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Abstract

We introduce a new graph model. In this model, vertices are points
spread in a metric space and each vertex is assigned to a box in the space.
Two vertices are connected by an edge if and only if its respective boxes
contain the opposite vertex. We focus our study to the simplest case in
which vertices are spread in a one dimensional euclidean metric space. We
give both, a combinatorial and a simple intersection characterization of
the model. Based on these representations, we determine graph families
that contain the model (e. g., boxicity 2 graphs) and others that the new
model contains (e. g., interval graphs, outerplanar) for which we construct
representation algorithms.

1 Introduction

A geometric graph is a graph where the set of vertices corresponds to a collection
of points that belong to a metric space and an edge connects two vertices if and
only if their corresponding points are at a distance of at most a parameter r. An
important application of geometric graphs are sensor networks. Sensor networks
are networks formed by sensor nodes, little devices deployed in a geographic
area with monitor purposes. Sensors communicate with each other via a radio
channel. Every sensor covers with its radio signal a communication area around
it and two sensors communicate with each other when thy are placed within each
other communication area. In an ideal world, the communication area of a sensor
is a circle. Therefore, in the same ideal world, if every sensor covers equally
sized communication areas, sensors form a geometric graph. That explains why
researchers have used geometric graphs to represent sensor networks, particularly
unit disk graphs [4] or some variations of it [7].

Nevertheless, such an ideal situation is difficult to find in a real deployment,
mainly due to physical or geographical restrictions. For instance, when the
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deployment area is irregular, such as the case of sand dunes, the communication
area of a sensor might be shrunken in one direction due to an obstacle,while, in
the opposite direction, the area is free of any obstacle. On the other hand, some
sensors may have directional antennas which produce communication areas that
are far from be a circle, or that place the sensor location far from the center
of it communication area. Therefore, the existence of a communication link
between two sensors is not determined by the distance between them neither by
the intersection of their communication areas. In fact, one has to be sure that
communication areas include their fellow.

Consequently, we propose a new graph family which take into account such
restrictions. Let us consider a set S and an element p ∈ S as a representative
element of S. For a graph of the family, each vertex corresponds to a pair (S, p)
and an edge between two vertices exists if and only if the set associated with
a vertex contains the representative element of its fellow and vice versa. Note
that, according to this definition, nonempty intersection between two sets is
not enough to guarantee the existence of their corresponding edge. Moreover,
when the sets belong to a metric space, there is no positive distance between
two representative elements that guarantees the existence of their corresponding
edge. Therefore, this new definition differs from geometric graphs, as well as
from intersection graphs.

1.1 Definitions

We start by defining the graph model that we consider in this document. All
graphs considered in this document are finite, connected, undirected, loopless
and without parallel edges. For a graph G = (V,E), we denote by V (G) and
E(G) the set of its vertices and edges, respectively1. The edge {u, v} is denoted
by uv. If uv ∈ E(G) we say that v is a neighbour of u and vice versa. The set
of neighbours of u is denoted by N (u). Additionally, the closed neighborhood of
u is N [u] = N (u) ∪ {u}.

A box in the d-dimensional Euclidean space is the product of d closed intervals.
A box B is described as the set B = {(x1, x2, . . . , xd) ∈ Rd : Li ≤ xi ≤ Ri},
where Li and Ri denote the extremes point of the interval in the i-th dimension.
The center of a box is the equidistant point to every interval of a box. Namely,
the center of the box B is the point ((L1 +R1)/2, (L2 +R2)/2, . . . , (Ld +Rd)/2).

Définition 1 (And-realization). An And-realization of a graph G in the d-
dimensional Euclidean space is a collection of pairs {(Bv, pv) : v ∈ V (G)} where
each vertex v is associated to a d-dimensional box Bv and to a representative
element pv in the box Bv, such that:

uv ∈ E(G)⇔ (pv ∈ Bu) ∧ (pu ∈ Bv).

A central And-realization or c-And-realization of a graph is an And-realization
in which each representative element pv is the center of its box Bv.

We denote by And(d) the set of graphs admitting an And-realization in the
d-dimensional Euclidean space. The subset of And(d) containing the graphs that
admit a c-And(d)-realization is denoted by c-And(d). For simplicity, all along

1When the context makes clear the graph under consideration, we use V and E.
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this document, we use notation (c-)And when we say something that concerns
to both classes c-And and And, respectively.

