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Abstract

The paper presents and evaluates the power of best-first
search over AND/OR search spaces in graphical models. The
main virtue of the AND/OR representation is its sensitivity to
the structure of the graphical model, which can translate into
significant time savings. Indeed, in recent years depth-first
AND/OR Branch-and-Bound algorithms were shown to be
very effective when exploring such search spaces, especially
when using caching. Since best-first strategies are known to
be superior to depth-first when memory is utilized, exploring
the best-first control strategy is called for. In this paper we in-
troduce two classes of best-first AND/OR search algorithms:
those that explore a context-minimal AND/OR search graph
and use static variable orderings, and those that use dynamic
variable orderings but explore an AND/OR search tree. The
superiority of the best-first search approach is demonstrated
empirically on various real-world benchmarks.

Introduction

Graphical models such as belief networks or constraint
networks are a widely used representation framework for
reasoning with probabilistic and deterministic information.
These models use graphs to capture conditional independen-
cies between variables, allowing a concise representation of
the knowledge as well as efficient graph-based query pro-
cessing algorithms. Optimization problems such as finding
the most likely state of a belief network or finding a solution
that violates the least number of constraints can be defined
within this framework and they are typically tackled with
either search or inference algorithms.

The AND/OR search space for graphical models (Dechter
& Mateescu 2006) is a framework for search that is sensi-
tive to the independencies in the model, often resulting in
reduced search spaces. The impact of the AND/OR search
to optimization in graphical models was explored in recent
years focusing exclusively on depth-first search.

The AND/OR Branch-and-Bound first introduced by
(Marinescu & Dechter 2005) traverses the AND/OR search
tree in a depth-first manner. The memory intensive Branch-
and-Bound algorithm (Marinescu & Dechter 2006¢) ex-
plores an AND/OR search graph, rather than a tree, by
caching previously computed results and retrieving them
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when the same subproblems are encountered again. These
algorithms were initially restricted to a static variable or-
dering. More recently, (Marinescu & Dechter 2006b)
showed how dynamic variable selection heuristics influence
Branch-and-Bound search over AND/OR trees. The depth-
first AND/OR search algorithms were shown to outperform
dramatically state-of-the-art Branch-and-Bound algorithms
searching the traditional OR space.

In this paper we focus on best-first search algorithms. We
present a new AND/OR search algorithm that explores a
context-minimal AND/OR search graph in a best-first rather
than depth-first manner. Since variable selection can have
a dramatic impact on search performance, we also intro-
duce a best-first AND/OR search algorithm that explores the
AND/OR search tree, rather than the graph, and combines
the static AND/OR decomposition principle with dynamic
variable selection heuristics. Under conditions of admissi-
bility and monotonicity of the heuristic function, best-first
search is known to expand the minimal number of nodes, at
the expense of using additional memory (Dechter & Pearl
1985). In practice, these savings in number of nodes may
often translate into time savings as well.

We focus the empirical evaluation on three common op-
timization problems: solving Weighted CSPs (de Givry et
al. 2005), finding the Most Probable Explanation in be-
lief networks (Pearl 1988), and 0/1 Integer Linear Program-
ming (Nemhauser & Wolsey 1988). Our results show con-
clusively that the best-first AND/OR search approach out-
performs significantly the depth-first AND/OR Branch-and-
Bound search algorithms on various benchmarks.

Background
Constraint Optimization Problems

A finite Constraint Optimization Problem (COP) is a triple
P = (X,D,F), where ¥ = {X1,..., X, } is a set of vari-
ables, D {D1,...,Dy,} is a set of finite domains and
F ={f1,-.-, fm} is a set of cost functions. Cost functions
can be either soft or hard (constraints). Without loss of gen-
erality we assume that hard constraints are represented as
(bi-valued) cost functions. Allowed and forbidden tuples
have cost 0 and oo, respectively. The scope of function
fi» denoted scope(f;) C X, is the set of arguments of f;.
The goal is to find a complete value assignment to the vari-



Figure 1: AND/OR Search Spaces for Graphical Models

ables that minimizes the global cost function, namely to find
r=argminy y ., fi.

Given a COP instance, its primal graph G associates each
variable with a node and connects any two nodes whose vari-
ables appear in the scope of the same function.

