
Towards Pervasive Supervision for Autonomic Systems
†

† This work has been supported by the project CASCADAS (IST-027807) funded by the FET Program of the European Commission.
1 Component-ware for Autonomic, Situation-aware Communications, And Dynamically Adaptable Services

Luciano Baresi

Politecnico di Milano -

Dipartimento di Elettronica e

Informazione, Milano, Italy

baresi@elet.polimi.it

Matthias Baumgarten,

Maurice Mulvenna,

Chris Nugent, Kevin Curran

University of Ulster,

Belfast, United Kingdom

{m.baumgarten;
md.mulvenna; ch.nugent;

kj.curran}@ulster.ac.uk

Peter H. Deussen

Fraunhofer Institute for

Open Communication Sys-

tems, Berlin, Germany

deussen@fokus.fraunhofer.de

Abstract

 One of the key motivations for the provisioning of

autonomic communication features in next generation

services is to reduce the need of human inference for

management tasks. This however means essentially

that system control is delegated to the system itself, i.e.,

the system operator gives up control to a certain

extent. The consequence is that autonomic systems

might deviate from intended behavior, may show

inconsistent or unwanted states and behavior. We

propose an approach to develop control structures

complementary to distributed, heterogeneous services.

We concentrate on necessary properties of those

control structures, and furthermore on issues like self-

applicability and self-evolution.

1. Introduction

One of the key motivations for the provisioning of

autonomic communication features in next generation

services is to reduce the need of human inference for

management tasks. This however means essentially that

system control is delegated to the system itself, i.e. the

system operator gives up control to a certain extent. On

the other hand, the approach to replace the human

system operator by some kind of “intelligent mediator”

that controls the whole system from a central point

clearly fails not only because of complexity

considerations, but also because a common (unified)

foundation, theory, and terminology of “intelligent

system management” currently does not exist.

In autonomic communication [28] an alternative

approach is chosen. Instead of having an automated

central control, intelligence is pushed into the system

configuration itself, which means that meaningful be-

havior emerges from the dynamics of large configura-

tions of elements that exhibit only a limited intelli-

gence. But in effect this signifies that the exact behav-

ior of such autonomic configurations is not a priori

determined but evolves during operation. Nobody

knows (and can know) what autonomic communication

systems really do!

Let us talk about pathology. The biological system

metaphor for autonomic systems provides us several

scenarios of illness comprising various kinds of

malfunctions starting at the level of physical links and

devices up to service provisioning platforms,

performance bottlenecks, selfish behavior and general

fairness violations on various levels, as well as security

concerns like virus attacks, intrusion, denial of service

attacks, etc. We therefore propose a complementation

of the autonomic communication paradigm by the

concept of the analog of an immune system that

continuously senses a system and reacts and infers if

pathological behavior exhibits. This concept is called

pervasive supervision.

This paper addresses the foreseen developments in

the area of supervision that will be carried out in the

CASCADAS
1
 project [4]. CASCADAS focuses on the

definition and development of a self-organizing com-

ponent-based service infrastructure. A ground concept

is the so-called Autonomic Communication Element

(ACE). An ACE is a building block for autonomic ser-

vices which can be seen as embracing all essential

characteristics that are required by autonomic services

within a ubiquitous networked environment. All ACEs

are equal but some are more equal than others – in

other words, a multitude of ACEs will exist with each

type providing varying types of service and capabili-

ties. In the CASCADAS project, the ACE concept

build a software abstraction of all components which

will be developed in the project and thus will be a

common terminological and technological foundation

of the issues addressed; particularly self-organization

and self-aggregation of services, security issues for

autonomic services, knowledge representation and dis-

tribution by means of common overlay network, and –

last but not least – supervision as a generic hierarchical

control paradigm.

This paper is organized as fol-

lows. Section 2 addresses a generic

architecture for supervision systems

which will be extended and altered

in the course of the paper to fit the

anticipated requirements of future

service provisioning systems. Sec-

tion 3 summarizes the current state

of the art. In Section 4, a recent ap-

proach of supervision for WEB Ser-

vice is selected to analyze properties

of supervision system for autonomic

services. These requirements are

analyzed in depth in Section 5 with

respect to structural issues and in

Section 6 with respect to long-term

self-adaptation (self-evolution) of

supervision systems. The final Section 7 draws conclu-

sions and summarizes the paper.