In this document, we focus in the study of sets And(1) and c-And(1). In
this context, a box Bu becomes an interval in the Euclidean line that we denote
[L(u), R(u)]. Note that, any (c-)And(1)-realizationR = {([L(u), R(u)], pu)}u∈V (G)

can be modified without any modification in the graph that it represents. We
define d-translation and r-scaling of R as the realizations {([L(u) + d,R(u) +
d], pu + d)}u∈V (G) and {([r · L(u), r · R(u)], r · pu)}u∈V (G), respectively. Note
that d-translation and r-scaling do not affect the graph under consideration.

Any (c-)And(1)-realization of a graph induces a natural ordering of its
vertices with respect to the position of its representative elements. Given an
ordering π of the vertices of a graph G we denote by <π the total order induces
by π. That is, u <π v if u appears before than v in π. The extremes vertices of
an order <π are the vertices placed at the first and last position according to
<π. Given a vertex u, we denote by `π(u) and ρπ(u) the leftmost and rightmost
neighbors of u in the order, i.e., `π(u) = {v ∈ N [u] : v <π w ∀ w ∈ N [u], w 6= v}
and ρπ(u) = {v ∈ N [u] : w <π v ∀ w ∈ N [u], w 6= v}.

1.2 Related work

We consider that there is an infinite amount of interesting literature related with
geometric, outerplanar, interval, max-tolerance, boxicity 2, and all graphs we
mention here. Nevertheless, since the graph family introduced in this document
encloses a brand new definition, it is difficult to find literature directly related
with (c-)And graphs. Here, we mention the most relevant works for this research
besides the literature we reference in the rest of the document.

First, we refer the reader to [3], an excellent survey authored by Brandstädt
et al. that contains a description of innumerable graph families. This survey also
presents containment relation between classes, graphs that separate one class
form another, and priceless information in this area. Related with particular
graph families, the notion of boxicity of a graph was introduced in [9]. On
the other hand, the notion of book embedding of a graph was introduced in
[1]. Finally, the book [5] surveys results related with (max -)tolerance graphs.
Moreover, that book presents many results related with intersection graphs.

1.3 Our contributions

The main contribution of this document is the definition of two graph families:
And(d) and c-And(d). We study the one dimensional version (c-)And(1) of the
family in which representative element positions induce an order of the vertices.
We characterize the And(1) family via a combinatorial characterization of the
possible orders of its vertices in any And(1)-realization. We also characterize
both And(1) and c-And(1) families via an intersection model. These two
characterizations help us to encounter a link between (c-)And(1) definitions and
other graph families, such as interval, outerplanar and boxicity 2 graphs. We
also show clear differences with similar definitions such as tolerance and max-
tolerance graphs. Finally, we algorithmically construct (c-)And(1)-realizations
for interval and outerplanar graphs.
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Figure 1: Graphic representation of the four point condition for And(1).

2 A combinatorial characterization for And(1)
graphs

In this section, we give a combinatorial characterization for the graphs that
admit an And(1)-realization. We first point out the fact that any And(1)-
realization of a graph induces a natural ordering of its vertices by considering
the position of their respective representative elements. This ordering needs to
have representative elements assigned to different positions in order to be well
defined. Nevertheless, it is easy to see that any (c-)And(1)-realization can be
modified to fulfill this property.

Définition 2. (R-order) Given a graph G that belongs to And(1) and an
And(1)-realization R of G such that all representative elements are embedded
in different positions. The R-order of the set V , denoted by <R, is the total
order induced by the positions of the representative elements. That is, for any
pair of vertices u and v:

u <R v ⇔ pu < pv.

Consider a R-order of a graph G and two vertices u <R v in V . If vertex
u has a neighbor y after v (v <R y) and v has a neighbor x before u (x <R u)
then, vertices u and v are mutually contained in its corresponding intervals.
Thus, vertices u and v must be connected. Indeed, this property is crucial when
recognizing a graph that belongs to the set And(1). Therefore, we introduce the
following definition for any ordering of the set of vertices of a graph.

Définition 3. Given a graph and an order <π of its set of vertices. We say
that <π satisfies the four point condition for And(1) if and only if for every
quadruplet of vertices x, u, v, y, it holds:

x <π u <π v <π y and {xv, uy} ⊆ E ⇒ uv ∈ E.

Figure 1 shows a graphic representation of the four point condition for And(1).

We prove that for any graph the existence of an ordering that satisfies the
four point condition for And(1) is necessary and sufficient to decide if it belongs
to And(1).

Théorème 4. A graph G belongs to And(1) if and only if there exists an
ordering of its set of vertices that satisfies the four point condition for And(1).

Proof. As we have seen previously, the four point condition is necessary for any
And(1)-realization of G. For the converse, let <π be any ordering of the vertices
of G which satisfies the four point condition.