AND/OR Search Spaces for Graphical Models

The usual way to do search is to instantiate variables, follow-
ing a static/dynamic variable ordering. In the simplest case,
this process defines an OR search tree, whose nodes repre-
sent partial assignments. This search space does not capture
the structure of the underlying graphical model. However,
to remedy this problem, AND/OR search spaces for graph-
ical models were recently introduced by (Dechter & Ma-
teescu 2006). They are defined using a backbone pseudo-
tree (Freuder & Quinn 1985).

DEFINITION 1 (pseudo-tree) Given an undirected graph
G = (V,E), a directed rooted tree T = (V,E') defined
on all its nodes is called pseudo-tree if any arc of G which is
not included in E' is a back-arc, namely it connects a node
to an ancestor in T.

AND/OR Search Trees Given a COP instance
P = (X,D,F), its primal graph G and a pseudo-tree
T of G, the associated AND/OR search tree, denoted S,
has alternating levels of OR nodes and AND nodes. The OR
nodes are labeled X; and correspond to the variables. The
AND nodes are labeled (X, z;) and correspond to value
assignments in the domains of the variables. The root of the
ANDY/OR search tree is an OR node, labeled with the root
of the pseudo-tree 7.

The children of an OR node X; are AND nodes labeled
with assignments (X, z;), consistent along the path from
the root, path(Xi, .Z‘,L') (<X1, .]31>, ey <X’i—17 J}i_1>). The
children of an AND node (X;,z;) are OR nodes labeled
with the children of variable X; in 7. Semantically, the
OR states represent alternative solutions, whereas the AND
states represent problem decomposition into independent
subproblems, all of which need be solved. When the pseudo-
tree is a chain, the AND/OR search tree coincides with the
regular OR search tree.

A solution tree Solg,, of St is an AND/OR subtree such
that: (i) it contains the root of St; (ii) if a nonterminal AND
node n € St is in Solg, then all its children are in Sols,;
(iii) if a nonterminal OR node n € St is in Solg, then
exactly one of its children is in Solg,..
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Example 1 Figures 1(a) and 1(b) show the primal graph
of a binary COP instance and its pseudo-tree together with
the back-arcs (dotted lines). Figure 1(c) shows the AND/OR
search tree based on the pseudo-tree, for bi-valued vari-
ables. A solution subtree is highlighted.

Arc Labels and Node Values The arcs from OR nodes X
to AND nodes (X;, z;) in the AND/OR search tree St are
annotated by labels derived from the cost functions in F.

DEFINITION 2 (label) The label I(X;, (X;, z;)) of the arc
from the OR node X; to the AND node (X;, x;) is the sum of
all the cost functions whose scope includes X; and is fully
assigned along path(X,;, x;), evaluated at the values along
the path.

Given a labeled AND/OR search tree, each node can be
associated with a value (Dechter & Mateescu 2006).

DEFINITION 3 (value) The value v(n) of a node n € St
is defined recursively as follows: (i) if n = (X;,x;) is a
terminal AND node then v(n) = 0; (ii) if n = (X, 2;)
is an internal AND node then v(n) = 3, /¢ ycein) V(W)
(iii) if n X, is an internal OR node then v(n)
MiNy € suce(n) (L(n, n')+v(n')), where succ(n) are the chil-
dren of n in St.

It is easy to see that the value v(n) of a node in the
AND/OR search tree S7 is the minimal cost solution to the
subproblem rooted at n, subject to the current variable in-
stantiation along the path from the root to n. If n is the root
of St, then v(n) is the minimal cost solution to the initial
problem (Marinescu & Dechter 2005).

AND/OR Search Graphs The AND/OR search tree may
contain nodes that root identical subtrees (in particular, sub-
problems with identical optimal solutions) which can be uni-
fied. When unifiable nodes are merged, the search tree be-
comes a graph and its size becomes smaller. Some unifiable
nodes can be identified based on their contexts.

DEFINITION 4 (context) Given a COP instance and the
corresponding AND/OR search tree St relative to a pseudo-
tree T, the context of any AND node (X;, x;) € St, denoted
by context(X;), is defined as the set of ancestors of X; in
T, including X, that are connected to descendants of X;.

It is easy to verify that any two nodes having the same
context represent the same subproblem. Therefore, we can
solve Py, the subproblem rooted at X;, once and use its



optimal solution whenever the same subproblem is encoun-
tered again.

