
Mining and Detecting Connection-Chains in

Network Traffic

Ahmad Almulhem and Issa Traore

ISOT Research Lab,
ECE Department,
University of Victoria,
Victoria, CANADA

Summary. A connection-chain refers to the set of connections created by sequen-
tially logging into a series of hosts. Attackers typically use connection chains to
indirectly carry their attacks and stay anonymous. In this paper, we proposed a
host-based algorithm to detect connection chains by passively monitoring inbound
and outbound packets. In particular, we employ concepts from association rule min-
ing in the data mining literature. The proposed approach is first explained in details.
We then present our evaluations of the approach in terms of real-time and detec-
tion performance. Our experimentations suggest that the algorithm is suitable for
real-time operation, because the average processing time per packet is both constant
and low. We also show that by appropriately setting underlying parameters we can
achieve perfect detection.

Key words: Connection chain, Stepping stone, Tracing, Traceback, Network
forensics, Network security

1 Introduction

In order to provide a stronger level of security, most organizations use a mix-
ture of various technologies such as firewalls and intrusion detection systems.
Conceptually, those technologies address security from three perspectives;
namely prevention, detection, and reaction. We, however, believe that a very
important piece is missing from this model. Specifically, current technologies
lack any investigative features. In the event of attacks, it is extremely hard to
tie the ends and come up with a thorough analysis of how the attack happened
and what the steps were. We believe the solution is in the realm of Network
Forensics; a dedicated investigation technology that allows for the capture,
recording and analysis of network events for investigative purposes [1]. The
current practice in investigating network security incidents is a manual and
brute-force approach. Experienced system administrators generally conduct

2 Ahmad Almulhem and Issa Traore

it. Typically, investigation proceeds by processing various types of logs, which
are located in a number of places. Brute force investigation however is a time
consuming and error-prone process. It also can be challenging because the
mentioned logs are not meant for thorough investigation. The logs may lack
enough details or contrarily have lots of unrelated details. In this regard de-
veloping investigative tools that can assist and automate network forensics
process is essential. In this paper, we present the foundation of a data min-
ing tool that can assist network forensics analyst in automatically detecting
connection-chains in network traffic data, which represent an important but
challenging aspect of network forensics.

The term connection-chain refers to the set of connections created by se-
quentially logging into a series of hosts, known as stepping-stones [2, 3]. At-
tackers typically use connection chains to indirectly carry their attacks and
stay anonymous. As such, several approaches have been proposed in the liter-
ature to detect them. We refer the interested reader to our review paper for
a taxonomy and a detailed discussion of these approaches [4].

In this paper, we propose a host-based technique to detect connection-
chains. In general, the main disadvantage of the host-based approaches pro-
posed so far in the literature is that they are operating system specific [5, 6, 7].
Specifically, they are expected to be re-designed and re-implemented differ-
ently for different operating system. Also, it is not obvious if they can be
applied to proprietary operating systems such as MS Windows.

To avoid being operating system specific, we adopt a black-box approach.
In essence, inbound and outbound packets at a host are passively monitored
to detect if there is a connection-chain. In particular, we employ concepts
from association-rule mining from the data mining literature. Agrawal et al.
were first to introduce association rules mining concepts, and demonstrate
their usefulness in analyzing a database of sales transactions (market basket
transactions) [8].

The rest of the paper is organized as follows. In section 2, we summarize
and discuss related work on host-based approaches for connection-chains de-
tection. In section 3, we give some background knowledge on association rule
mining. In section 4, we present our detection framework by presenting our
connection-chain mining approach and algorithm. In section 5, we describe
the experimental evaluation of the proposed approach, and present and dis-
cuss the obtained performance results. Finally, in section 6, we make some
concluding remarks.

2 Related Work

Several host-based detection techniques have been proposed in the literature.
They can be broadly classified into two main classes. In the first class, pro-
cesses at the concerned host are searched to find out if two connections are
part of a connection chain [6, 7]. The idea is that if an outbound connection

Mining and Detecting Connection-Chains in Network Traffic 3

is created by an inbound one, then their corresponding processes should be
“related”. The main concern in this approach is that the search process may
fail if the link is involved. For instance, this can be the case when the related
processes are created through deeply nested pipes.

