameters. Homotopy analysis method contains the auxiliary parameter h , which 
provides us with a simple way to adjust and control the convergence region of 
solution series. 

By suitable choice of the auxiliary parameter h , we can obtain reasonable 
solutions for large modulus. In this study, we compare obtained results through 
HAM results, with those of homotopy perturbation method and the exact 
solutions. The first differential equation to be solved is a straight fin with a 
temperature–dependent thermal conductivity and the second one is the modeling 
equation of a cooling Lumped system with variable specific heat. 

Keywords: Heat transfer; Homotopy analysis method; Fin Temperature 
Distribution; Cooling 
 
 
1. Introduction 

 
Most engineering problems, especially some diffusion and heat transfer 

equations are nonlinear, and in most cases it is difficult to solve them, especially 
analytically. Perturbation Method is one of the well–known methods to solve 
nonlinear problems. It is based on the existence of small/large parameters, the so  
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called perturbation quantity. However, perturbation methods cannot provide us 
with a simple way to adjust and control the convergence region of the given 
approximate series. 

Unlike analytical perturbation methods the homotopy perturbation method does 
not depend on a small parameter which is difficult to find. Comparing different 
methods show that, when the effect of the nonlinear term is negligible, homotopy 
perturbation method and the common perturbation method have nearly the same 
answers but when the nonlinear term in the heat equation is more effective, there 
will be a considerable difference between the results. 

As the homotopy perturbation method does not need a small parameter, the 
answer will be closer to the exact solution and also to the numerical one.  

 HPM [1–5] is one of the most powerful methods which provides the user with 
acceptable analytical results of convenient convergence and stability. HPM is 
applied to a wide class of nonlinear differential equations including nonlinear heat 
transfer equations. In 1992, Liao employed the basic ideas of homotopy in 
topology to propose a general analytic method for nonlinear problems, namely 
homotopy analysis method HAM [6–16]. This method has been successfully 
applied to solve many types of nonlinear problems by others [17–24,28–30]. In 
this letter, the basic idea of HAM is introduced and then its applications in heat 
transfer are studied. Also a comparison is made with the exact solution and the 
HPM results. In this letter, the energy balance for a differential fin element is 
developed, the resulting nonlinear differential equation is solved by HAM to 
evaluate the temperature distribution within the fin. Using the temperature 
distribution, the efficiency of the fin is expressed through a term called thermo–
geometric fin parameter (ψ ), and thermal conductivity parameter (β), which 
describes the variation of thermal conductivity. Since the resulting analytical 
expression for the fin efficiency is too complicated, the data from the expression 
has been correlated for a wide range of thermo–geometric fin parameter and the 
thermal conductivity parameter. The correlation equations of compact from are 
useful for designing straight fins with variable thermal conductivities. 
 
 
2. The Basic Concept of Homotopy Analysis Method 

 
Let us assume the following nonlinear differential equation in form: 

0))(( =τuN   
where N  is a nonlinear operator, τ is an independent variable and )u(τ  is the 
solution of the equation, we define the function, )p,(τφ  as follows: 
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Using the homatopy method generalization, Liao’s so–called zero–order 

deformation equation will be: 
)],([)()](),([)1( 0 pNphHupLp τφτττφ =−−    (1) 

where h  is the auxiliary parameter which increases the convergence of the result, 
)(τH  is the auxiliary function and L  is the linear operator. It should be noted that 

there is a great freedom to choose the auxiliary parameter h , the auxiliary 
function )(τH , the initial guess )(0 τu and the auxiliary linear operator L . This 
freedom plays an important role in stablishing the keystone of validity and 
flexibility of HAM as shown in this paper. 

Thus, when p  increases from 0 to 1, the solution )p,(τφ  changes between the 
initial guess )(0 τu and the solution )(u τ , the taylor series expansion of )p,(τφ  with 
respect to p  is: 
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where )(][
0 τmu  for brevity is called the mth order of deformation derivation which 

reads: 
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It’s clear that if the auxiliary parameter 1−=h  and the auxiliary function is 
determined to be 1)( =τH , Eq. (1) will be: 

0),([)()]()),(()1( 0 =+−− PQNPuPQLp ττττ  
The statement is commonly used in HPM procedure. Indeed, in HPM we solve 

the nonlinear differential equation by separating every Taylor expansion term. 
Now, we define the vector of mur  as follows: 

},...,,{ 321 nm uuuuu rrrrr
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According to Eq. (4), the governing equation and the corresponding initial 
condition of )(τmu  can be deduced from zero–order deformation, Eq. (1). 
Differentiating Eq. (1) for m times with respect to the embedding parameter p  
and setting 0=p  and finally dividing by )!1( −m , we will have the so called mth 
order deformation equation in the form: 
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Thus, applying the inverse operator to both sides of the linear equation, Eq. (5) 

we can easily solve the equation and compute the generated constants by applying 
the initial or boundary condition. 