2. A Meta-Architecture for Supervision

Following the CASCADAS approach, consider an

environment comprising a number of ACEs providing a

catalog of functions or atomic services. Linking of

functions into a certain control structure results in

composed services. By supervision we mean

1. the continuous monitoring of ACE configurations

and the interpretation of monitored data according

to certain requirements (safety, functional

correctness, consistency, performance, reliability,

etc.); 2. the enforcement of corrective measures if a

violation of these requirements is detected.

Let us start with a discussion of a paradigmatic ar-

chitecture of a supervision system as shown in Figure

1. The basic organization of a supervision system is

that of a closed control loop. Monitoring components

gather information about the supervised system. Effi-

ciency considerations require that monitors perform

event filtering and per-analysis task of locally observed

behavior. Evaluation components perform global

analysis and correlation tasks. If a problem in the be-

havior of the supervised network is detected, an appro-

priate reaction is computed and enforced in the super-

vised system using special actuator components. Addi-

tional knowledge in the network provide information

about the current context (sensed situation). Task spe-

cific analysis and reaction algorithms are made avail-

able to the supervision system by another repository

component. Finally, an information transport system

(coordination bus) is used to synchronize the distrib-

uted components of the supervision system.

3. State of the Art

Supervision systems have been recently investi-

gated, particularly in the context of Autonomic Com-

puting [10] efforts, and focus mainly on automated

management of Information Systems and their provi-

sioning infrastructure. Most of them, building on the

conceptual framework termed MAPE-K [16], remain

topologically external to and are superimposed upon

the supervision subject. Very few examples of control

loops applied to communication scenarios exist. The

OLIVES project [35] has experimented with a general-

purpose software infrastructure, derived from work

carried out within the KX project [15] (a variation of

the MAPE-K conceptual framework), which remains

external to the system under supervised. OLIVES has

been applied to and validated in a number of applica-

tion domains [7][33].

Another extrinsic approach is promoted by Rain-

bow [11], a framework for architecture-driven adapta-

tion of software systems and services [23]. Rainbow

has been recently used for the supervision of communi-

Service configuration under supervision

M

M

M A

A

A

communication infrastructure

evaluaton /

event correlation
reaction computation

knowledge base

(situation / context)

analysis & reaction

algorithms

update update applyapply

apply

problem

detected

“smart” monitors:

provide task

oriented filtering

and pre-evaluation

supervision

system: …

contextualization

and algorithmic

parameterisation

actuators: perform

task specific

corrective

measures

Figure 1. Basic supervision architecture

cation services, such as videoconerencing [11]. The

Willow survivability architecture [17] aims on adopting

a distributed communication and computing infrastruc-

tures for survivability, in particular to thwart attacks

and intrusions. While extrinsic supervision systems

have been primarily researched in the realm of compu-

tation-intensive systems, for communication-intensive

services it is more common to embed supervision ca-

pabilities intrinsically within the very infrastructure that

carries those systems. An example, in the field of active

networking, is NESTOR [18] which inserts a self-

configuration management layer within the active net-

work stacks, to model, enact and modify the network

configuration. The JSpoon language [19] complements

NESTOR, making service components aware of and

accessible by the NESTOR self-configuration man-

agement layer. The main argument against intrinsic

approaches is that they tend to be rather inflexible and

built ad hoc with respect to the supervised system.

Considering the execution monitoring of service-

oriented applications, nowadays we must consider sev-

eral different standards and proposals in particular from

the WEB service domain. Cremona [13] proposes a

architecture for the semi-automatic creation and moni-

toring of Web Service Agreements [12]. A different

perspective is taken by Robinson, who extends the re-

quirements monitoring techniques described in [9][8]

to deal with monitoring of service-based systems focus-

ing on functional requirements of concurrent transac-

tions [25][26]. These requirements are acquired follow-

ing the goal-driven requirement acquisition process of

the KAOS framework [6]. The authors of [21][30] de-

velop a framework for monitoring requirements for

service-based systems including behavioral properties

of the co-ordination process of the service based sys-

tem.