In the second class, an operating system itself is modified to support link-
ing an outbound connection to an inbound one. Buchholz and Shields pro-
posed special data structures and system calls to achieve the desired linking
[5]. In particular, for each process, a new data structure origin is stored in
its process table. For processes created by a remote connection, origin holds
the typical 5-tuple information associated with that connection. For locally
created processes, origin is undefined. When a process forks another one,
origin is as usual inherited. The main concern in this approach is that mod-
ifying an operating system can be costly and might break already running
software.

3 Background

3.1 Association Rules Mining

In the data mining field, association rules mining refers to a methodology that
is used to discover interesting relationships in large data sets [9]. Specifically,
the term association rules is used to denote the discovered relationships, while
the process itself is called mining for association rules.

Formally, let I = {i1, i2, . . . , in} be a set of items. Let T = {t1, t2, . . . , tN}
be a set of transactions, where each transaction ti contains a subset of items
from I, i.e. ti ⊆ I. An itemset is also defined as a set of items. An association
rule is an implication of the form X → Y , where X and Y are disjoint itemsets,
i.e. X

⋂

Y = φ. The strength of an association rule is typically measured by
its support (s) and confidence (c). The support implies that X and Y occur
together in s% of the total transactions. On the other hand, the confidence
implies that, of all the transactions containing X , c% also contain Y .

3.2 Connection Chains

A connection chain denotes a set of tcp connections [10], which are formed
when one logs into one host, from there logs into another and so on. From a
host perspective, a connection chain appears as a pair of connections through
which packets flow back and forth. An important observation is that the time
taken by packets inside the host has to be bounded for a connection chain to
work [11]. Throughout this paper, we refer to this time bound as ∆.

Furthermore, a connection between two hosts is a bidirectional channel
that enables both ends to send and receive data. For convenience, we refer to
each channel as a flow. Further, an inbound flow refers to the flow of traffic
from a remote host to the local host, while an outbound flow refers to the

4 Ahmad Almulhem and Issa Traore

reverse direction. Similarly, inbound and outbound packets refer to packets in
the corresponding flow.

4 Connection-Chains Detection

4.1 Connection-Chains Mining Approach

We adapt the traditional association rule mining framework, which originally
was geared toward business transactions rules mining, for connection chains
mining. In our approach, the items of interest correspond to a set of connec-
tions, and the desired association rules correspond to connection chains.

Formally, let C = {c1, c2, . . . , cn} be the set of active connections at a
given host. As packets flow in these connections, transactions are dynamically
generated. For a given packet, transactions are restricted to be one of the
following two types:

• input transaction [ci], where ci ∈ C, or
• chain transaction [ci, cj], where [ci, cj] = [cj , ci], ci 6= cj and ci, cj ∈ C.

An input transaction [ci] is generated when an inbound packet is received
on the corresponding connection. On the other hand, a chain transaction
[ci, cj] is generated when an outbound packet in one connection follows an
inbound packet in the other connection within a ∆ amount of time. For a
transaction of type [.], the support count σ([.]) refers to how many times it
has occurred.

A connection-chain is an association rule of the form {ci, cj}, with its
confidence defined as follows:

confidence({ci, cj}) =
σ([ci, cj])

σ([ci]) + σ([cj])
(1)

where ci 6= cj and ci, cj ∈ C.
Note that a set notation is used to represent a connection chain instead

of an implication (→), in order to emphasize the fact that a connection chain
does not imply a particular direction. Intuitively, the numerator of the con-
fidence is a count of how many times a chain transaction has occurred; i.e.
packets flow within ∆ time unit in either directions: ci → cj or cj → ci. The
denominator represents a count of how may times an input packet is seen on
the corresponding connection. Typically, a true connection chain is expected
to have a high confidence close to 1, while a false one is expected to have a
low confidence close 0.