Let Rπ be a realization constructed in the following way: representative
elements pv are embedded in the Euclidean line arbitrarily but respecting the

4



order <π. For each v ∈ V , we define Bv as the interval covering from the leftmost
to the rightmost neighbors of v according to <π, that is Bv = [`π(v), ρπ(v)].

In order to verify that Rπ is an And(1)-realization of G, consider an edge
uv ∈ E with u <π v. By definition of Rπ, it holds that u ∈ Bv and v ∈ Bu. On
the other hand, if u ∈ Bv and v ∈ Bu, then there exist vertices y ∈ N (u) and
x ∈ N (v) such that x <π u <π v <π y. Thus, vertices u and v are neighbors by
the four point condition.

The four point condition is an useful tool to recognize graph families that
belong to the set And(1) as well as families that do not belong to it. A first
example are interval and outerplanar graphs.

Corollaire 5. Interval and Outerplanar graphs are subset of the set
And(1).

Proof. In [8], Oraliu proves that a graph G is an interval graph if and only if there
exists a linear ordering on its vertices <π such that, for all triplet u, v, w ∈ V
with u <π v <π w and uw ∈ E, it holds that uv ∈ E. Such an order <π satisfies
the four point condition of And(1)2. Thus, any interval graph G belongs to
And(1).

In order to prove that outerplanar graphs belongs to And(1), let us recall the
definition of page embedding of a graph (cf. [1]). A k-page embedding, or book
embedding, of a graph G consists in an linear ordering of the vertices of G which
are drawn on a line (the spine of the book) together with a partition of the edges
into k pages such that two edges in the same page do not cross. The pagenumber
of a graph is the smallest k for which the graph has a k-page embedding. In [2],
Bilski proves that outerplanar graphs are exactly the graphs with pagenumber
one. Therefore, for any outerplanar graph there exists an ordering of its vertices
in which the edges do not cross. Such an ordering (by emptiness, since no two
edges cross) satisfies the four point condition for And(1).

Later in this document, we prove stronger results with respect to interval
and outerplanar graphs. In contrast to Corollary 5, four point condition allows
to discard a graph from the And(1) set.

Corollaire 6. Let G be a graph such that all pairs of vertices u, v ∈ V have at
least two non adjacent common neighbors. Then G doest not belong to And(1).

An example of a graph with this property can be obtained by following the
next two steps: (1) take any graph where each vertex has at least two non
adjacent neighbors (for instance, a cycle with at least four vertices); (2) add two
universal vertices that are connected to every vertex in the original graph, but
which are not adjacent. These two steps construct a family of graphs that does
not belong to And(1). In section 4 we construct a different family of graphs
which does not belong to And(1).

3 Where is c-And(1) in the graph world?

In this section we establish the relation of the c-And(1) set with other well-
known graph families. Particularly, we strengthen the result of Corollary 5 by

2The order <π can be obtained according to the left extreme of the intervals in an interval
representation of G (ties are broken arbitrarily)
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showing that interval and outerplanar graphs belong to c-And(1). Both proofs
are constructive and give an algorithm to construct c-And(1)-realizations for
these classes. We begin by showing the contention of interval graphs.

Théorème 7. The set of Interval graphs is a subset of c-And(1).

Proof. Let G be an interval graph. In [8] Olariu proves that for any interval
graph there exists an order <π of its vertices such that for all triplet u, v, w ∈ V
with u <π v <π w and uw ∈ E then uv ∈ E. For the sake of simplicity we
relabel vertices from 1 to n according to the ordering <π.

We construct a c-And(1)-realization of G greedily. At the i-th step we include
the vertex i. The inclusion is made in such a way that, at the end of the step i,
it holds, for all j, k, w in {1, . . . , i}, that:

1. pk−1 < pk

2. ρ(j) <π ρ(k)⇒ R(j) < R(k).

3. L(j) < p`(j)

4. ρ(k) <π j ⇔ R(k) < pj .

Condition 1 ensures that representative elements are placed according to
order <π. Condition 2 ensures that right extremes of intervals are in the same
order than the values of ρ(·). Finally, conditions 3 and 4 guarantee that the
partial realization at the end of step i corresponds to the subgraph induced by
vertices 1, 2, . . . , i. Thus, at the end of the construction a c-And(1)-realization
of G is obtained.

At the first step all conditions are satisfied. Let suppose that conditions hold
at the end of the step i− 1. We add vertex i in two phases:

• First, we set the position of representative element pi respecting conditions
1 and 4. That is, the representative element is placed after pi−1 and it is
contained only by intervals associated to its previous neighbours.

• Second, we set the interval associated to i such that it contains all its
previous neighbours, according to condition 3. Finally, we modify, if
necessary, the interval of previous vertices in order to satisfy conditions 2.