The context-minimal AND/OR search graph based on
pseudo-tree 7', denoted G, is obtained by merging all the
AND nodes that have the same context. It can be shown
(Dechter & Mateescu 2006) that the size of the largest con-
text is bounded by the induced width w* of the primal graph,
extended with the pseudo-tree extra arcs, over the ordering
given by the depth-first traversal of 7" (i.e. induced width of
the pseudo-tree). Therefore,

THEOREM 1 (complexity) The complexity of any search
algorithm traversing a context-minimal AND/OR search
graph is time and space O(exp(w™)), where w* is the in-
duced width of the underlying pseudo-tree.

Example 2 Consider the context-minimal AND/OR search
graph in Figure 1(d) of the pseudo-tree from Figure 1(b).
Its size is far smaller than that of the AND/OR tree from
Figure I(c) (16 nodes vs. 36 nodes). The contexts of
the nodes can be read from the pseudo-tree, as follows:
context(A) = {A}, context(B) = {BA}, context(C)
= {C,B}, context(D) = {D}, context(E) = {E,A} and
context(F) = {F}.

Best-First AND/OR Search

In recent years, depth-first AND/OR Branch-and-Bound
algorithms were shown to be very effective, especially
when using extensive caching (Marinescu & Dechter 2005;
2006c). Since best-first search is known to be superior
among memory intensive search algorithms (Dechter &
Pearl 1985), the comparison with the best-first approach that
exploits similar amounts of memory is warranted. In this
section we introduce two new classes of best-first AND/OR
search algorithms: one that explores a context-minimal
AND/OR search graph and is restricted to a static variable
ordering, and one that uses dynamic variable orderings but
traverses an AND/OR search tree, rather than a graph.

Best-First AND/OR Graph Search

Our best-first AND/OR graph search algorithm, denoted by
AOBF, that traverses the context-minimal AND/OR search
graph is described in Algorithm 1. It specializes Nillson’s
AO* algorithm (Nillson 1980) to AND/OR spaces in graph-
ical models. The algorithm interleaves forward expansion
of the best partial solution tree with a cost revision step that
updates estimated node values. First, a top-down, graph-
growing operation (step 2 .a) finds the best partial solu-
tion tree by tracing down through the marked arcs of the
explicit AND/OR search graph G’.. These previously com-
puted marks indicate the current best partial solution tree
from each node in G’.. One of the nonterminal leaf nodes
n of this best partial solution tree is then expanded, and a
static heuristic estimate h(n;), underestimating v(n;), is as-
signed to its successors (step 2 .Db). The successors of an
AND node n = (X, ;) are X;’s children in the pseudo-
tree, while the successors of an OR node n = X; correspond
to X;’s domain values. Notice that when expanding an OR
node, the algorithm does not generates AND children that
are already present in the explicit search graph G7.. All these
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Algorithm 1: AOBF

Data: A COP P = (X, D, F), pseudo-tree T, root s.
Result: Minimal cost solution to P.

1. Create explicit graph G/r, consisting solely of the start node s. Set
v(s) = h(s).
2. until s is labeled SOLVED, do:
(a) Compute a partial solution tree by tracing down the marked arcs in
G from s and select any nonterminal tip node n.
(b) Expand node n and add any new successor node n; to G’T. For each
new node n; set v(n;) = h(n;). Label SOLVED any of these
successors that are terminal nodes.
(c) Create a set S containing node n.
(d) until S is empty, do:
i. Remove from S a node m such that m has no descendants in G/
still in S
ii. Revise the value v(m) as follows:
A.if m is an AND node then v(m) = Em]_ csuce(m) V(mg). I
all the successor nodes are labeled SOLVED, then label node m
SOLVED.
B. if m is an OR node then
v(m) = MM | € suce(m) (I(m, my) 4+ v(m;)) and mark the
arc through which this minimum is achieved. If the marked successor
is labeled SOLVED, then label m SOLVED.
iii. If m has been marked SOLVED or if the revised value v(m) is
different than the previous one, then add to S all those parents of m
such that m is one of their successors through a marked arc.
3. return v(s).

identical AND nodes in G7. are easily recognized based on
their contexts.