4.2 Detection Algorithm

In figure 1, we summarize the detection algorithm as a pseudo-code. The input
to the algorithm is a stream of packets P , which is either captured in real-time

Mining and Detecting Connection-Chains in Network Traffic 5

1: INPUT: P a stream of packets
2: inboundPackets = {}
3: for all p ∈ P do

4: if d(p) = in then

5: generate an [c(p)] transaction
6: add p to inboundPackets

7: else if d(p) = out then

8: for all q ∈ inboundPackets do

9: if t(p) − t(q) ≤ ∆ then

10: if c(p) 6= c(q) then

11: generate an [c(p), c(q)] transaction
12: end if

13: else

14: remove q from inboundPackets

15: end if

16: end for

17: end if

18: end for

Fig. 1. The detection algorithm.

or read from a saved capture file. Those packets are processed in the order of
their timestamps.

For each packet p ∈ P , we define the following operators :

• t(p) : the time-stamp of p.
• c(p) : the connection to which p belongs.
• d(p) : the direction of p; either inbound (in) or outbound (out).

When the processed packet p is an inbound one, an input transaction of
type [c(p)] is generated. Also, the packet itself is added to the inboundPackets
set for later comparisons with outbound packets.

On the other hand, the processing of an outbound packet p is more in-
volved. The packet is compared with all inbound packets that were stored in
inboundPackets set. Then, a chain transaction is generated of type [c(p), c(q)],
if q ∈ inboundPackets, t(p) − t(q) ≤ ∆ and c(p) 6= c(q).

Although not shown in figure 1, support counts of the generated trans-
actions are maintained in a special data structure. Then, the confidences
are computed according to equation 1. Particularly, connection chains cor-
responds to any pair of connections with a confidence exceeding some user-
defined threshold (minconf).

5 Experiments

5.1 Experimental Settings

We implemented the proposed approach in Java, and run various experimen-
tations on a PC with the following specifications: a 1.3Ghz Intel Pentium

6 Ahmad Almulhem and Issa Traore

m-processor, 2 GB RAM, and 80 GB 7200 RPM Hard drive. The experimen-
tations were performed using a public network trace (LBNL-FTP-PKT) [12].
It was selected because it is reasonably large to assess the algorithm. Also,
it only contains the interactive part (control stream) of FTP sessions. This
means that the characteristics of the traffic in this trace is similar to those
generated by applications such as telnet [13] and ssh [14] that are used in
creating connection chains.

The trace contains a ten-day worth of traffic for the period of Jan 10-19,
2003. It contains 3.2 million packets flowing in 22 thousand connections. The
connections are between 320 distinct FTP servers and 5832 distinct clients.
Initially, we sliced the trace into 320 subtraces using the servers’ ip addresses;
i.e. each subtrace contains the packets exchanged with the corresponding
server. In a way, running the algorithm on a subtrace is equivalent to running
the algorithm in real-time on the corresponding server.

In the experimentations, we studied the effect of changing ∆. As such, we
first analyzed the timing of inbound and outbound packets of those servers,
and estimated the response time of the servers to be between 10-90 msec.
We used this value as a guidance to set ∆ in our test suite. Accordingly, we
decided to use the following values of ∆: 1, 10, 50, 100, 200, and 500 msec.
They were selected to investigate the effect of setting ∆, below, around, and
above the true ∆ value.

5.2 Real-Time Performance

To assess the algorithm’s real-time performance, we evaluated the processing
time per packet. For every subtrace (320 subtraces), we run the algorithm
with a ∆ of 1, 10, 50, 100, 200, and 500 msec; i.e. a total of 6 × 320 = 1920
cases. For a particular subtrace Si, the processing time Ti is recorded in each
case. The results are then plotted in figure 2.

As shown in figure 2, we notice that the processing time exhibits a lin-
ear trend as subtraces increase in size. Accordingly, the processing time per
packet is almost constant, as it basically corresponds to the slope of these
lines. Mathematically, it is given by Ti

|Si|
seconds/packet, where |Si| is the

number of packets. For this trace, the average processing time per packet is
approximately 35 µsec/packet. Additionally, we noticed that varying ∆ does
not seem to have a significant effect on the processing time. Accordingly, we
concluded that the algorithm is suitable for real-time operation, because the
average processing time per packet is both constant and low.

