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Abstract— Face recognition task is of primary interest in
many computer vision applications, including access control
for security systems, forensic or surveillance. Most commercial
biometric systems based on face recognition are claimed to
perform satisfactory when the enrollment and testing process
takes place under controlled environmental conditions such as
constant illumination, constant pose scale, non-occluded faces
or frontal view. More or less deviation from those conditions
might lead to poor recognition performances or even recognition
system’s failure when a test identity has to be recognized
under new modified testing conditions. Three non-negative matrix
factorization (NMF) methods, namely, the standard one, the local
NMF (LNMF) and the discriminant NMF (DNMF) are employed
in this paper where their robustness against extreme lighting
variations are tested for the face recognition task. Principal
Component Analysis (PCA) method was also chosen as baseline.
Experiments revealed that the best recognition performance is
obtained with NMF, followed by DNMF and LNMF.

I. I NTRODUCTION

Impressive interest was shown from the scientific commu-
nity and commercial vendors for the face recognition task due
to its large number and important applications related to visitor
identification, building access control, security, surveillance
or forensic. Face recognition is a topic researched since the
1960s [1]. A realistic scenario for acquiring image data in the
enrolment procedure would involve unconstrained recording
conditions, including uncontrolled varying illumination. The
illumination setup in which recognition is performed is in most
cases impractical to control, its physics difficult to accurately
model and face appearance differences due to changing light-
ing are often larger than those differences between individuals.
To cope with this important issue, Blanz and Vetter [2] pro-
posed to use a gradient descent for minimizing the discrepancy
between the predicted and observed facial appearance, thus
recovering both shape and texture of a novel face. In the
attempt of modeling illumination variation, PCA has been
been applied [3] to images recorded under varying lighting
conditions. The work showed that PCA can well approximates
an image set by a low-dimensional linear subspace (five or six
dimensional subspace) of the whole image set space. Other
techniques include illumination cones [4] or generic shape-
illumination manifold [5]. Recently, Wang et al. [6] proposed

two strategies (adding or removing light) for illumination
compensation and decomposed the image set using PCA,
thus obtaining nine-dimensional face illumination subspace
based on quotient image. While these methods work with
faces acquired using standard visual spectra, other frameworks
adopted infrared spectra. Thermal infrared face recognition
systems are advantageous when there is little or no control
over illumination. Socolinsky et al. [7], and more recently Li
et al. [8] proposed an infrared face recognition system which
appears to be superior to a face recognition system solely
based on visible imagery.

Three methods for decomposing face image data into non-
negative factors are employed in this paper to have an insight
about their suitability for tackling the varying illumination
issue. Standard non-negative matrix factorization (NMF) along
with its two derived versions named Local NMF (LNMF)
and Discriminant NMF (DNMF) are shortly described in
Section II. We must notice that the application of those
methods for the face recognition task is not novel. Li et al
[9] already explored both NMF and LNMF techniques for
data decomposition, while a simple Euclidean distance is used
as classifier. Their experiments revealed the superiority of
LNMF over the standard NMF for the ORL face database
[10], especially for occluded faces. Guillamet and Vitrià [11]
also applied NMF to a face recognition task, and, more
recently, Buciu et al. [12] reported different results obtained
with NMF, LNMF and DNMF when applied two different
databases, i. e, ORL and YALE [13]. However, the databases
involved in all those experiments contain face images recorded
under uniform and constant illumination, with slightly lighting
variation. Therefore, the framework described in this paper
comes as a natural extension of the previous work, focusing on
the methods’ performance under extreme varying illumination
conditions.

The remaining of the paper is structured as follows. As
already mentioned Section II briefly describes the methods.
Database involved in experiments is described in Section III.
Experimental results are reported in Section IV and conclu-
sions drawn in Section V end up the paper.



II. M ETHODS

Non-negative Matrix Factorizationwas proposed by Lee
and Seung [14] as a method for decomposing a data matrixX
of dimensionm×n into two factorsW andH, of dimension
m× p andp×n, respectively. The particular characteristic of
this decomposition is the constraints imposed on both factors
such to have only non-negative entries. Since Lee and Seung
published their work inNature, more and more NMF - derived
methods were proposed due to its simplicity and consistency
with physiological principles and findings. The authors moti-
vated the NMF developing due to partly biological reasons: the
non-negative matrixH can be sought as encoding biological
firing rates. Generally, the algorithm starts with random values
for both factorsW andH, and, iteratively, the factors entry is
updated so that a cost function is minimized. Once a minimum
in the cost function is found, the algorithm stops. In principle,
finding a minimum is equivalent to have a factors product
W · H as close as possible to the original data matrixX.
Mathematically,X̃ = W · H ≈ X. When data comprise
images, those images are usually stored in the columns of
X, W refers to basis images andH refers to encoding or
coefficients matrix. Whenp < n, as usually chosen, NMF
compresses the whole data represented by alln images into
its p decomposition factors. Each original image can then be
reconstructed, in mathematical terminology, asxj = Whj ,
wherej = 1 . . . n. The quality of reconstruction depends on
the cost function associated to the decomposition. Two cost
functions have been proposed: Kullback-Leibler divergence