Baresi et al. [1] propose an assertion-based ap-

proach to monitoring: By inserting commented annota-

tions into a BPEL process it is possible to add asser-

tions to be monitored at run-time by an external web

service called a monitor. The University of Trento pro-

poses assertions (business rules) classified along two

dimensions: operational assertions and actor assertions.

Assertions are classified on the basis of the operational

context and complexity of the assertion. Two languages

are provided by the framework: XSAL [20] (definition

of business assertions), and XSRL [24] (definition of

client requests). Both predicate using terms from stan-

dard business processes provided by the market maker

(domain maker).

DIANA [27] proposes an algorithm for monitoring

a distributed program's execution for violations of

safety properties based on formulae written in PT-DTL,

a variant of PT-LTL (Past Time Linear Temporal

Logic) capable of predicating on remote expressions

and remote formulae without the use of global or

shared variables. Finally, similarly to what proposed by

Mandel [22], Canfora et al. [3] propose to adopt proxy

services to perform monitoring. A similar approach

was taken in [14] for proxy based on-line testing of

Corba Components [5].

4. An Illustrative Example

This section introduces a simple example to explain

the problem addressed in the paper, the Pizza Company

[2]. Following the process definition of Figure 2, we

can informally state the requirements of the applica-

tion.

Figure 2: Example process

Suppose that a client orders a pizza. The client dials

the Pizza Company with a browser-enabled mobile

phone and, after suitable identification (Authenticate

Service), his/her profile (Profile Service) determines

which kind of pizza the client likes. The Pizza Catalog

Service then offers the client four kinds of pizza; after

selecting the favorite one (Double Cheese), the client

provides his/her credit card number (included in the

client's profile) which is validated by the Credit Card

Validation Service. If everything is okay, the client's

account is debited and the pizza company's account is

credited. Meanwhile, the pizza baker is alerted to the

order, because after the selection the pizza appears in

his browser, which is integrated with his cooking

equipment.

At this point, the Phone Company Service is used to

obtain the address of the client using his/her telephone

number. The GPS Service is then called to get the co-

ordinates of the delivery point. These coordinates are

passed onto a Map Service, which sends a map with the

exact route to the pizza delivery boy on his PDA. In the

mean time the client receives an SMS announcing the

delivery of the pizza within 20 minutes.

If we think of the supervision features required by

this example application, we can easily consider that:

- Since in the end, clients want their pizzas and they

also want to be sure that their credit cards are han-

dled in the right way, the scenario must exploit a

reliable infrastructure.

- The whole application must run on a secure infra-

structure. This means that the interactions among

the different services/components involved in the

application must assume a secure layer.

- Besides the supervision that must be conceived for

the supporting infrastructure, the application itself

needs to be monitored and supervised. For exam-

ple, the map sent to the delivery boy must have a

given quality and it must also be cheap. We can

also imagine that the delay with which the client

receives the SMS must not exceed a given thresh-

old.

5. Pervasive Supervision

The example discussed in the previous section clari-

fies a number of properties of supervision systems:

- Supervision has to take place on a large variety of

levels (infrastructure, service execution, account-

ing, client’s profile) and in a heterogeneous tech-

nological environment, but also has to take into

account various conceptual levels (quality of the

delivery boy in opposite to reliability of e.g. finan-

cial transactions). The conclusion is that neither

the intrinsic nor the extrinsic approach for supervi-

sion is sufficient.

- Particularly, since the supervision system itself is

vulnerable against malfunctions, this architecture

does not provide a robust and self-healing solution.

- Autonomic systems are supposed to be highly dy-

namic in configuration and behavior (suppose lo-

cal availability of different communication and lo-

cation technologies, alternative “pizza service”

providers with different service models, etc.). Thus

a supervision system constructed using the princi-

ple architecture is able to react accordingly to new

requirements only if it exhibits self-adaptation fea-

tures by itself.

From this discussion it becomes clear that a super-

vision system must be understood as an integral part of

the supervised system that cannot be separated archi-

tecturally, organizationally, or technologically from it.

