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ABSTRACT

In supervector UBM/GMM paradigm, each acoustic file is repre-
sented by the mean parameters of a GMM model. This supervector
space is used as a data representation space, which has a high di-
mensionality. Moreover, this space is not intrinsically discriminant
and a complete speech segment is represented by only one vector,
withdrawing mainly the possibility to take into account temporal or
sequential information. This work proposes a new approach where
each acoustic frame is represented in a discriminant binary space.
The proposed approach relies on a UBM to structure the acoustic
space in regions. Each region is then populated with a set of Gaus-
sian models, denoted as ”specificities”, able to emphasize speaker
specific information. Each acoustic frame is mapped in the discrim-
inant binary space, turning ”on” or ”off” all the specificities to cre-
ate a large binary vector. All the following steps, speaker reference
extraction, likelihood estimation or decision take place in this binary
space. Even if this work is a first step in this avenue, the experiments
based on NIST SRE 2008 framework demonstrate the potential of
the proposed approach. Moreover, this approach opens the oppor-
tunity to rethink all the classical processes using a discrete, binary
view.

Index Terms— Discrete, discriminant, binary, speaker recogni-
tion

1. INTRODUCTION

Speaker recognition main approaches are based on statistical model-
ing of the acoustic space. This modeling relies usually on a Gaussian
Mixture Model (GMM), denoted as Universal Background Model
(UBM), with a large number of components and trained using a large
set of speech data gathered from hundreds of speakers. The UBM
was originally seen as a seed to obtain the client speaker models.
Each target model was derived from the UBM thanks to a MAP
adaptation of the Gaussian mean parameters only [1]. An important
evolution of the UBM/GMM paradigm was to consider the UBM
as a definition of a new data representation space defined by the
concatenation of the Gaussian mean parameters [2]. This space,
denoted as ”supervector space”, allowed us to use Support Vector
Machines (SVM). A second evolution step was crossed by the direct
modeling of the session variability in the supervector space using
the Joint Factor Analysis (JFA) approach (the Nuisance Attribute
Projection is similar, for SVM/GMM systems[3]).
All the approaches derived from these evolutions follow the same
scheme: a reparameterization step which takes as input a set of
acoustic vectors and outputs a single vector representing this
set.These approaches demonstrated their potential but show also
two main limitations. First, as a set of acoustic vectors are rep-
resented by an unique point in the targeted space, it is difficult to
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Fig. 1. Overview of the approach

exploit temporal or sequential information. It remains possible to
work on sub-segments of a recording but it is difficult to obtain a
strong estimate of the underlined statistics when the set of acoustic
frames is small. Second, they rely on the concept of global and
general information: an information is important because it appears
frequently. The supervector space doesn’t take into account intrinsi-
cally a speaker’s discriminant aspects, which is the goal of speaker
recognition. Building such a discriminant space remains difficult as
a continuous probabilistic modeling needs a large amount of data
to train the model parameters. In practice, the statistic estimation is
done following the data missing case and a discriminant approach
always increases this problem.
In this paper, we propose a solution able to answer the limitations of
supervector based approaches, and more generally of UBM/GMM
based approaches. We propose to move from a continuous prob-
abilistic space to a discrete, binary space, able to handle directly
the speaker discriminant information. A binary space offers several
advantages. It allows to work with a large dimensionality but keep-
ing a compact representation as one coefficient is coded using one
bit. A binary representation allows to use specific arithmetic which
are known for their computational efficiency. Using a binary rep-
resentation allows also to go further in the direction of a (speaker)
discriminative space. The data missing problem highlighted before
is decreased as, for a given direction of the space, only the presence
or non presence of a given specificity is evaluated.
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2. METHOD OVERVIEW

Figure 1 presents an overview of the proposed approach, which is
mainly composed of three elements. First, a classical UBM is used
to structure the acoustic space in sub areas. The role of this UBM is
only to tie each input frames with one or several Gaussian compo-
nents, i.e. one or few acoustic regions. Second, each acoustic region
is then populated with a set of Gaussian models, denoted as ”speaker
specificities”. Each of these models emphasizes a given user specific
information for this particular acoustic space region. These models
are gathered from a training set comparable to the one used for the
UBM training (a model is trained from data related to an unique
speaker, in order to emphasize the specific information correspond-
ing to this speaker). Finally, for an acoustic frame, each speaker
specificity is evaluated and a corresponding binary value is set in the
output vector.