KL(x||Wh)NMF =
∑
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−xi+
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and squared Euclidean distanceD(x||Wh)NMF =

∑
i ‖xi −∑

k Wikhk‖2 betweenx and its decompositionWh, for i =
1 . . .m andk = 1 . . . p.

Li et al [9] modified the NMF algorithm to obtain sparser
image features while eliminating redundant information. Their
method namedLocal Non-negative Matrix Factorizationwas
successfully applied to face recognition and the experiments
indicated the LNMF is more robust to the occlusion leading
to superior performance when compared to the standard NMF.
The associated LNMF cost function that has to be minimized
is provided by:

D(X||WH)LNMF = KL(X||WH)NMF +

+ α
∑
ik

uik − β
∑

k

vkk
(1)

where [ujk] = U = WT W, [vjk] = V = HHT and α,
β > 0 are constants.

LNMF was extended by Buciu et al [15] who proposed the
Discriminant Non-negative Matrix Factorizationwhich greatly
improved the performance in classifying facial expressions.
Unlike NMF and LNMF, this technique is a supervised decom-
position technique which allows class information encoding
in its coefficient matrix. Considering we haveQ distinctive
image classes and denoting bync the number of samples in
classc, c = 1, . . . ,Q, each image from the image database

Fig. 1. Seven samples from the training set pertaining to the same
subject. Top image represents the free-illumination sample, while the
remaining samples correspond to the following light direction:(A, E) =
{(−110, +65), (+110, +65), (+60,−20), (+60, +20), (−60,−20), (−60, +20)}

(corresponding to one column of matrixX) pertains to one of
those classes. Each column ofH can be expressed as the image
representation coefficients vectorhcl, where c = 1, . . . ,Q
and l = 1, . . . , nc. The total number of coefficient vectors is
n =

∑Q
c=1 nc. We denote the mean coefficient vector of class

c by µc = 1
nc

∑nc

l=1 hcl and the global mean coefficient vector

by µ = 1
n

∑Q
c=1

∑nc

l=1 hcl. Denoting the within-class scatter
matrix by Sw =

∑Q
c=1

∑nc

l=1(hcl − µc)(hcl − µc)T and the
between-class scatter matrix bySb =

∑Q
c=1(µc − µ)(µc −

µ)T , the cost function associated with DNMF algorithm is
written as [15]:

D(X||WH) = KL(X||WH)NMF + α
∑
i,k

uik − β
∑

k

vkk+

+ γSw(h)− δSb(h),
(2)

subject toW,H ≥ 0. Hereγ andδ are constants. BothSw(h)
andSb(h) are associated to the coefficient matrix.

III. D ATABASE DESCRIPTION

The experiments were carried out using the Extended Yale
Face Database B [16], [17]. The database contains 38 subjects
under 9 poses and 64 illumination conditions. However, we
have used the cropped version of the database that only
comprises frontal pose, yielding a set of 2462 image samples.
The cropped images are re-sized to168 × 192 pixels and
further to 32 × 32 pixels to reduce the computational load.
We have formed the training and test set as follows. For
each subject we picked up the free-illumination pose plus
six samples with extreme light direction, i.e.,(A,E) =
{(−110,+65), (+110,+65), (+60,−20), (+60,+20),
(−60,−20), (−60,+20)}, where A and E stands for the
azimuth and elevation, respectively, of a single light source
direction. A positive azimuth implies that the light source
was to the right of the subject while negative azimuth value
refers to the left part. Positive elevation implies above the
horizon, while negative implies below the horizon. Therefore,
seven samples per subject, as depicted in Figure 1, form the
training set for a total of 266 samples. This set up guarantees
that the basis images built after applying the decomposition
method interpolates between the illumination-free sample and
the extreme light variation (in direction) samples, capturing,
hopefully, relevant and discriminant information. The remain-
ing images are collected for the test set, comprising 2166



Fig. 2. 57 image samples (out of 64) included in the test set, for the
same subject depicted in Figure 1. The illumination changes drastically in
orientation and magnitude, so face appearance, making the face recognition
task very challenging.

samples. We deliberately form a small training set (7 samples
per subject for training and 57 per subject samples for the test
set) in order to tackle the small sample size issue too. Figure
2 shows the 57 samples per subject included in the test set.