The second operation in AOBF is a bottom-up, cost
revision, arc marking, SOLVE-labeling procedure (step
2. c). Starting with the node just expanded n, the procedure
revises its value v(n) (using the newly computed values of
its successors) and marks the outgoing arcs on the estimated
best path to terminal nodes. This revised value is then prop-
agated upwards in the graph. The revised cost v(n) is an up-
dated estimate of the cost of an optimal solution to the sub-
problem rooted at n. If we assume the monotone restriction
on h, the algorithm considers only those ancestors that root
best partial solution subtrees containing descendants with re-
vised values. The optimal cost solution to the initial problem
is obtained when the root node s is solved.

Dynamic Variable Orderings

It is well known that variable selection may influence dra-
matically search performance. Recent work by (Marinescu
& Dechter 2006b) showed how several dynamic variable
orderings affect depth-first Branch-and-Bound search over
ANDY/OR trees. One version, called AND/OR Branch-and-
Bound with Partial Variable Ordering (AOBB+PVO) that or-
ders dynamically the variables forming chains in the pseudo-
tree was shown to outperform significantly static AND/OR
search as well as state-of-the-art OR Branch-and-Bound
solvers for general COPs. Next, we extend the idea of partial
variable ordering to best-first search on AND/OR trees.
Note that AOBF is restricted to a static variable ordering
that corresponds to the pseudo-tree arrangement. The mech-
anism of identifying unifiable AND nodes based solely on



spot5 n w™ toolbar3 AOEDAC AOBBMB(i) AOBFMB(i)
c h DVO i=4 i=6 i=8 i=10 i=12 i=4 i=6 i=8 i=10 i=12
29 83 14 time 4.56 0.81 5.53 4.80 0.56 3.64 21.67 6.42 2.23 0.47 3.59 21.77
476 42 nodes 218,846 8,698 48,995 29,702 2,267 1,165 110 36,396 12,801 757 323 96
i=2 i=4 i=6 i=8 i=10 i=2 i=4 i=6 i=8 i=10
54 68 11 time 0.31 0.06 546.89 18.42 0.23 0.16 0.69 0.69 0.41 0.11 0.16 0.69
283 33 nodes 21,939 688 5,094,051 198,712 2,477 591 120 3,906 2,714 631 312 68
i=6 i=8 i=10 i=12 i=14 i=6 i=8 i=10 i=12 i=14
404 100 19 time 151.11 12.09 51.88 2.55 0.55 1.16 3.98 1.20 1.02 0.62 1.22 4.00
710 42 nodes 6,215,135 88,079 529,002 23,565 1,704 598 232 6,399 5,140 1,303 576 184
i=6 i=8 i=10 i=12 i=14 i=6 i=8 i=10 i=12 i=14
408b 201 24 time - - - 7507.10 515.94 75.08 47.03 5253 44.99 2520 16.97 38.53
1847 59 nodes 54,826,929 3,114,294 408,619 61,986 175,366 145,901 98,616 39,238 14,768
i=2 i=4 i=6 i=8 i=10 i=2 i=4 i=6 i=8 i=10
503 144 9 time 10005.00 - 189.39 291.72 0.42 10.25 5.28 1.56 1.59 0.42
639 39 nodes 44,495,545 2,442,998 4,050,474 256 22,967 16,114 9,929 9,186 144
i=6 i=8 i=10 i=12 i=14 i=6 i=8 i=10 i=12 i=14
505b 241 16 time - 1180.48 367.93 42.73 29.25 31.20 54.09 373.72
1721 98 nodes 8,905,473 16,020 144,723 111,223 108,256 31,692 5,758

Table 1: CPU time in seconds and nodes visited to prove optimality for SPOT5 benchmarks. Time limit 3 hours.

their contexts is hard to extend when variables are instanti-
ated in a different order than that dictated by the pseudo-tree.

Best-first AND/OR search with Partial Variable Ordering
(AOBF+PVO) traverses an AND/OR search tree in a best-
first manner and combines the static graph-based problem
decomposition given by a pseudo-tree with a dynamic se-
mantic variable selection heuristic. We illustrate the idea
with an example. Consider the pseudo-tree from Figure
1(b) inducing the following variable group ordering: {A,B},
{C,D}, {E,F}; which dictates that variables {A,B} should
be considered before {C,D} and {E,F}. Variables in each
group (or chain) can be dynamically ordered based on a
second, independent heuristic. Notice that after variables
{A,B} are instantiated, the problem decomposes into two in-
dependent components (represented by variables {C,D} and
{E,F}, resp.) that can be solved separately.