5.3 Detection Performance

To assess the detection performance of the algorithm, we first picked the
largest subtrace among the 320 subtraces, although other subtraces give sim-
ilar results. The subtrace contains 1.7 millions packets that correspond to the
traffic exchanged between the server (131.243.2.12) and 236 unique remote

Mining and Detecting Connection-Chains in Network Traffic 7

0 2 4 6 8 10 12 14 16 18

x 10
5

0

10

20

30

40

50

60

70

80

no. of packet s

p
ro

ce
ss

in
g
 t

im
e

(s
ec

o
n
d
s

)

1 msec

10 msec

50 msec

100 msec

200 msec

500 msec

Fig. 2. The processing time of the 320 subtraces for different values of ∆. The
subtraces are sorted in increasing order according to the number of packets. As
shown, the processing time is approximately linear as subtraces increase in size.

hosts. Among these 236 unique remote addresses, we randomly picked 88 of
them to create simulated connection chains as follows. Let L, R and R’ re-
spectively stand for the server (local), a remote host and a fictitious remote
host. Then, the steps to create a simulated connection chain {R,R’} are as
follows:

• For an inbound packet (R,L), create an outbound packet (L,R’). The time-
stamp of the new packet is set to original time-stamp plus some random
time t.

• For an outbound packet (L,R), create an inbound packet (R’,L). The time-
stamp of the new packet is set to original time-stamp minus some random
time t.

• Merge those generated packets into the original trace.

For the random time t, we use a uniform random variable between 10-
90 msec (an estimate of the server response time). Accordingly, the modified

8 Ahmad Almulhem and Issa Traore

subtrace has 236 + 88 = 324 remote addresses and
(

324

2

)

= 52326 possible
connection chains. Only 88 out of the 52326 possible connection chains are true
connection chains (≈ 0.2%). Those are the ones that we actually simulated.

The modified subtrace is then used as an input to the algorithm. In order
to study all connection chains detected by the algorithm regardless of their
confidences, we compute confidence statistics for different values of ∆. The
following values of ∆ were considered: 1, 10, 50, 100, 200, and 500 msec. Note
that a ∆ of 100 msec is the ideal value in this case, because the server response
time is estimated to be 10-90 msec.

Table 1. A summary of The Algorithm’s output showing confidence statistics for
different values of ∆ under any non negative value for minconf .

Confidence
Min 1st Quartile Median Mean 3rd Quartile Max

∆ = 1 ms
True 0.01429 0.01857 0.02389 0.02639 0.0317 0.04348
False 0.0002823 0.0007423 0.0009671 0.001242 0.00151 0.0122

∆ = 10 ms
True 0.02439 0.03584 0.06797 0.07214 0.08378 0.1923
False 0.0003401 0.001433 0.002322 0.002967 0.003913 0.02817

∆ = 50 ms
True 0.2581 0.4756 0.4093 0.4929 0.5595 0.8077
False 0.0003804 0.002959 0.006042 0.009131 0.01292 0.07726

∆ = 100 ms
True 1.0 1.0 1.0 1.0 1.0 1.0
False 0.0003623 0.004518 0.01006 0.01599 0.02237 0.1467

∆ = 200 ms
True 1.0 1.0 1.0 1.0 1.0 1.0
False 0.0003623 0.008181 0.01796 0.03009 0.04302 0.2653

∆ = 500 ms
True 1.0 1.0 1.0 1.0 1.0 1.0
False 0.0004968 0.01471 0.03562 0.05958 0.08803 0.4173

A summary of the the algorithm’s output is shown in table 1. For each value
of ∆, we list several descriptive statistical quantities to show the confidences
distributions of the true and false connection chains involved in the evaluation
dataset.

We visualize the confidences of true and false connection chains in fig-
ure 3. In this figure, notice how the confidences of true and false connection
chains overlap when ∆ is set to very low values (1 and 10 msec). However,
once ∆ is set around or above the ideal value, true connection chains are
clearly separated. In this case, by appropriately setting the confidence thresh-
old (minconf) in the separation area, we achieve perfect detection rates. For
instance, for ∆ = 100 msec, by setting minconf = 0.5 we obtain a true detec-

Mining and Detecting Connection-Chains in Network Traffic 9

0.0 0.2 0.4 0.6 0.8 1.0

1

10

50

100

200

500

Confidence

∆
(m

se
c)

Fig. 3. The range (min-max) of confidences of true and false connection chains for
different values of ∆. For each value of ∆, a grey region indicates the range for false
connection chains, while a black region indicates the range for true ones.

tion rate = 100% and false detection rate = 0%. Also, notice that increasing
∆ beyond the ideal value decreases the separation between the confidences of
the true and false connection chains. In this case, the maximum separation
occurs at the ideal value of ∆ (100 msec). However, notice that this separation
is reasonably large even when ∆ = 500 msec; i.e. 5 times the ideal value. In
essence, large separation is desirable because it gives greater flexibility in set-
ting the minconf threshold. Such threshold is used to reduce (or eliminate)
false connection chains.