IV. EXPERIMENTAL RESULTS

The full data set ofn face images is split into a training
set n(tr) and a disjoint test setn(te) with the corresponding
matricesX(tr) and X(te), respectively. The training images
X(tr) are used for evaluating the decomposition factors. The
training procedure refers to finding the decomposition factors
for the all three NMF methods. Figure 3 shows 20 basis
images found by the three NMF methods and the eigenvec-
tors associated to the PCA decomposition. The basis images
greatly differ in their appearance. While holistic basis image
representation was found for PCA and NMF, moderate sparse
basis images were retrieved by DNMF. Unlike NMF, LNMF
algorithm leaded to local facial features.

Once W and H are found, and, sinceX(tr) = WH,
the feature vectors used for classification are formed as
h(tr) = W−1x(tr), where x(tr) is now a zero mean
training face. A new test feature vectorh(te) is then formed
as h(te) = W−1x(te), where x(te) is a zero mean test
face. In the classical classification problem, we construct
a classifier where the output (predicted value) of the
classifier for a test imagex(te) is l̃. The recognition error
is defined as the percentage of misclassified face images
when {l̃(h(te)) 6= l(h(te))}. Thus, therecognition ratecan
be defined as1 - recognition error. Once we have formedQ
classes of new feature vectors two simple classifiers namely,
cosine similarity measure(CSM) and maximum correlation
classifier (MCC) [12] are employed to classify a new test
image. CSM is based on the nearest neighbor rule and uses
as similarity the angle between a test feature vector and a
training one, while MCC is in fact a minimum Euclidean

Fig. 3. All training image samples were compressed here onto 20 basis
images corresponding to a) PCA, b) NMF, c) LNMF, and d) DNMF,
respectively. Notice their different degree of sparseness and representation.
Also, notice how the illumination information is accurately encoded into the
basis images retrieved by the NMF algorithm.

distance classifier. The experiments were carried out for
various number of basis images, more precisely, forp =
{5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150}.
We also used PCA for comparison purpose. The results for all
four methods corresponding to CSM and MCC are illustrated
in Figure 4 and Figure 5, respectively. As expected, the
recognition rate greatly improves and increases monotonically
with an increase in the number of basis images, especially
up to 50 basis images. From 60 to 150 basis images the
performance continues to get higher but smoother. Comparing
the methods, the highest recognition rate is attributed to the
standard NMF, closely followed by DNMF. The third place
is taken by PCA with LNMF in the last position which
performs the poorest despite retrieving local facial features.
Regarding the two classifiers, Figures 4 and 5 indicate
superior performance for the CSM classifier compared to the
MCC one.

Table I tabulates the maximum recognition rate in percent-
age corresponding to the four methods and the two classifiers
employed in experiments, where the best results are in bold.
An impressive difference in the performance was noticed when
CSM and MCC are compared. For CSM, the recognition rate
greatly improves with over 6 % for all methods except the
DNMF algorithm where the increase is of only 1 %.

V. CONCLUSION

Face recognition under extreme illumination changes was
addressed in this paper. Three techniques, NMF, LNM and
DNMF, relying on non-negative matrix decomposition were
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Fig. 4. Recognition rate in percentage (%) for CSM classifier and various
number (p) of basis images.
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Fig. 5. Recognition rate in percentage (%) for MCC classifier and various
number (p) of basis images.)

employed to extract robust facial features. The features ex-
tracted by those decomposition methods are further classified
using two classifiers, CSM and MCC. Summarizing, CSM
is preferred as it exhibits significant superior performance
when combined with any decomposition method. As far as
the feature extraction method is concerned, NMF seems to
retrieve the most robust features against extremely varying
illumination conditions followed by DNMF. Correlating the
results and the image representation, intuitively, a more holistic
image representation favors the recognition performance, fact
that could explain the poor behavior of the LNMF approach.
Although both PCA and NMF conduct to holistic features, it
was the NMF only which incorporates illumination appearance

TABLE I

MAXIMUM RECOGNITION RATE EXPRESSED IN PERCENTAGE(%) FOR ALL

FOUR METHODS INVESTIGATED IN THE PAPER AND THE TWO

CLASSIFIERS.

Classifier Method

PCA NMF LNMF DNMF

CSM 67.31 88.22 62.74 80.22

MCC 60.84 80.97 57.64 79.22

and information in its basis images as depicted in Figure 3.
This might explain why NMF leaded to the highest recognition
rate providing illumination invariant facial features.
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