Figure 2 shows how a region of the acoustic space defined by
one of the UBM component is described by a large set of specifici-
ties (Gaussian components) organized in order to emphasize the dis-
criminant information. It also shows how the input data is projected
in the discrete, binary, space. The input data is associated with one
binary value per specificity. Only the specificities close to the input
data are associated with a value equal to 1 and the other with a value
equal to 0. This process is expected to offer a large noise robustness
as illustrated on Figure 2 by the brown (top) and green (down) parts.
It presents the input data with and without noise and shows that the
output binary information is very similar. This process is repeated
for all selected subregions of the data space (i.e. all the in-interest ar-
eas corresponding to the selected UBM components, for the targeted
input data). Over all, the main advantage of the proposed approach
is its ability to finely describe the discriminant information present
in each input data, with a large noise robustness. The proposed ap-
proach inherits a part of its concepts from the anchor model approach
[4, 5]. A first implementation of the approach was proposed in [6].
Even if our approach is also close to [7, 8] which explored the pos-
terior probabilities of mixtures as tokens. It differs from these works
on two main aspects: the binary quantization and the intrinsic dis-
criminant nature of the acoustic modeling.

The binary key generation is the core part of the proposed ap-
proach. It corresponds to a reparameterization step able to project
an acoustic vector, as well as a set of acoustic vectors, into a (large)
binary space. The proposed parameter space is designed in order to
emphasize the individual speaker specificities (i.e. it is intrinsically
a speaker discriminant space).

The binary key generation follows the UBM/GMM paradigm
in order to take advantage of the statistical modeling power of this
approach. It is composed by three steps: an acoustic space struc-
turation based on a classical UBM, a speaker specificities model,
denoted as generator model, and a binary key extraction module de-
noted as extractor. The following paragraphs describe the three parts
of the binary key generation.

3. KEY GENERATOR

The first module of the binary key generator follows the classical
UBM/GMM approach. It uses an UBM trained classically to struc-
ture the acoustic space. Using this UBM the a posteriori probability
of all the UBM components are computed for each acoustic frame.
These probabilities will be used by the generator and the extractor.
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Fig. 2. Illustration of the input data projection in the binary space
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3.1. Generator model

The main role of the generator is to highlight the speaker specifici-
ties even if these speaker specificities are not present on average be-
tween the speakers. Of course, examples of these speaker speci-
ficities should be present in some training data. The basic idea to
achieve this goal is to work on speaker dependent statistics when the
UBM is working on speaker independent ones.

Figure 3 presents an overview of the generator model training
process and of the model itself. In order to obtain the model, three
phases are needed.
The first phase corresponds to a classical UBM training based on
EM/ML algorithm. For the second training phase, the UBM training
data set is decomposed in subsets. Each subset corresponds to one
unique speaker. A speaker specific model is computed by EM/ML,
initialized from the UBM. Unlike in the classical UBM/GMM
speaker model estimation, mean and covariance parameters are
computed, only the weights remain unchanged. For each UBM
component i, a set of specificities Ei

j is obtained. A given speci-
ficity is a Gaussian component defined by the mean µEi

j
and the

covariance matrix ΣEi
j
. Then, an unique covariance matrix, Σi

intra,
is computed for the set of specificities related to UBM component i
as the average of ΣEi

j
.