Let j, k be two vertices with labels smaller than i such that j /∈ N (i) and
k ∈ N (i). Since vertices follow order <π, then ρ(j) < i ≤ ρ(k). Thus, by
condition 2, we have that R(j) < R(k). Therefore, by defining auxiliary variables
L = max{R(j) : j /∈ N (i)} and R = min{R(k) : k ∈ N (i)}, it holds L < R.
Notice that in between L and R there might exist some representatives elements.
Hence, by setting pi as (max{pi−1, L}+R)/2, conditions 1 and 4 hold.

In order to set the extremes of interval Bi, let define the set Pi = {j < i :
ρ(j) < ρ(i)}. We recall that condition 2 imposes that R(j) < R(i) for all vertex j
in Pi. If R′ denotes the max{R(j) : j ∈ Pi} then R′ < R(i). On the other hand,
the interval Bi must contain p`(i) so that condition 3 is satisfied. Let define ri as
max{pi − p`(i), R′ − pi}+ 1. We set L(i) = pi − ri and R(i) = pi + ri. With this
definition, all conditions are satisfied for vertices in Pi. However, condition 2,
does not necessary hold for vertices that do not belong to Pi. To overcome this
problem, we extend the intervals of those vertices by 2ri. That is, we re-define
Bj as [L(j) − ri, R(j) + ri] for all j /∈ Pi. Thus, for all j /∈ Pi, condition 2 is
satisfied since R(i) = pi + ri < R(j) + ri, and the Theorem holds. .

The rest of the section is consecrated to prove that Outerplanar graphs
belong to c-And(1). We first show that cycles belong to c-And(1). Moreover, we

6



show that any realization of a cycle has a well determined structure. Secondly,
we construct a procedure to combine biconnected components and show how to
glue two different cycles by an edge.

Lemme 8. Let Cn be a cycle of length n, then Cn belongs to c-And(1). Fur-
thermore, let R be a And(1)-realization of Cn and π the permutation induced
by <R. Then there exists a clockwise (or anticlockwise) labeling of edges l such
that:

1. Extreme vertices are adjacent and π(l−1(1)) = 1 ∧ π(l−1(n)) = n.

2. For all u ∈ V, |l(u)− π(u)| ≤ 1.

3. If R is a c-And(1)-realization then for all u ∈ V, l(u) = π(u).

Proof. Let Cn be a cycle. We prove that Cn belongs to c-And(1) by constructing
a particular realization. Let label the vertex set clockwise starting in an arbitrary
vertex. Given 0 < ε < 1, we associate to each vertex i ∈ {2, . . . , n− 1} the pair
([i−(1+ε), i+(1+ε)], i). Extreme vertices are assigned to pairs ([2−n−ε, n+ε], 1)
and ([1− ε, 2n− 1 + ε], n), respectively. It is easy to check that previous defined
set is actually a c-And (1)-realization for Cn.

Let consider an And(1)-realization R of the cycle Cn. If n = 3 the represen-
tative elements are always in a (anti-)clockwise order. Let assume that n > 3.
We label the vertices clockwise (or anticlockwise) in such a way that: (1) the
vertex with label 1 has the minimum value of pu, i.e., (π ◦ l−1(1) = 1) and, (2)
the vertex with label 2 is the neighbour of 1 with the smaller position in the
order: π ◦ l−1(2) < π ◦ l−1(n).

In order to prove 1, let suppose by contradiction that the vertex with label n
is not extreme. Define w as the vertex placed at the right of vertex with label n
with the smallest label. By the definition of the labeling, it holds that l(w) > 2,
moreover w has a neighbour placed between the vertices with labels 1 and n, which
we denote by v. We conclude that quadruplet l−1(1) <R v <R l−1(n) <R w
violates four point condition, which is a contradiction.

We prove 2 and 3 greedily. Beforehand, let us introduce some definitions. We
say that a vertex u satisfies the pre-condition if every vertex placed before u has
a label smaller than π(u). Clearly, extreme vertices satisfy the pre-condition. Let
w be a vertex which satisfies the pre-condition but such that l(w) 6= π(w), then
l(w) > π(w). Let denote by v the vertex with the biggest label at the left of w.
By the definition of w it holds that l(v) < n− 1. We denote by x the neighbour
of v with label l(v) + 1, thus w <R x. Let w′ be the vertex in between v and x
with the maximum label. Since l(v) < l(x) < n then w′ must have a neighbour
y (with label l(w′) + 1) at the right of x. Thus, by the four point condition in
the quadruplet v <R w′ <R x <R y, vertices w′ and x must be neighbours. We
conclude that w = w′ and l(w) = l(x) + 1 = l(v) + 2. Additionally, the vertex
immediately after x, that is, in the position π(x) + 1 satisfies the pre-condition.