Supervision appears itself to be a composed, structural

integrated service unifying the intrinsic and extrinsic

paradigm. Because of these observations, we call our

approach pervasive supervision. Instead of talking

about a single supervision system, we refer to a super-

vision pervasion.

As we assume that infrastructures have the capabil-

ity to perform run-time configurable task (as intended

in the CASCADAS project), we deploy not a single

supervision configuration but a skeleton configuration

on each or at least a sufficiently large number of net-

work locations. By a skeleton configuration we mean a

rudimentary supervision system that is capable to ac-

cept and to perform various supervision tasks. Thus we

end up with a distributed capability for supervision.

Robustness requirements now can be fulfilled by de-

ploying several parallel instances of the same supervi-

sion task on various locations (synchronized by some

distributed coordination protocol), ending up in system

configuration that is robust against malfunctions. If one

of these supervision subsystem system senses that one

of the service providing components is not longer ac-

tive, it coordinates with all other components in order

to negotiate that it is in charge to solve the problem.

Then it delegates the functions provided by the lost

component on another component (assuming such an

element is available), and re-configures the associated

services. Note that there is no difference to the reaction

on the loss of an atomic service provided for functional

purposes and the loss of an atomic supervision service.

In an environment that provides dynamic service

creation and composition, supervision tasks are itself

formulated in terms of (composed) services. Thus there

is no technological and organizational difference be-

tween supervision system and the supervised network.

Pervasive supervision is “holistic” in the sense that

supervision functions can be delegated on arbitrary

locations to provide a sufficient degree of redundancy

to make the supervision pervasion robust against inter-

nal problems. This of course requires resource over-

provisioning.

6. Self-Evolution

Supervision methodologies and systems as dis-

cussed so far define closed control loop approach. Cur-

rent analytics of such systems are often based on static

rule- or policy-based methods that react on individual

changes. While static rule based methods, as currently

used, are sufficient for traditional applications working

in non-distributed environments, future autonomic sys-

tems will require more dynamic, highly intelligent and

fully automated services that are able to operate in dis-

tributed context aware environments and as such are

able to not only adapt the system but, more impor-

tantly, the supervising system itself.

The need for advanced supervision, independent of

the environment they are applied to, is based on the

fact that the underlying concept of individual services

is of volatile nature and as such is likely to change con-

stantly over time. Thus, continuously opening a gap

between the actual model and the real world concept

they were designed for. This problem, referred to as

concept drift, implies the constant adaptation of intelli-

gent services and their underlying models that goes

beyond traditional self-learning approaches.

The concept of interest for any real world service

often depends on a hidden or very complex context

[32] which makes it extremely difficult to design and

implement them let alone the modeling of the system

that is intended to supervise it. Typical examples in-

clude almost any type of forecasting where depending

on individual models have to be build/adapted con-

stantly, e.g., seasonal or geographical specifics.

Another general problem within this area is the

handling of noisy data as a supervising system is ini-

tially doomed to react on any type of data. This prob-

lem can be particular hazardous as it may cause

oversensitivity or insensitivity for the supervision sys-

tems with respect to their adaptability for changing

conditions by erroneously interpreting noise as a type

of concept drift [34].

For most systems two types of concept drifts are

relevant, firstly continues concept drifts which may be

further divided into slow and moderate drifts depend-

ing on the speed of change they follow [31] and sec-

ondly, sudden concept drifts where abrupt and immedi-

ate visible changes occur. The literature [34] also dif-

ferentiates between two different concepts of “concept

drifts”, namely virtual and real concept drift. While

virtual concept drifts only depend on changing opera-

tional data distributions, real concept drifts may also

depend on any change of the underlying context. What-

ever the case either one requires the update of the re-

flecting model.

Figure 3 illustrates the basic supervision cycle de-

scribed earlier and extends the architecture to accom-

modate for concept drifts. While similar to the original

concept it incorporates the concept of interest in order

to analyze changing behavior. In essence, individual

context specific instances are identified / observed be-

fore distinct weights are allocated modeling the current

concept of interest. Next, current model(s) are com-

pared to past concepts and experiences to identify dif-

ferences before a reaction is triggered that may adapt

the current concept of interest and as such any adjacent

modules of the service.

