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Abstract 
 

 One of the key motivations for the provisioning of 

autonomic communication features in next generation 

services is to reduce the need of human inference for 

management tasks. This however means essentially 

that system control is delegated to the system itself, i.e.,  

the system operator gives up control to a certain 

extent. The consequence is that autonomic systems 

might deviate from intended behavior, may show 

inconsistent or unwanted states and behavior. We 

propose an approach to develop control structures 

complementary to distributed, heterogeneous services. 

We concentrate on necessary properties of those 

control structures, and furthermore on issues like self-

applicability and self-evolution. 

1. Introduction 

One of the key motivations for the provisioning of 

autonomic communication features in next generation 

services is to reduce the need of human inference for 

management tasks. This however means essentially that 

system control is delegated to the system itself, i.e. the 

system operator gives up control to a certain extent. On 

the other hand, the approach to replace the human 

system operator by some kind of “intelligent mediator” 

that controls the whole system from a central point 

clearly fails not only because of complexity 

considerations, but also because a common (unified) 

foundation, theory, and terminology of “intelligent 

system management” currently does not exist. 

In autonomic communication [28] an alternative 

approach is chosen. Instead of having an automated 

central control, intelligence is pushed into the system 

configuration itself, which means that meaningful be-

havior emerges from the dynamics of large configura-

tions of elements that exhibit only a limited intelli-

gence. But in effect this signifies that the exact behav-

ior of such autonomic configurations is not a priori 

determined but evolves during operation. Nobody 

knows (and can know) what autonomic communication 

systems really do! 

Let us talk about pathology. The biological system 

metaphor for autonomic systems provides us several 

scenarios of illness comprising various kinds of 

malfunctions starting at the level of physical links and 

devices up to service provisioning platforms, 

performance bottlenecks, selfish behavior and general 

fairness violations on various levels, as well as security 

concerns like virus attacks, intrusion, denial of service 

attacks, etc. We therefore propose a complementation 

of the autonomic communication paradigm by the 

concept of the analog of an immune system that 

continuously senses a system and reacts and infers if 

pathological behavior exhibits. This concept is called 

pervasive supervision.  

This paper addresses the foreseen developments in 

the area of supervision that will be carried out in the 

CASCADAS
1
 project [4]. CASCADAS focuses on the 

definition and development of a self-organizing com-

ponent-based service infrastructure. A ground concept 

is the so-called Autonomic Communication Element 

(ACE). An ACE is a building block for autonomic ser-

vices which can be seen as embracing all essential 



characteristics that are required by autonomic services 

within a ubiquitous networked environment. All ACEs 

are equal but some are more equal than others – in 

other words, a multitude of ACEs will exist with each 

type providing varying types of service and capabili-

ties. In the CASCADAS project, the ACE concept 

build a software abstraction of all components which 

will be developed in the project and thus will be a 

common terminological and technological foundation 

of the issues addressed; particularly self-organization 

and self-aggregation of services, security issues for 

autonomic services, knowledge representation and dis-

tribution by means of common overlay network, and – 

last but not least – supervision as a generic hierarchical 

control paradigm. 

This paper is organized as fol-

lows. Section 2 addresses a generic 

architecture for supervision systems 

which will be extended and altered 

in the course of the paper to fit the 

anticipated requirements of future 

service provisioning systems. Sec-

tion 3 summarizes the current state 

of the art. In Section 4, a recent ap-

proach of supervision for WEB Ser-

vice is selected to analyze properties 

of supervision system for autonomic 

services. These requirements are 

analyzed in depth in Section 5 with 

respect to structural issues and in 

Section 6 with respect to long-term 

self-adaptation (self-evolution) of 

supervision systems. The final Section 7 draws conclu-

sions and summarizes the paper. 

2. A Meta-Architecture for Supervision 

Following the CASCADAS approach, consider an 

environment comprising a number of ACEs providing a 

catalog of functions or atomic services. Linking of 

functions into a certain control structure results in 

composed services.  By supervision we mean 

1. the continuous monitoring of ACE configurations 

and the interpretation of monitored data according 

to certain requirements (safety, functional 

correctness, consistency, performance, reliability, 

etc.); 2. the enforcement of corrective measures if a 

violation of these requirements is detected. 