As we state before, extreme vertices satisfy the pre-condition. Let w be
the first vertex according to <R such that l(w) 6= π(w). By its definition, w
satisfies the pre-condition. Thus, by the previous discussion, l(w) = π(w) + 1.
Furthermore, the next vertex in the ordering, say x, has label l(w) − 1 and
then l(w) − π(w) = 1 ∧ l(x) − π(x) = −1. Furthermore, next vertex in the
ordering must satisfy the pre-condition. By iterating over vertices according to
the order <R, we verify that 2 holds. Finally, let consider the case when R is
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Figure 2: A graph and its block tree. White vertices represent maximal bicon-
nected component while black vertices represent cutvertices.

a c-And(1)-realization. Let v <R w <R x <R y be the quadruplet previously
constructed, where l(y) = l(w) + 1. If px is placed in the left half of the interval
[pv, py] then vw ∈ E, otherwise xy ∈ E which yields a contradiction. Thus, for
all vertices in the c-And(1)-realization l(w) = π(w).

Définition 9 (Safe vertex). LetG be a graph in (c-)And(1). We say that a vertex
v ∈ V is safe in G if there exists a (c-)And(1)-realization R = {(Bu, pu)}u∈V (G)

such that v ∈ Bw if and only if v = w ∨ vw ∈ E(G).

A safe vertex allows the union of two different biconnected components. This
important property comes from the fact that in a realization where a vertex
v is safe, the interval Bv can be enlarged as much as required without modify
the original graph. The following lemma, whose detailed proof can be found in
Appendix A, states the safe vertex utility.

Lemme 10. Consider two graphs G1, G2 ∈ (c-)And(1) and two vertices w1 ∈
V (G1) and w2 ∈ V (G2). Let G be the graph obtained by identifying w1 and w2.
If w2 is safe in G2, then it holds that G ∈ (c-)And(1).

Given a graph G, the block tree of G is the graph having two types of vertices
: blocks and cutvertices. A block vertex represents a maximal biconnected
component of G while cutvertices are the articulation points between blocks.
The edges of the block tree join blocks with cutvertices. A block is adjacent to a
cutvertex if the block contains the cutvertex. Figure 2 shows an example of a
graph and its block tree.

Théorème 11. Let G be a connected graph and T its block tree. If all maximal
biconnected components of G belong to (c-)And(1) and T can be rooted such
that every cutvertex is safe in its descendants, then G belongs to (c-)And(1).

Proof. The proof follows directly from Lemma 10 by adding biconnected compo-
nents of G in a bread-first traversal order.

The previous result allows us to constructively obtain a realization of a graph
by gluing the realization of its biconnected components. As a consequence,
Block graphs, graphs in which all biconnected components induce a clique,
belong to c-And(1).

An analogous result to Lemma 10 can be obtained to identify edges in two
different cycles:

Lemme 12. Given two cycles Cn, C
′
m and two edges uv ∈ E(Cn) and u′v′ ∈

E(C ′m), let G be the graph obtained by identifying uv and u′v′. Then, G ∈
c-And(1).
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Figure 3: This figure shows, from left to right, a graphic representation of (a
general) H lx,ly,lz , and the particular cases of H2,ly,lz and H3,ly,lz .

Proof. For 0 < ε < 1 we construct two c-And(1)-realizations R and R′ of Cn and
C ′m respectively according to the procedure described in the proof of Theorem 8.
Furthermore, we suppose that u and v are the extreme vertices of realization R
but u′and v′ are not the extreme vertices of R′. We perform a 1/(m− 1)-scaling
and a translation of R so that the positions of representative elements of u and
v equal those of u′ and v′ in R′. The realization R∪R′ r {(Bu′ , u′), (Bv′ , v

′)}
is a c-And(1)-realization for the graph G. Notice that this realization can be
done with any vertex as an extreme (safe) vertex.

Théorème 13. The set of Outerplanar graphs is a subset of c-And(1).

Proof. Maximal biconnected components of an outerplanar graph are dissections
of a convex polygon, which belong to c-And(1) by Lemma 12. The proof follows
by gluing biconnected components according to Theorem 11.