The covariance matrices are shared by all the specificities be-
longing to a given UBM component. All the available covariance



matrices are averaged in order to represent intra-speaker variability.
The third training process is a specificity selection. It takes as input
the UBM, the set of speaker specificities and the averaged covari-
ance matrices. The total number of speaker specificities is assumed
to be very large. As this number drives directly the dimension of
the discrete binary space, it is necessary to reduce it by selecting the
most interesting specificities. This is done by a Maximum Relevance
Minimum Redundancy algorithm. For each of the UBM component,
the corresponding specificities are selected iteratively following the
criterion:

argimax(
1
n
·
∑j=n

j=1 d(Si, Ej ,Σintra)

d(Si, ubm,Σintra)
) (1)

where Si is the next selected specificity, E is the set of selected
specificities at the iteration i, d(Si, Ej ,Σintra) is a distance be-
tween two Gaussian components described respectively by the mean
vector Si andEj and associated with the covariance matrix Σintra.
The algorithm is initialized by selecting the closest specificity v.s.
the corresponding UBM component.

Finally, the generator model is composed of: (a) a set of speci-
ficities for each of the UBM components, (b) the UBM itself and (c)
the averaged covariance matrix.

3.2. Extractor

The role of the last part of the key generator, the extractor, is to
project the acoustic data into the discriminant binary representation
space. The extractor has to work at the frame level as well as at all the
possible segmental levels. The extractor is composed by two mod-
ules. The first one takes as input the generator model and a unique
acoustic frame and outputs a binary representation of this frame. The
second one takes as input a set of binary vectors and outputs a unique
binary vector. The two following paragraphs give details on the two
modules.
In order to project an acoustic vector in the binary space, the a poste-
riori probabilities pi

ubm of the input frame ft for all the UBM com-
ponents are classically computed by:

pi
ubm(ft) =

wi
ubm · l(ft|N (µi

ubm,Σ
i
ubm))∑j=n

j=1 w
j
ubm · l(ft|N (µj

ubm,Σ
j
ubm))

(2)

where wi
ubm is a priori probability of the UBM component i (the

mixture weight) andN (µi
ubm,Σ

i
ubm) is the ubm component i.

Then, mainly for computational efficiency, a component selection
is classically performed by selecting only the components with the
highest pi

ubm(ft). For each selected UBM component, the likeli-
hood of the acoustic frame ft is computed for all the corresponding
specificities (generator model, part (a)) thanks to:

l(ft|Ei
j) = pi(ft) · l(ft|N (µEi

j
,Σi

intra) (3)

where pi(ft) is the probability to have ft tied to the UBM compo-
nent i, Ei

j is the specificity j corresponding to the UBM component
i. Ei

j is the specificity model defined by the mean µEi
j

and the co-

variance matrix Σi
intra. Several options are possible in order to es-

timate pi(ft). In this work it is simply the a priori probability of the
UBM component i. Finally, the output binary vector is computed
by setting a 1 for the specificities with the highest l(ft|Ei

j) and a 0
for the others, including the non computed specificities (the speci-
ficities tied to a non selected UBM component are not computed).
The number of coefficients set to 1 per vector could be dynamically
determined or fixed as a meta parameter. The latter solution was re-
tained for this work. It is important to notice that a fixed number of

selected components is not like a threshold in the likelihood area.
After the previous step, a binary representation is available for each
input acoustic frame. This binary vector could be used directly in or-
der to propose a complete frame per frame representation of the input
acoustic file. But it is also possible to compress the information in
the time dimension, by applying a segmental representation with or
without overlapping. The maximum compression is achieved when
a complete input sequence of acoustic frames is represented by an
unique binary vector. This solution was retained in this work. The
time compression is simply obtained by a majority voting: a 1 value
is set for the specificities with a maximum of votes (per-frame vec-
tor with a corresponding value set to 1) and a 0 value for the others.
Similarly than for the previous module, a variable or a fixed number
of coefficients set to 1 could be used, here a fixed one is proposed.