Experiments

We evaluate the performance of the two classes of best-first
AND/OR search algorithms on three common optimization
problems: solving Weighted CSPs (de Givry et al. 2005),
finding the Most Probable Explanation (MPE) in belief net-
works (Pearl 1988) and solving 0/1 Integer Linear Programs
(Nemhauser & Wolsey 1988). All experiments were run on
a 2.4GHz Pentium IV with 2GB of RAM.

We report the average CPU time (in seconds) and number
of nodes visited, required for proving optimality of the solu-
tion. We also record the number of variables (n), the number
of constraints (c), the depth of the pseudo-trees (h) and the
induced width of the graphs (w*) obtained for the test in-
stances. The pseudo-trees were generated using the min-fill
heuristic, as described in (Marinescu & Dechter 2005). The
best performance points are highlighted.

Weighted CSPs

For this domain we experimented with real-world schedul-
ing and circuit diagnosis benchmarks. We consider the best-
first AND/OR search algorithm guided by pre-compiled
mini-bucket heuristics (Marinescu & Dechter 2005) and de-
noted by AOBFMB (7). We compare it against the depth-first
AND/OR Branch-and-Bound algorithm with static mini-
bucket heuristics and full caching introduced by (Marinescu

& Dechter 2006c) and denoted by AOBBMB (7). The pa-
rameter ¢ represents the mini-bucket i-bound and controls
the accuracy of the heuristic. Both algorithms traverse the
context-minimal AND/OR search graph restricted to a static
variable ordering determined by the pseudo-tree.

We also report results obtained with the OR Branch-and-
Bound maintaining Existential Directional Arc-Consistency
(EDAC) developed in (de Givry et al. 2005) and denoted
by toolbar3, and the AND/OR Branch-and-Bound with
EDAC and full dynamic variable ordering (AOEDAC+DVO)
from (Marinescu & Dechter 2006b). These algorithms
instantiate variables dynamically, using the min-dom/deg
heuristic which selects the variable with the smallest ratio
of the domain size divided by the future degree.

Earth Observing Satellites The problem of scheduling
an Earth observing satellite is to select from a set of can-
didate photographs, the best subset such that a set of im-
perative constraints are satisfied and the total importance of
the selected photographs is maximized. We experimented
with problem instances from the SPOTS benchmark (Ben-
sana, Lemaitre, & Verfaillie 1999) which can be formulated
as WCSPs with binary and ternary constraints and domain
sizes of 2 and 4 (instances 408b and 505b contain only
binary constraints).

Table 1 shows the results for experiments with 6 schedul-
ing problems. The columns are indexed by the mini-bucket
i-bound. When comparing the best-first against the depth-
first AND/OR search algorithms with static mini-bucket
heuristics we observe that, for relatively small ¢-bounds,
AOBFMB (¢) improves significantly (up to several orders
of magnitude) in terms of both CPU time and number of
nodes visited. For example, on 505b, one of the hardest in-
stances, AOBFMB (8) proves optimality in less than 30 sec-
onds, whereas AOBBMB (8) exceeds the 3 hour time limit.
This observation verifies the theory because best-first search
is likely to expand the smallest number of nodes at the search
frontier, especially when having relatively weak heuristic
estimates. As the mini-bucket ¢-bound increases and the
heuristics become strong enough to cut the search space
substantially the difference between Branch-and-Bound and
best-first search decreases, because Branch-and-Bound finds
almost optimal solutions fast, and therefore will not explore
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iscas89 n w* toolbar3 AOBB+EDAC AOBBMB(i) AOBFMB(i)
c h DVO i=8 i=10 i=12 i=14 i=16 i=8 i=10 i=12 i=14 i=16
c432 432 27 time - - 422.08 4091 0.89 0.89 0.64 39.33 0.52 0.31 0.38 0.67
432 45 nodes 2,945,230 337,574 6,254 6,010 914 196,892 2,154 1,007 847 445
c880 881 27 time 100.66 91.66 31.06 59.35 14.78 1.36 0.91 0.81 1.19 1.44
883 67 nodes 516,056 446,893 169,138 316,124 78,268 4,454 2,792 2,231 2,862 1,589
$935 441 66 time - - 1285.07 143.53 - 22.28 4.80 6.16 1.22 1.19 1.22 242
464 101 nodes 6,623,608 763,933 128,372 15,010 25,493 4,087 3,319 2,216 883
s1196 562 54 time - - 3347.38 503.30 2299.72 734.66 149.81 22.67 2.89 13.02 727 3.56
564 97 nodes 13,554,137 2,425,152 11,488,366 3,524,780 793,417 72,075 9,336 40,210 21,989 2,090
51238 541 59 time - - 1897.37 1682.99 281.05 248.27 12.64 34.09 29.41 12.31 6.64 4.63
543 94 nodes 8,386,634 7,431,223 1,350,933 1,220,658 59,635 137,960 111,205 53,095 26,101 7,142
51494 661 48 time 364.80 5.64 27.64 6.92 9.02 1.44 0.59 0.95 1.50 3.81
661 69 nodes 953,945 17,279 80,895 23,131 20,004 5,694 1,472 2,311 1,476 985