4 Differences between And(1) and c-And(1)

In this section we show the difference between And(1) and c-And(1) via a family
of graphs that belongs to And(1) but which does not belong to c-And(1). We
start with a remark upon the fact that the property of being part of And(1)
or c-And(1) is hereditary, i.e., if a graph G belongs to (c-)And(1) then every
induced subgraph of G also belongs to (c-)And(1). Indeed, if a graph G has a
(c-)And(1)-realization then the same realization is also a (c-)And(1)-realization
for every induced subgraph of G when the corresponding vertices are deleted.
From the hereditary property, we define a graph G that does not belong to
(c-)And(1) as minimal with respect to (c-)And(1) if and only if every proper
induced subgraph of G does belong to (c-)And(1). All graphs in the family
separating And(1) and c-And(1) are minimal with respect to c-And(1) and
they are based in the following definition.

Définition 14. LetH lx,ly,lz be a finite graph that consists of two not neighboring
vertices, say vertices a and b, together with three vertex disjoint paths that
connect a with b. The three paths that connect vertex a with vertex b follow:
path x1, x2, . . . , xlx−1, path y1, y2, . . . , yly−1 and path z1, z2, . . . , zlz−1, where
the edge-length of the paths, denoted by lx, ly, and lz, are larger or equal than
2. A graphic representation of H lx,ly,lz is shown in Figure 3.

Lemme 15. Any H lx,ly,lz graph, where lx, ly and lz are strictly larger than 3,
does not belong to And(1).

9



•
a
•
z1

•
z2

•
zlz−1

•
b
•
x

•
ylv−1

•
y1

•
y1

•
x1

•
a
•
z1

•
zlz−1

•
b
•
x2

•
ylv−1

•
y2

Figure 4: A graphic representation of H2,ly,lz (left) and H3,ly,lz(right) where
vertices are ordered respecting the four point condition for And(1).

Proof. The proof is by contradiction. Let R be an And(1)-realization of H lx,ly,lz .
For the sake of simplicity, let denote by X the path x0, x1, x2, . . . , xlx−1, xlx
where x0 = a and xlx = b. We define Y and Z in the same way. By Lemma 8.1,
the extreme vertices of the realization must be neighbours. Then, both extremes
belong to the same path. Without lost of generality, we assume that vertex
a is placed before than b in the realization (a <R b) and that both extremes
belong to path X, say xk and xk+1 with k ∈ {0, . . . , lx − 1}. Therefore, ac-
cording to Lemma 8, the induced cycles X ∪ Y and X ∪ Z must be oriented
clockwise (xk, . . . , x0, y1, . . . , yly−1, b, . . . , xlx−1, . . . , xk−1) and anti-clockwise (
xk, . . . , x0, z1, . . . , zly−1, b, . . . , xlx−1, . . . , xk−1) respectively.

On the other hand, from Lemma 8.2 it holds that a labeling l of an induced
cycle satisfies the following property : if for two vertices u, v it holds l(u) < l(v−1)
then π(u) < π(v), i.e., u <R v. Thus, in the cycle X ∪ Y , y2 <R and a <R yj
for all j > 2. Symmetrically, for the cycle X ∪ Z , a <R zj for all j > 2 and
z2 <R b.

Finally, in the induced realization of cycle Y ∪ Z. The only possible pairs
of extreme vertices are (a, y1), (y1, y2) and (a, z1), (z1, z2). If the extremes are
(a, y1) or (y1, y2), then the cycle Y ∪ Z is oriented anti-clockwise and b <R y2
which is a contradiction. Otherwise, if (a, z1) or (z1, z2) are the extremes, cycle
Y ∪ Z is oriented clockwise and b <R z2 which also yields a contradiction.

We shall see now that, indeed, the smaller cases H2,ly,lz and H3,ly,lz are
minimal graphs that separate And(1) from c-And(1).

Lemme 16. Any H lx,ly,lz graph, where lx, ly and lz are equal or larger than 2,
does not belong to c-And(1).

The proof of this lemma follows the same ideas of the proof of Lemma 15.
Therefore, we omit the proof here, but it can be found in the Appendix A.

With the previous Lemma we have presented an infinite family of graphs
that do not belong c-And(1). Nevertheless, some of these graphs do belong to
And(1).

Lemme 17. Graphs H2,ly,lz and H3,ly,lz belong to And(1) for any ly and lz ≥ 2
and ly and lz ≥ 3, respectively.

The proof of this lemma follows by giving orderings of the set of vertices of
H2,ly,lz and H3,ly,lz that satisfy the four point condition for And(1). Figure 4
shows graphically such orders. A detailed proof of this lemma can be found in
the Appendix A.

We consider important to stress the complete bipartite graph K2,3 as a
particular case of Lemma 16 and Lemma 17, i.e., K2,3 belongs to And(1) but
it does not belong to c-And(1). Such an importance comes from the fact that
K2,3 is the smallest complete bipartite graph that does not belong to c-And(1).
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As a consequence of Lemma 16 and the fact that the property of belonging to
c-And(1) is hereditary, we can say that any graph that contains a H lx,ly,lz as
an induced subgraph does not belong to c-And(1). On the other hand, from
Lemma 17 we know that some of these graphs do belong to And(1).