 
 

3. Applications 
 
3.1 Example 1: Fin Temperature Distribution 

 
Consider a straight fin with a temperature–dependent thermal conductivity, 

arbitrary constant cross–sectional area. AC is the perimeter and b is length (see 
[25, 27]). The fin is attached to a base surface of temperature bT , extends into a 
fluid of temperature aT , and its tip is insulated, the one–dimensional energy 
balance equation is given as: 

0)(])([ =−− ab TTph
dx
dTTk

dx
dAC  

The thermal conductivity of the fin material is assumed to be a linear function of 
temperature as: 

])(1[)( TaTkTk a −+= λ  
where ak  is the thermal conductivity at the ambient fluid temperature of the fin, 
and λ is a parameter describing the variation of the thermal conductivity. 
Employing the following dimensionless parameters: 
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the formulation of the problem reduces to: 
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Here, we choose the base function with an initial guess that satisfies the 
Boundary condition in form of: 
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where na  is a coefficient to be later determined, and Eq. (8) is called the solution 
expression. The initial guess is defined in the following form: 

1)(0 == cξθ  (9) 
Now, we verify the linear operator as: 
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where 
0)( 21 =+ ccL ξ     (11) 

and 1c  and 2c  are constants to be determined through the initial conditions. Now, 
we determine the nonlinear operator as: 
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According to Eqs. (6–a),(6–b) and (12), we have: 
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where 1c  and 2c  can be determined through the boundary conditions. In 
accordance with the rule of solution expression, )(τH  must be in form of n

nd ξ , 
where n is an integer and any 1−≤n  is forbidden. For simplicity, let 1)( =ξH . 
Thus, we have: 
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where 321 ,, ccc  and 4c  can be determined through the boundary conditions. 

So, 
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Now we can compare the results of HAM with the exact solution and that of HPM 
method: 

 
 
 
 

 

 
 

Figure 1. Heat transfer coefficint for ),,( 500 == ψβ , by 7th order approximation. 
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Figure 2. The comparison of the results of HAM for ).,.,( 90500 −=== hψβ  with 

those of HPM and the exact solution. 
 
 
 

3.2 Example 2: Cooling of A Lumped System with Variable Specific Heat. 
 
Consider the cooling of a lumped system [26,27]; let the system have volume V, 

surface area A, density ρ , specific heat c and initial temperature, iT . At time 
0=t , the system is exposed to a convective environment at temperature, aT , with 

convective heat transfer coefficient h. 
Assume that specific heat c is a linear function temperature of the form: 

)](1[ TaTcc a −+= β      (15) 
where ac  is the specific heat, at temperature aT  and β  is a constant, the cooling 
equation and the initial condition are: 

ia TTTTAh
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dTVC ==−+ )0(0)(ρ  (16) 

Introducing. Eq.(13) and using the following dimensionless parameters: 
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Eq. (16) is transformed to: 
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Due to the physics of the problem that is a decaying function by time, we 
assume the solution in the form of an exponential function as follows: 
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where nd  is a coefficient to be determined afterwards. Eq. (18), the so–called rule 
of solution expression, guides us to the selection of an auxiliary function which is 
denoted by )(τH . 

According to Eq. (18), other expressions such as ττ nme−  or ))(( τLndn  must be 
avoided, and according to Eqs. (7–a), (7–b) and (18), we choose the linear 
operator as the following term: 
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where 1c  is a constant to be determined through the initial conditions. Now, we 
can verify the nonlinear operator as: 
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Due to the rule of solution expression, the appearance of expression is form of 
τnd  should be avoided, Hence, )(τH  must be in form of τke−  where k  is an 

integer and every 0≥k  is forbidden, we let .)( ττ −= eH  
Therefor Eqs. (5), (7–a) , (7–b) we have: 
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After substituting )(0 τθ in Eq. (22) we have: 
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So, after solving Eq. (23), we have: 
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Figure 3. Heat transfer coefficint for ).,.,.,.( 80302010 ==== εεεε , by 10th order 
approximation. 
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Figure 4. The comparison of the results of HAM for  ).( 50=τ  and )( 1−=h   with 

those of HPM and the exact solution. 

 
Figure 5. The error of the two methods (HAM and HPM) in comparison with the 

exact solution. 
 
 
4. Conclusion 

 
In this study, convective straight fins with temperature–dependent thermal 

conductivity were analyzed using HAM.This method provides highly accurate 
numerical solutions for nonlinear problems in comparison with other methods.  



Approximation of analytic solution                                                                    517 
 
The comparison of the method reveals that the approximations obtained by HAM 
and HPM converge to the exact solution quite fast. Moreover, HAM is faster than 
HPM, (see figures 2, 4). The auxiliary parameter h  provides us with a convenient 
way to adjust and control the convergence and its rate for the solutions series. 
When small parameter of ε  is increased the error of HAM is less than HPM in 
comparison with the exact solution. The nonlinear differential equation, which is 
expressed in terms of suitable dimensionless parameters and is presented in terms 
of regression equations is obtained by standard statistical techniques; these results 
can be used for designing straight fins with variable thermal conductivities. 
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