Let us start with a discussion of a paradigmatic ar-

chitecture of a supervision system as shown in Figure 

1. The basic organization of a supervision system is 

that of a closed control loop. Monitoring components 

gather information about the supervised system. Effi-

ciency considerations require that monitors perform 

event filtering and per-analysis task of locally observed 

behavior. Evaluation components perform global 

analysis and correlation tasks. If a problem in the be-

havior of the supervised network is detected, an appro-

priate reaction is computed and enforced in the super-

vised system using special actuator components. Addi-

tional knowledge in the network provide information 

about the current context (sensed situation). Task spe-

cific analysis and reaction algorithms are made avail-

able to the supervision system by another repository 

component. Finally, an information transport system 

(coordination bus) is used to synchronize the distrib-

uted components of the supervision system. 

3. State of the Art 

Supervision systems have been recently investi-

gated, particularly in the context of Autonomic Com-

puting [10] efforts, and focus mainly on automated 

management of Information Systems and their provi-

sioning infrastructure. Most of them, building on the 

conceptual framework termed MAPE-K [16], remain 

topologically external to and are superimposed upon 

the supervision subject. Very few examples of control 

loops applied to communication scenarios exist. The 

OLIVES project [35] has experimented with a general-

purpose software infrastructure, derived from work 

carried out within the KX project [15] (a variation of 

the MAPE-K conceptual framework), which remains 

external to the system under supervised. OLIVES has 

been applied to and validated in a number of applica-

tion domains [7][33]. 

Another extrinsic approach is promoted by Rain-

bow [11], a framework for architecture-driven adapta-

tion of software systems and services [23]. Rainbow 

has been recently used for the supervision of communi-
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Figure 1. Basic supervision architecture 



cation services, such as videoconerencing [11]. The 

Willow survivability architecture [17] aims on adopting 

a distributed communication and computing infrastruc-

tures for survivability, in particular to thwart attacks 

and intrusions. While extrinsic supervision systems 

have been primarily researched in the realm of compu-

tation-intensive systems, for communication-intensive 

services it is more common to embed supervision ca-

pabilities intrinsically within the very infrastructure that 

carries those systems. An example, in the field of active 

networking, is NESTOR [18] which inserts a self-

configuration management layer within the active net-

work stacks, to model, enact and modify the network 

configuration. The JSpoon language [19] complements 

NESTOR, making service components aware of and 

accessible by the NESTOR self-configuration man-

agement layer. The main argument against intrinsic 

approaches is that they tend to be rather inflexible and 

built ad hoc with respect to the supervised system. 

Considering the execution monitoring of service-

oriented applications, nowadays we must consider sev-

eral different standards and proposals in particular from 

the WEB service domain.  Cremona [13] proposes a 

architecture for the semi-automatic creation and moni-

toring of Web Service Agreements [12]. A different 

perspective is taken by Robinson, who extends the re-

quirements monitoring techniques described in [9][8] 

to deal with monitoring of service-based systems focus-

ing on functional requirements of concurrent transac-

tions [25][26]. These requirements are acquired follow-

ing the goal-driven requirement acquisition process of 

the KAOS framework [6]. The authors of [21][30] de-

velop a framework for monitoring requirements for 

service-based systems including behavioral properties 

of the co-ordination process of the service based sys-

tem.  

Baresi et al. [1] propose an assertion-based ap-

proach to monitoring: By inserting commented annota-

tions into a BPEL process it is possible to add asser-

tions to be monitored at run-time by an external web 

service called a monitor. The University of Trento pro-

poses assertions (business rules) classified along two 

dimensions: operational assertions and actor assertions. 

Assertions are classified on the basis of the operational 

context and complexity of the assertion. Two languages 

are provided by the framework: XSAL [20] (definition 

of business assertions), and XSRL [24] (definition of 

client requests). Both predicate using terms from stan-

dard business processes provided by the market maker 

(domain maker).  

DIANA [27] proposes an algorithm for monitoring 

a distributed program's execution for violations of 

safety properties based on formulae written in PT-DTL, 

a variant of PT-LTL (Past Time Linear Temporal 

Logic) capable of predicating on remote expressions 

and remote formulae without the use of global or 

shared variables. Finally, similarly to what proposed by 

Mandel [22], Canfora et al. [3] propose to adopt proxy 

services to perform monitoring. A similar approach 

was taken in [14] for proxy based on-line testing of 

Corba Components [5]. 

4. An Illustrative Example 

This section introduces a simple example to explain 

the problem addressed in the paper, the Pizza Company 

[2]. Following the process definition of Figure 2, we 

can informally state the requirements of the applica-

tion.  