Théorème 18. There exist an infinite amount of minimal graphs that do not
belong to c-And(1) but which do belong to And(1).

Proof. The proof follows almost directly form lemmas 16 and 17. Indeed, from
those lemmas we know that every H2,ly,lz or H3,ly,lz graph separates families
c-And(1) and And(1). In order to prove minimality, we need to see that any
proper subgraph of a graph in H2,ly,lz or H3,ly,lz belongs to c-And(1). Now,
any proper subgraph of H2,ly,lz or H3,ly,lz is outerplanar. As we have seen in
previous sections, we know that outerplanar graphs do belong to c-And(1).

5 Intersection graph characterization for (c-)And(1)

In this section we give a characterization of And(1) and c-And(1) classes as
intersection graphs. We consider interesting the study of the Boxicity of
those classes. We prove that (c)-And(1) set can be identified with a subset of
Boxicity(2) class.

Théorème 19. A graph G belongs to And(1) if and only if G is the intersection
graph of boxes in the upper half-plane and tangent to the diagonal L0 : x+ y = 0.

Proof. Let G = (V,E) be a graph in (c-)And(1) and {([L(v), R(v)], pv)}v∈V a
realization. For each v ∈ V we define the box B′v in the 2-dimensional euclidean
space as the product of its right interval with the negative scaling of its left
interval (Figure 5). That is to say:

B′v = [pv, R(v)]×[−pv,−L(v)] = {(x, y) ∈ R2, pv ≤ x ≤ R(v)∧−pv ≤ y ≤ −L(v)}.

Let consider two vertices u, v ∈ V with pu ≤ pv. Then, uv ∈ E(G) if and only if
pv − pu ≤ min{R(u)− pu, pv − L(v)} or equivalently B′u ∩B′v 6= ∅.

The previous construction can be made using any non-axis parallel reference
line L : Ax+By+C = 0. For this scenario we can apply a reflexion, a translation
and a scaling to the boxes in order to obtain an equivalent representation which
use L0.

Remarque 20. A direct consequence of the previous result is the fact that
And(1) ⊂ Boxicity(2). This consequence can be generalized. Consider any
graph G = (V,E) in (c-)And(d). The graph G can be expressed as the intersec-

tion of d graphs
⋂d
i=1Gi with Gi = (V,Ei) ∈ (c-)And(1). Given a realization of

G, the graph Gi is determined by the projection of each box and representative
elements on the ith axis of Rd. This observation together with Theorem 19 show
that for d ≥ 1, And(d) ⊂ Boxicity(2d).

This new characterization of graphs in (c-)And(1) allows us to establish a
relation with other graph models. Kaufmann et al. in [6] proved that a graph is a
max-tolerance graph if and only if it can be represented as the intersection graph
of isosceles, axis parallel, right triangles or (lower halves). A slightly different
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Figure 5: An example of a graph in And(1) (left) with its intersection model
with boxes (center) and triangles (right).

representation of (c-)And(1) graphs can be obtained by keeping the left lower
half of boxes in the intersection model (Figure 5 right). Therefore, the following
corollary holds.

Corollaire 21. c-And(1) ⊂ Max-tolerance.

Remarque 22. A family that is closely related with max-tolerance graphs is
the family of tolerance graphs (cf. [5]). Though, definitions are similar, tolerance
graphs do not contain cycles of length longer than 4. Therefore, as consequence
of Lemma 8, we know that the family of tolerance graphs does not contain
neither And(1) nor c-And(1). Therefore, we know that a family of graphs that
a priori might be similar to And(1) differs from it.

6 Conclusions and Future work

In this document we introduced a new graph family named And(d) and a
subfamily c-And(d). We studied the one dimensional version of the family.
We gave a combinatorial characterization for the And(1) and an intersection
characterization for both And(1) and c-And(1) families. These characterizations
allowed us to show the relation with other well known graph classes. These
results are graphical expressed in Figure 6. Moreover, we provided algorithms
to construct realizations for Interval and Outerplanar graphs. We also
provided an infinite set of minimal graphs that separates And(1) and c-And(1).

Our work suggests several directions for future research. Perhaps the most
natural question is to find a combinatorial characterization for the c-And(1)
family. Another interesting open problem concerns to determine the complexity
of the recognition problem for both And(1) and c-And(1) families. The study of
higher dimensions of the families is an alternative way to continue this research.
Another interesting question is the study of the family of graphs generated when
points are embedded in a different metric space, like the d-dimensional torus.