While the problem of concept drift is only one pos-

sible method to allow for self evolution, the concept of

interest and the real world problem they reflect are key

to enable autonomic services to self evolve in context

aware environments. More research is needed to better

model not only real world problems but also the envi-

ronment they are operating in. In particular, scale free

and fully autonomic services have to be built in order

to implement advanced evolutionary techniques into

future supervision systems.

Service configuration under supervision

M

M

M A

A

A

communication infrastructure

evaluaton /

event correlation
reaction computation

Feature

Identification

Feature

Weighing

Drift

Analysis

Concept of Interest

Figure 3: Extended Architecture

7. Outlook

It is clear that autonomic communications can in prin-

ciple offer novel paradigms that offer self-management

capabilities for the next generation of networks and

higher level services. This paper seeks to explore the

main opportunities for research if we draw upon mod-

els from pathology, for example, and explore how such

paradigms can be introduced realistically into systems.

The pervasive supervision approach we propose goes

beyond the limitations of both extrinsic as well as in-

trinsic supervision systems, and automated monitoring

approaches, by extending monitoring approaches to a

complete evaluation and reaction cycle; by keeping the

desirable generality and separation of concerns offered

by extrinsic approaches, while avoiding its overhead,

and additional architectural complication and heteroge-

neity; and by addressing long term adaptability and

evolutionary strategies for system intrinsic self-

optimization.

References

[1] Baresi, L., C. Ghezzi, S. Guinea, Smart Monitors for
Composed Services”, 2nd Int. Conf. on Service Oriented
Computing, ICSOC04, 2004.

[2] Baresi, L., C. Ghezzi, S. Guinea, “Towards Self-healing
Compositions of Services”, Proc. PRISE’04, 1st Conf.
on PRIciples of Software Engineering, pp. 11 – 20,
2004.

[3] Canfora, G., M. Di Penta, R. Esposito, M. Villani, “A
Lightweight Approach for QoS-Aware Service Compo-
sition”, forum paper at ICSOC, IBM Technical Report
RA221 (W0411-084), 2004.

[4] CASCADAS project homepage, http://cascadas-
project.org/

[5] Corba Components, version 3; OMG specification,
www.omg.org

[6] Dardenne, A., A. Lamsweerde, S. Fickas, "Goal Di-
rected Requirements Acquisition", Science of Computer
Programming, Vol. 20, 1993, 3-50, 1993

[7] Deussen, P.H., G. Valetto, G. Din, T. Kivimaki, S.
Heikkinen, A. Rocha, Continuous On-Line Validation
for Optimized Service Management, in Proc.
EURESCOM Summit 2002.

[8] Feather M.S., Fickas S., 1995. "Requirements Monitor-
ing in Dynamic Environments", Proc. IEEE Int. Conf.
on Requirements Engineering, 1995

[9] Feather, M.S., 1997. "FLEA: Formal Language for
Expressing Assumptions – Language Description", June
25, 1997.

[10] Ganek, A.G., T.A. Corbi, The Dawning of the Auto-
nomic Computing Era, IBM Systems Journal, 42(1): 5-
18, 2003.

[11] Garlan, D., S. Cheng, A. Huang, B. Schmerl, P. Steen-
kiste, Rainbow: Architecture-based Self-adaptation
with Reusable Infrastructure, IEEE Computer,
37(10):46-54, Oct. 2004.

[12] Global Grid Forum, 2004. Web Services Agreement
Specification, Version 1.1 Draft 18, 2004.

[13] H. Ludwig, A. Dan, R. Kearney, “Cremona: An Archi-
tecture and Library for Creation and Monitoring of WS-
Agreements”, 2nd Int. Conf. on Service Oriented Com-
puting, ICSOC04.

[14] Hoffmann, A., H. Batteram, W. Hellenthal, W. Romijn,
A. Rennoch, A. Vouffo: “Implementation of an Open
Source Toolset for CCM Components and Systems
Testing”, Testcom 2004, Oxford (UK), March 17-19,
2004.

[15] Kaiser, G., J. Parekh, P. Gross, G. Valetto, Retrofitting
Autonomic Capabilities onto Legacy Systems, Journal
of Cluster Computing, 2005 (in press)

[16] Kephart, J., D. Chess, "The Vision of Autonomic Com-
puting", IEEE Computer, 36(1), 2003.