Table 2: CPU time in seconds and nodes visited to prove optimality for ISCAS* 89 benchmarks. Time limit 1 hour.

ped n wr Superlink 1.5 AOBBMB(}) AOBEMB(1)
c i=6 i=8 i=10 i=12 i=14 i=6 i=8 i=10 i=12 i=14
i 299 time 131.30 419 217 0.39 0.65 136 1.30 207 0.26 0.87 154
340 nodes 69,751 33,908 4,576 6,306 4,494 7,314 13,784 1,177 4,016 3,119
i=10 i=12 i=14 i=16 =18 i=10 i=12 =14 i=16 i=18
23 310 23 time 6,809 53.70 4933 877 273 3.04 35.49 29.29 10,59 359 348
410 37 | nodes 486,991 437,688 85,721 14,019 7,089 | 185761 150214 52,710 11,414 5,790
=12 =14 i=16 =18 =20 =12 =14 =16 =18 =20
30 1016 | 25 time 28,740 1440.26 597.88 1023.90 151.96 383 186.77 5838 8553 7938 33.03
1298 | 51 | nodes 11,694,534 5,580,555 10458174  1,179236 146,896 | 692,870 253465 350497 179,790 37,705
i=8 i=10 i=12 =3 i=10 =12
38 582 7 time 62.18 1554.65 2046.00 272.69 13441 216.94 103.17
727 59 | nodes 3,086,648 11,868,672 1,412,976 348723 583401 242429
i=6 =8 i=10 =12 =6 =8 =10 =12
50 79 i3 time 716.60 4140.29 2493.75 66.66 52.11 7853 36.03 12.75 3852
517 58 | nodes 28,201,843 15,729,294 403,234 110,302 204,886 104,289 25,507 5,766

Table 3: CPU time in seconds and nodes visited to prove optimality for genetic linkage analysis.

solutions whose cost is above the optimal one, like best-first
search. Notice that toolbar3 and AOEDAC+DVO are able
to solve relatively efficiently only the first 3 test instances.

ISCAS’89 Circuits ISCAS’89 circuits' are a common
benchmark used in formal verification and diagnosis. For
our purpose, we converted each of these circuits into a non-
binary WCSP instance by removing flip-flops and buffers in
a standard way, creating hard constraints for gates and uni-
form unary cost functions for inputs. The penalty costs were
distributed uniformly randomly between 1 and 10.

Table 2 reports the results for experiments with 6 cir-
cuits. We observe again that AOBFMB (%) is the best per-
forming algorithm. For instance, on the s1196 circuit,
AOBFMB (10) is 174 times faster and explores a search
space 260 times smaller than AOBBMB (10). In summary,
the best-first AND/OR search algorithms with mini-bucket
heuristics cause significant time savings especially for rela-
tively small ¢-bounds which generate relatively weak heuris-
tic estimates. The performance of the toolbar3 and
AOEDAC+DVO algorithms that are designed specifically for
WCSP was very poor on this dataset and they were not able
to solve the problems within the 1 hour time limit.

Belief Networks

The maximum likelihood haplotype problem in genetic link-
age analysis is the task of finding a joint haplotype config-
uration for all members of the pedigree which maximizes
the probability of data. It is equivalent to finding the most
probable explanation of a belief network that represents the
pedigree data (Fishelson & Geiger 2002).