6 Concluding Remarks

A connection-chain refers to the set of connections created by sequentially
logging into a series of hosts. Attackers typically use connection chains to
indirectly carry their attacks and stay anonymous. In this paper, we proposed

10 Ahmad Almulhem and Issa Traore

a host-based algorithm to detect connection chains by passively monitoring
inbound and outbound packets. We took advantage of the fact that the time
taken by a packet inside the host has to be bounded for a connection chain
to work. We refer to this time bound as ∆.

In the proposed approach, we employed concepts from association rule
mining in the data mining literature. In particular, we proposed efficient al-
gorithm to discover connection chains among a set of connections. Also, a
confidence measure is proposed to measure the strength of a connection chain.

We implemented the proposed approach in Java, and run various exper-
imentations to assess the real-time and detection performance. The experi-
mentations were performed using a public network trace.

For processing time, our experimentations suggest that the algorithm is
suitable for real-time operation, because the average processing time per
packet is both constant and low. For the detection performance, our experi-
mentations suggest that the algorithm is effective in detecting true connection
chains. The setting of ∆ seems to play an important role. In particular, we
found that the confidences of true and false connection chains are clearly sep-
arated when ∆ is set around or above (even 5 times) the true value. This gives
greater flexibility in setting a confidence threshold (minconf) to reduce (or
eliminate) false connection chains.

References

1. M. Ranum, “Network forensics: Network traffic monitoring,” Network Flight
Recorder, Inc., Tech. Rep., 1997.

2. S. Staniford-Chen and L. T. Heberlein, “Holding intruders accountable on the
internet,” in Proceedings of IEEE Symposium on Security and Privacy, May
1995, pp. 39–49.

3. Y. Zhang and V. Paxson, “Detecting stepping stones,” in 9th USENIX Security

Symposium, Aug 2000, pp. 171–184.
4. A. Almulhem and I. Traore, “Connection-chains: A review and taxonomy,” ECE

Department, University of Victoria, Tech. Rep. ECE-05.4, 12 2005.
5. F. Buchholz and C. Shields, “Providing process origin information to aid in net-

work traceback,” in Proceedings of the 2002 USENIX Annual Technical Confer-

ence, 2002.
6. B. Carrier and C. Shields, “The session token protocol for forensics and trace-

back,” ACM Trans. Inf. Syst. Secur., vol. 7, no. 3, pp. 333–362, 2004.
7. H. W. Kang, S. J. Hong, and D. H. Lee, “Matching connection pairs,” in Lecture

Notes in Computer Science, vol. 3320, Jan 2004, pp. 642–649.
8. R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules between

sets of items in large databases,” SIGMOD Rec., vol. 22, no. 2, pp. 207–216,
1993.

9. P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Addison-
Wesley, 2006.

10. J. Postel, Transmission Control Protocol, RFC 793, sep 1981.

Mining and Detecting Connection-Chains in Network Traffic 11

11. D. L. Donoho, A. G. Flesia, U. Shankar, V. Paxson, J. Coit, and S. Stani-
ford, “Multiscale stepping-stone detection: Detecting pairs of jittered interactive
streams by exploiting maximum tolerable delay,” in RAID 2002: Proceedings of

the 5th International Symposium on Recent Advances in Intrusion Detection,,
october 2002, pp. 17–35.

12. “Lbnl-ftp-pkt,” http://www-nrg.ee.lbl.gov/anonymized-traces.html.
13. J. Postel and J. Reynolds, Telnet Protocol Specification, RFC 854, May 1983.
14. C. Lonvick, SSH Protocol Architecture, Cisco Systems, Inc., December 2004.