[17] Knight, J., D. Heimbigner, A. Wolf, A. Carzaniga, J.
Hill, P. Devanbum, The Willow Survivability Architec-
ture, in Proc. 4th Information Survivability Workshop
(ISW-2001), Vancouver, B.C.,18-20 March 2002.

[18] Konstantinou, A.V., Y. Yemini, and D. Florissi, To-
wards Self-Configuring Networks, in Proceedings of

the DARPA Active Networks Conference and Exposi-
tion, San Francisco, Ca., USA, May 2002.

[19] Konstantinou, A.V., Y. Yemini, Programming Systems
for Autonomy, in Proc. IEEE Autonomic Computing
Workshop, Active Middleware Services (AMS 2003),
Seattle, Wa., USA, June 2003.

[20] Lazovik, A., M. Aiello, M. Papazoglou, “Associating
Assertions with Business Processes and Monitoring
their Execution”, 2nd Int. Conf. on Service Oriented
Computing (ICSOC04), 2004.

[21] Mahbub, K., G. Spanoudakis, "A framework for Re-
quirements Monitoring of Service Based Systems",
Proc. 2nd Int. Conf. Service Oriented Computing (IC-
SOC04), 2004

[22] Mandell, D., S. Mcllraith, “Adapting BPEL4WS for the
Semantic Web: The Bottom-Up Approach to Web Ser-
vice Interoperation”, in Proc. of ISWC 2003, LNCS,
Springer, pp. 227-241, 2003

[23] Oriezy, P., et al., An Architecture-based Approach to
Self-adaptive Software, IEEE Intelligent Systems,
14(3):54-62, 1999.

[24] Papazoglou, M., M. Aiello, M. Pistore, J. Yang,
“XSRL: A Request Language for Web Services
(www.webservices.org)”, 2003

[25] Robinson, W., "Monitoring Web Service Interactions",
Proc. Workshop On Requirements Engineering and
Open Systems (REOS), Monterey CA, 2003

[26] Robinson, W., "Monitoring Web Service Require-
ments", Proc. 12th Int. Conf. on Requirements Engi-
neering, 2003

[27] Sen, S., A. Vardhan, G. Agha, G. Rosu, “Efficient De-
centralized Monitoring of Safety in Distributed Sys-
tems”, Proc. 26th Int. Conf. on Software Engineering,
23-28 May 2004, Edinburgh, Scotland, pages 418-427,
2004.

[28] Smirnov, M., Autonomic Communication – Research
Agenda for a New Communication Paradigm, White-
paper, 2004, avail. as
http://www.fokus.gmd.de/web-
dokumente/Flyer_engl/Autonomic-Communicatin.pdf.

[29] Spanoudakis, G., K. Mahbub, "Web-service require-
ments monitoring: Towards a framework based on
Event Calculus", Proc. 19th IEEE Int. Conf. on Auto-
mated Software Engineering (ASE 2004), pp. 379-384,
2004.

[30] Spanoudakis, G., K. Mahbub, "Web-service require-
ments monitoring: Towards a framework based on
Event Calculus", Proc. 19th IEEE Int. Conf. on Auto-
mated Software Engineering (ASE 2004), pp. 379-384,
2004

[31] Stanley, O.K.; “Learning concept drift with a committee
of decision trees”; Report UT-AI-TR-03-302; Dep. of
Computer Sciences University of Texas; 2003

[32] Tsymbal; “The Problem of Concept Drift: Definitions
and Related Work”; www.cs.tcd.ie/ publications/tech-
reports/reports.04/TCD-CS-2004-15.pdf; 2004

[33] Valetto, G., G. Kaiser, Using Process Technology to
Control and Coordinate Software Adaptation, in Proc.
Int. Conf. on Software Engineering (ICSE 2003), May
2003.

[34] Widmer, G., M. Kubat; “Learning in the presence of
concept drift and hidden contexts”; Machine Learning
23 (1); pp 69-101; 1996

[35] OLIVES Home Page:
www.eurescom.de/public/projects/P1100-series/P1108.