! Available at http://www.fm.vslib.cz/ kes/asic/iscas/
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Table 3 displays the results obtained for 5 hard linkage
analysis networks?. In addition to the depth-first and best-
first AND/OR search algorithms with pre-compiled mini-
bucket heuristics (i.e. AOBBMB (%), AOBFMB (7) ), we also
ran Superlink 1.5, which is one of the most efficient solvers
for genetic linkage analysis. We notice again the superiority
of AOBFMB (7) over AOBBMB (%), especially for relatively
small i-bounds. On some instances (e.g. pedl, ped30),
the best-first search algorithm AOBFMB (¢) is several orders
of magnitude faster than Superlink.

0/1 Integer Linear Programs

For this domain we experimented with random combinato-
rial auctions which were drawn from the regions-upv
distribution of the CATS 2.0 test suite® and simulate the auc-
tion of radio spectrum for different geographical areas.

In combinatorial auctions, an auctioneer has a set of goods
to sell and the buyers submit a set of bids over subsets of
goods. The winner determination problem is to label the
bids as winning or loosing so as to maximize the sum of the
accepted bid prices under the constraint that each good is
allocated to at most one bid. The problem can be formu-
lated as 0/1 ILP, as described in (Leyton-Brown, Pearson, &
Shoham 2000).

We consider two classes of best-first AND/OR search al-
gorithms, as follows: AOBF which explores the context-
minimal AND/OR search graph, and AOBF+PVO which ex-
plores a dynamic AND/OR search tree using partial variable
orderings, respectively. We compare the best-first search

Zhttp://bioinfo.cs.technion.ac.il/superlink/
*http://cats.stanford.edu/
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Figure 2: Results for combinatorial auctions.

algorithms against two depth-first AND/OR Branch-and-
Bound algorithms for 0/1 ILPs which were recently pro-
posed by (Marinescu & Dechter 2006a): AND/OR Branch-
and-Bound with full context-based caching (AOBB), and
AND/OR Branch-and-Bound with partial variable ordering
(AOBB+PVO), respectively. The guiding heuristic function
is computed by solving the linear relaxation of the current
subproblem with the SIMPLEX method (we used the imple-
mentation from the 1p_solve5.5 1ibrary4).

For reference, we include results obtained with the clas-
sic OR Branch-and-Bound algorithm (BB) available from
the 1p_solve library. The algorithms BB, AOBB+PVO
and AOBF+PVO used a dynamic variable selection heuris-
tic based on reduced costs (or dual values) which selects the
next fractional variable with the smallest reduced cost. Since
combinatorial auctions can be formulated as binary WCSP
instances (Dechter 2003), we also ran toolbar3.

Figure 2 displays the results for experiments with com-
binatorial auctions with 100 goods and increasing number
of bids. Each data point represents an average over 10 ran-
dom samples. We observe that the best-first AND/OR search
algorithms (AOBF, AOBF+PVO) outperform their AND/OR
Branch-and-Bound counterparts (AOBB, AOBF+PVO), es-
pecially when the number of bids increases. When look-
ing at the two best-first algorithms we notice the superior-
ity of AOBF+PVO over AOBF. This demonstrates the power
of the dynamic variable selection heuristic which is able in
this case to cut the search tree dramatically. In summary,
AOBF+PVO is the best performing algorithm and, on some
of the hardest instances, it outperforms its competitors with
up to one order of magnitude.

Conclusion

In this paper we introduced a best-first AND/OR search al-
gorithm which extends the classic AO* algorithm and tra-
verses a context-minimal AND/OR search graph for solv-
ing optimization tasks in graphical models. We also pro-
posed a best-first search algorithm that explores an AND/OR
search tree, rather than a graph, and incorporates dynamic

*http://groups.yahoo.com/group/lp_solve/
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variable ordering heuristics. The efficiency of the best-
first AND/OR search approach compared to the depth-first
AND/OR Branch-and-Bound search is demonstrated empir-
ically on various benchmarks including random as well as
real-world problem instances.

Our approach leaves room for further improvements. The
space required by AOBF can be enormous, due to the fact
that all the nodes generated by the algorithm have to be
saved prior to termination. Therefore, AOBF can be ex-
tended to incorporate a memory bounding scheme similar
to the one suggested in (Chakrabati et al. 1989).
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