 

Figure 2: Example process 

Suppose that a client orders a pizza. The client dials 

the Pizza Company with a browser-enabled mobile 

phone and, after suitable identification (Authenticate 

Service), his/her profile (Profile Service) determines 

which kind of pizza the client likes. The Pizza Catalog 

Service then offers the client four kinds of pizza; after 

selecting the favorite one (Double Cheese), the client 

provides his/her credit card number (included in the 

client's profile) which is validated by the Credit Card 

Validation Service. If everything is okay, the client's 

account is debited and the pizza company's account is 

credited. Meanwhile, the pizza baker is alerted to the 

order, because after the selection the pizza appears in 



his browser, which is integrated with his cooking 

equipment. 

At this point, the Phone Company Service is used to 

obtain the address of the client using his/her telephone 

number. The GPS Service is then called to get the co-

ordinates of the delivery point. These coordinates are 

passed onto a Map Service, which sends a map with the 

exact route to the pizza delivery boy on his PDA. In the 

mean time the client receives an SMS announcing the 

delivery of the pizza within 20 minutes. 

If we think of the supervision features required by 

this example application, we can easily consider that: 

- Since in the end, clients want their pizzas and they 

also want to be sure that their credit cards are han-

dled in the right way, the scenario must exploit a 

reliable infrastructure. 

- The whole application must run on a secure infra-

structure. This means that the interactions among 

the different services/components involved in the 

application must assume a secure layer. 

- Besides the supervision that must be conceived for 

the supporting infrastructure, the application itself 

needs to be monitored and supervised. For exam-

ple, the map sent to the delivery boy must have a 

given quality and it must also be cheap. We can 

also imagine that the delay with which the client 

receives the SMS must not exceed a given thresh-

old. 

5. Pervasive Supervision 

The example discussed in the previous section clari-

fies a number of properties of supervision systems:  

- Supervision has to take place on a large variety of 

levels (infrastructure, service execution, account-

ing, client’s profile) and in a heterogeneous tech-

nological environment, but also has to take into 

account various conceptual levels (quality of the 

delivery boy in opposite to reliability of e.g. finan-

cial transactions). The conclusion is that neither 

the intrinsic nor the extrinsic approach for supervi-

sion is sufficient.  

- Particularly, since the supervision system itself is 

vulnerable against malfunctions, this architecture 

does not provide a robust and self-healing solution. 

- Autonomic systems are supposed to be highly dy-

namic in configuration and behavior (suppose lo-

cal availability of different communication and lo-

cation technologies, alternative “pizza service” 

providers with different service models, etc.). Thus 

a supervision system constructed using the princi-

ple architecture is able to react accordingly to new 

requirements only if it exhibits self-adaptation fea-

tures by itself. 

From this discussion it becomes clear that a super-

vision system must be understood as an integral part of 

the supervised system that cannot be separated archi-

tecturally, organizationally, or technologically from it. 

Supervision appears itself to be a composed, structural 

integrated service unifying the intrinsic and extrinsic 

paradigm. Because of these observations, we call our 

approach pervasive supervision. Instead of talking 

about a single supervision system, we refer to a super-

vision pervasion. 

As we assume that infrastructures have the capabil-

ity to perform run-time configurable task (as intended 

in the CASCADAS project), we deploy not a single 

supervision configuration but a skeleton configuration 

on each or at least a sufficiently large number of net-

work locations. By a skeleton configuration we mean a 

rudimentary supervision system that is capable to ac-

cept and to perform various supervision tasks. Thus we 

end up with a distributed capability for supervision. 

Robustness requirements now can be fulfilled by de-

ploying several parallel instances of the same supervi-

sion task on various locations (synchronized by some 

distributed coordination protocol), ending up in system 

configuration that is robust against malfunctions. If one 

of these supervision subsystem system senses that one 

of the service providing components is not longer ac-

tive, it coordinates with all other components in order 

to negotiate that it is in charge to solve the problem. 

Then it delegates the functions provided by the lost 

component on another component (assuming such an 

element is available), and re-configures the associated 

services. Note that there is no difference to the reaction 

on the loss of an atomic service provided for functional 

purposes and the loss of an atomic supervision service. 

In an environment that provides dynamic service 

creation and composition, supervision tasks are itself 

formulated in terms of (composed) services. Thus there 

is no technological and organizational difference be-

tween supervision system and the supervised network. 