4. SPEAKER RECOGNITION SYSTEM

One of the main interest of the proposed approach is to open a new
avenue in the design of speaker recognition system. With the binary
discriminant representation data space, it is important to rethink all
the steps currently used in speaker recognition systems, like session
variability modeling, speaker models, score computation and score
normalization or calibration. As it is possible to project each input
frame, it is also possible to work on frame sequential information.
Here, as a maximum compression is used at the key generator level,
a speech excerpt is represented by a simple binary vector, able to
emphasize the speaker specificities. This vector is itself a speaker
model, denoted ”binary key”. Then, a simple distance between two
binary vectors is enough for computing a similarity score. In the
Information Theory area, several distances are available like Jaccard,
Ghosh, Sokal & Michener, Sokal & Sneath and Yule criteria. In this
work, we are using a criterion derived from the Sokal & Michener
one:

Ssm(vf1,vf2) =
Pc

P
(4)

where Pc is the number of corresponding 1 in the two binary keys
and P is the dimension of the binary keys.

5. EXPERIMENTS

All the results reported in this paper are evaluated on the NIST
SRE08 ([9]) short2-short3 condition. This condition takes one ses-
sion of the target speaker for enrollment and one session for testing.
Short2-short3 is divided into several conditions and we are only
interested in the male condition 7 with trials involving only English
language telephone speech in training and test. In this condition,
470 target speakers and 638 tests segments are used to perform 6616
verification tests. Results are reported in terms of Equal Error Rate
(%EER) and described by DET curves. The baseline system as well
as the UBM/GMM functionalities are gathered from [10].

Figure 4 reports the performance of a system based on a 128
components UBM and a set of 256 specificities associated to each
components. For the key generation, 3 UBM components are se-
lected and 32 top specificities (for each selected UBM component)
are set to 1 at the frame level when 2000 specificities are set to 1
at the file level. No score normalization or Factor Analysis (FA)
based session variability modeling is used. The EER is about 12%
which is far to the performance obtained by our baseline 512 compo-
nents UBM/GMM system (about 8% of EER without score normal-
ization and FA and about 4% of EER when session normalization is
used). We tried also preliminary experiments with an adapted NAP
procedure which works in our discrete space. Figure 5 shows the
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Fig. 4. DET of the binary system (using 128 components UBM and
256 specificities per component), NIST 2008 male, det 7 condition
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Fig. 5. DET of the binary system (using 128 components UBM and
256 specificities per component) when NAP is applied in the binary
space, NIST 2008 male, det 7 condition

corresponding DET curve, still without score normalization. Our
approach obtains about 5% of EER to be compared with about 4%
for our best UBM/GMM system when a Factor Analysis is used to
compensate for session variability.

6. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed a new paradigm for speaker recognition
which projects the acoustic frames in a binary space built in order
to emphasize the speaker specificities. The strong points of the pro-
posed approach are that it is able to deal with the frame sequence, to
concentrate all the acoustic related processes in one module which
is applied on train and test speech data, and that it works in a dis-
criminant binary space. The latter point opens also the possibility
to rethink the session variability modeling as well as the decision or
score normalization modules in the view of such a binary data rep-
resentation space.
The proposed approach obtained about 12% of EER. This level of

performance remains acceptable compared to our baseline systems
(respectively, 8% and 4% for the UBM-GMM without and with
Factor Analysis) as it is only a first version for our approach, with
few tuning or optimization. When a session variability modeling is
applied, in the binary space, the error rates decreased significantly,
until about 5% of EER, which is close to our best performance using
a classical UBM/GMM system with a JFA-based session variability
modeling ( 4% of EER).
Several points of the system should be optimized, like the UBM, the
way to train the specificities and to select the best ones. The links be-
tween the session variability modeling and the binary space building
should also be explored in the next future. Finally, such an approach
opens a large room for research in several directions. We expect to
come back to the temporal/sequential information which is known
to be important for speaker characterization. We will also try to use
the specific nature of our system to look not only at the performance
but in order to explain how and why given results are obtained, for
example, by coming back to the phonetic information.
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