Acknowledgements The authors would like to thank Antonio Fernández
Anta and Marcos Kiwi because they were strongly involved in the origins of this
study, even more, they contributed with enlightening talks and ideas.
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Figure 6: Relation between the graph classes in the document. Arrows point
from the superclass to the subclass.
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A Appendix

Proof of Lemma 10. Let G be a graph obtained by the identification of vertices
w1 and w2 of two different graphs G1 and G2. Consider two (c-)And(1)-
realizations R1 = {(Bu, pu)}u∈V (G1) and R2 = {(Bu, pu)}u∈V (G2) of G1 and
G2, respectively, such that w2 is safe in R2. We denote by l the minimum
distance between pw1 and the representative elements of its neighbours, that is
l = minu∈N (w1){|pw1

− pu|}. Let B be an interval such that ∪v∈V (G2){Bv} ⊆ B
and denote by L its length. We construct the realization R′2 = {(B′v, p′v)}v∈V (G2)

from R2 by the following procedure:

• apply a (−pw2
)-translation,

• scale the realization by a factor l/(2L),

• perform a (pw1)-translation in order to equals the position of representatives
elements of w1 and w2.

Let Bw be the interval with center in pw1
and of length equal to the maximum be-

tween Bw1
and B′w2

. Then, let us defineR = R1∪R′2r{(Bw1
, pw1

), (B′w2
, p′w2

)}∪
(Bw, pw). We see that R is a (c-)And (1) realization for G. In fact, all edges
uv ∈ E(G1) ∪ E(G2) are induced by R. Furthermore by the definition of R′2
and the fact that w2 is safe, no new edges are generated by R.

Proof of Lemma 16. The proof is by contradiction. Let R be an c-And(1)-
realization of H lx,ly,lz . Let denote by X the path x0, x1, x2, . . . , xlx−1, xlx where
x0 = a and xlx = b. We define Y and Z in the same way. Since the extreme
vertices of the realization must be neighbours (Lemma 8.1), then both extremes
belong to the same path. W.l.o.g., we assume that vertex a is placed before
than b in the realization (a <R b) and that both extremes belong to X, says
xk and xk+1 with k ∈ {0, . . . , lx − 1}. Therefore, according to Lemma 8,
the induced cycles X ∪ Y and X ∪ Z must be oriented clockwise and anti-
clockwise, respectively. That is: xk, . . . , x0, y1, . . . , yly−1, b, . . . , xlx−1, . . . , xk−1
and xk, . . . , x0, z1, . . . , zly−1, b, . . . , xlx−1, . . . , xk−1, respectively. Thus, y1 <R b
and z1 <R b.

Let consider the induced realization of cycle Y ∪Z. By the previous discussion
we conclude that a is the left extreme vertex of the induced realization. Thus,
right extreme have to be y1 or z1. Then, either b <R y1 or b <R z1 which is a
contradiction.

Proof of Lemma 17. Consider any H2,ly,lz graph. In this case, the first path has
length 2, therefore, we denote its vertex by x without subindex. In order to
prove the Lemma, we give an ordering of the vertices of H2,ly,lz that satisfies the
four point condition for And(1). Consider the following ordering for V (H2,ly,lz ):

a, z1, z2, . . . , zlz−1, b, x, yly−1, yly−2 . . . , y1.

A graphic representation of H2,ly,lz where the vertices are ordered according the
above described ordering is shown in Figure 4.

As it can be seen in Figure 4, according to this ordering of the vertices the
only pair of edges that crosses one to another are edges ax and byly−1. Since
vertices b and x are connected by an edge in H2,ly,lz , the four point condition is
satisfied. Therefore, the graph H2,ly,lz belongs to And(1).
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Consider any H3,ly,lz graph, we give an ordering of V (H3,ly,lz ) that satisfies
the four point condition for And(1). Consider the following order for V (H3,ly,lz ):

y1, x1, a, z1, z2, . . . , zlz−1, b, x2, yly−1, yly−2, . . . , y2.

A graphic representation of H3,ly,lz where the vertices are ordered according the
above described ordering is shown in Figure 4.

In order to finish the proof, we have to check that this ordering satisfies the
four point condition for And(1). As it can be seen in Figure 4, there are two pair
of edges that crosses one to each other. One pair is composed by edges y1a and
x1x2. Since vertices a and x1 are neighbors, the condition holds. The second
pair is composed by edges x1x2 and byly−1. Since vertices x2 and b are neighbors,
the condition holds. Therefore, the graph H3,ly,lz belongs to And(1).
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