Pervasive supervision is “holistic” in the sense that 

supervision functions can be delegated on arbitrary 

locations to provide a sufficient degree of redundancy 

to make the supervision pervasion robust against inter-

nal problems. This of course requires resource over-

provisioning. 

6. Self-Evolution 

Supervision methodologies and systems as dis-

cussed so far define closed control loop approach. Cur-

rent analytics of such systems are often based on static 



rule- or policy-based methods that react on individual 

changes. While static rule based methods, as currently 

used, are sufficient for traditional applications working 

in non-distributed environments, future autonomic sys-

tems will require more dynamic, highly intelligent and 

fully automated services that are able to operate in dis-

tributed context aware environments and as such are 

able to not only adapt the system but, more impor-

tantly, the supervising system itself.  

The need for advanced supervision, independent of 

the environment they are applied to, is based on the 

fact that the underlying concept of individual services 

is of volatile nature and as such is likely to change con-

stantly over time. Thus, continuously opening a gap 

between the actual model and the real world concept 

they were designed for. This problem, referred to as 

concept drift, implies the constant adaptation of intelli-

gent services and their underlying models that goes 

beyond traditional self-learning approaches. 

The concept of interest for any real world service 

often depends on a hidden or very complex context 

[32] which makes it extremely difficult to design and 

implement them let alone the modeling of the system 

that is intended to supervise it. Typical examples in-

clude almost any type of forecasting where depending 

on individual models have to be build/adapted con-

stantly, e.g., seasonal or geographical specifics. 

Another general problem within this area is the 

handling of noisy data as a supervising system is ini-

tially doomed to react on any type of data. This prob-

lem can be particular hazardous as it may cause 

oversensitivity or insensitivity for the supervision sys-

tems with respect to their adaptability for changing 

conditions by erroneously interpreting noise as a type 

of concept drift [34]. 

For most systems two types of concept drifts are 

relevant, firstly continues concept drifts which may be 

further divided into slow and moderate drifts depend-

ing on the speed of change they follow [31] and sec-

ondly, sudden concept drifts where abrupt and immedi-

ate visible changes occur. The literature [34] also dif-

ferentiates between two different concepts of “concept 

drifts”, namely virtual and real concept drift. While 

virtual concept drifts only depend on changing opera-

tional data distributions, real concept drifts may also 

depend on any change of the underlying context. What-

ever the case either one requires the update of the re-

flecting model.  

Figure 3 illustrates the basic supervision cycle de-

scribed earlier and extends the architecture to accom-

modate for concept drifts. While similar to the original 

concept it incorporates the concept of interest in order 

to analyze changing behavior. In essence, individual 

context specific instances are identified / observed be-

fore distinct weights are allocated modeling the current 

concept of interest. Next, current model(s) are com-

pared to past concepts and experiences to identify dif-

ferences before a reaction is triggered that may adapt 

the current concept of interest and as such any adjacent 

modules of the service. 

While the problem of concept drift is only one pos-

sible method to allow for self evolution, the concept of 

interest and the real world problem they reflect are key 

to enable autonomic services to self evolve in context 

aware environments. More research is needed to better 

model not only real world problems but also the envi-

ronment they are operating in. In particular, scale free 

and fully autonomic services have to be built in order 

to implement advanced evolutionary techniques into 

future supervision systems. 

Service configuration under supervision

M

M

M A

A

A

communication infrastructure

evaluaton / 

event correlation
reaction computation

Feature 

Identification

Feature 

Weighing

Drift 

Analysis

Concept of Interest

 

Figure 3: Extended Architecture 

7. Outlook 

It is clear that autonomic communications can in prin-

ciple offer novel paradigms that offer self-management 

capabilities for the next generation of networks and 

higher level services.  This paper seeks to explore the 

main opportunities for research if we draw upon mod-

els from pathology, for example, and explore how such 

paradigms can be introduced realistically into systems. 

The pervasive supervision approach we propose goes 

beyond the limitations of both extrinsic as well as in-

trinsic supervision systems, and automated monitoring 

approaches, by extending monitoring approaches to a 

complete evaluation and reaction cycle; by keeping the 

desirable generality and separation of concerns offered 

by extrinsic approaches, while avoiding its overhead, 

and additional architectural complication and heteroge-

neity; and by addressing long term adaptability and 



evolutionary strategies for system intrinsic self-

optimization. 
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