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We consider the optimal consumption and portfolio choice problem with constant absolute risk aversion (CARA) utility and a
subsistence consumption constraint. A subsistence consumption constraint means there exists a positive constant minimum level
for the agent’s optimal consumption. We use the dynamic programming approach to solve the optimization problem and also
give the verification theorem. We illustrate the effects of the subsistence consumption constraint on the optimal consumption and
portfolio choice rules by the numerical results.

1. Introduction

Following the seminal research works of Merton [1, 2], vari-
ous problems of continuous-time optimal consumption and
portfolio selection have been considered under various finan-
cial/economic constraints. One of the interesting research
topics in a continuous-time portfolio selection problem is the
optimization problem subject to a subsistence consumption
constraint (or a downside consumption constraint). A sub-
sistence constraint means that there exists a positive lower
bound level for the agent’s optimal consumption rate. Thus
this constraint affects the agent’s financial decision including
her optimal portfolio.

Lakner and Nygren [3] have studied the portfolio opti-
mization problem subject to a downside constraint for con-
sumption and an insurance constraint for terminal wealth
with a martingale approach. Gong and Li [4] have investi-
gated the role of index bonds in the optimal consumption
and portfolio selection problem with constant relative risk
aversion (CRRA) utility and a real subsistence consumption
constraint using the dynamic programming approach. Shin et
al. [5] have also considered a similar problem to that of Gong
and Li [4]. They have studied the portfolio selection problem
with a general utility function and a downside consumption
constraint using the martingale approach. Yuan and Hu [6]

have investigated the optimal consumption and portfolio
selection problem with a consumption habit constraint and
a terminal wealth downside constraint using the martingale
approach. In this paper we use the dynamic programming
method based on Karatzas et al. [7] to derive the value
function and the optimal policies in closed-form with a
constant absolute risk aversion (CARA) utility function and a
subsistence consumption constraint. Lim et al. [8] have con-
sidered a similar portfolio optimization problem combined
with the voluntary retirement choice problem. Shin and Lim
[9] have analyzed the effects of the subsistence consumption
constraint for behavior of investment in the risky asset.

The rest of this paper proceeds as follows. Section 2 intro-
duces the financial market. In Section 3 we consider the main
optimization problem. We use the dynamic programming
principle to derive the solutions in closed form with CARA
utility and a subsistence consumption constraint. We also
give some numerical results and the solutions derived by the
martingale method. Section 4 concludes.

2. The Financial Market Setup

We assume that there are two assets in the financial market:
one is a riskless asset with constant interest rate 𝑟 > 0, and the
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other is a stock whose price process {𝑆
𝑡
}
𝑡≥0

evolves according
to the stochastic differential equation (SDE)

𝑑𝑆
𝑡

𝑆
𝑡

= 𝜇𝑑𝑡 + 𝜎𝑑𝐵
𝑡
, for 𝑡 ≥ 0, (1)

where 𝜇 is the constant expected rate of return of the
stock, 𝜎 > 0 is the constant volatility of the stock, and
𝐵
𝑡
is a standard Brownian motion on a probability space

(Ω,F,P) endowed with the filtration {F
𝑡
}
𝑡≥0

which is the
augmentation under P of the natural filtration generated by
the standard Brownian motion {𝐵

𝑡
}
𝑡≥0

. We assume that 𝜇 ̸= 𝑟

so that the market price of risk 𝜃 is not zero:

𝜃 ≜

𝜇 − 𝑟

𝜎

̸= 0. (2)

Let 𝑋
𝑡
be an economic agent’s wealth at time 𝑡, 𝜋

𝑡
the

amount of money invested in the stock at time 𝑡, and 𝑐
𝑡
the

consumption rate at time 𝑡. The portfolio process {𝜋
𝑡
}
𝑡≥0

is
adapted to {F

𝑡
}
𝑡≥0

and satisfies, for all 𝑡 ≥ 0, almost surely
(a.s.),

∫

𝑡

0

𝜋
2

𝑠
𝑑𝑠 < ∞, (3)

and the consumption rate process {𝑐
𝑡
}
𝑡≥0

is a nonnegative
process adapted to {F

𝑡
}
𝑡≥0

such that, for all 𝑡 ≥ 0, a.s.,

∫

𝑡

0

𝑐
𝑠
𝑑𝑠 < ∞. (4)

We assume that there is a subsistence consumption constraint
which restricts the minimum consumption level. That is, the
consumption process should satisfy

𝑐
𝑡
≥ 𝑅, ∀𝑡 ≥ 0, (5)

where 𝑅 > 0 is a constant lower bound for the consumption
rates. Thus the agent’s wealth process {𝑋

𝑡
}
𝑡≥0

follows the SDE

𝑑𝑋
𝑡
= [𝑟𝑋

𝑡
+ 𝜋
𝑡
(𝜇 − 𝑟) − 𝑐

𝑡
] 𝑑𝑡 + 𝜎𝜋

𝑡
𝑑𝐵
𝑡
, (6)

with an initial endowment 𝑋
0

= 𝑥 > 𝑅/𝑟. (We need
this restriction on the initial endowment for the positive
consumption rate. See Lemma 3.1 of Gong and Li [4]).
A consumption-portfolio plan (c,𝜋) := ({𝑐

𝑡
}
𝑡≥0
, {𝜋
𝑡
}
𝑡≥0
)

satisfying the above conditions is called admissible at 𝑥 > 𝑅/𝑟
if 𝑋
𝑡
≥ 𝑅/𝑟, for all 𝑡 ≥ 0. We let A(𝑥) denote the class of

admissible controls at 𝑥 > 𝑅/𝑟.

3. The Optimization Problem

Now the agent’s optimization problem with initial wealth
𝑋
0
= 𝑥 > 𝑅/𝑟 is to choose (c,𝜋) ∈ A(𝑥) to maximize the

following expected life-time utility:

E [∫
∞

0

𝑒
−𝛽𝑡
𝑢 (𝑐
𝑡
) 𝑑𝑡] . (7)

Here, 𝛽 > 0 is the subjective discount factor and 𝑢(⋅) is
a constant absolute risk aversion (CARA) utility function
defined by

𝑢 (𝑐) ≜ −

𝑒
−𝛾𝑐

𝛾

, (8)

where 𝛾 > 0 is the agent’s coefficient of absolute risk aversion.
Thus the agent’s value function is given by

𝑉
∗
(𝑥) ≜ sup

(c,𝜋)∈A(𝑥)
E[−∫

∞

0

𝑒
−𝛽𝑡−𝛾𝑐

𝑡

𝛾

𝑑𝑡] . (9)

Bellman equation corresponding to the optimization prob-
lem for 𝑥 > 𝑅/𝑟 is

max
𝑐≥𝑅,𝜋

[ {𝑟𝑥 + 𝜋 (𝜇 − 𝑟) − 𝑐}𝑉
󸀠
(𝑥) +

1

2

𝜎
2
𝜋
2
𝑉
󸀠󸀠
(𝑥)

−𝛽𝑉 (𝑥) −

𝑒
−𝛾𝑐

𝛾

] = 0.

(10)

We assume that the wealth process𝑋
𝑡
must satisfy a transver-

sality condition

lim
𝑡→∞

𝑒
−𝛽𝑡
𝑉 (𝑋
𝑡
) = 0. (11)

We will find the solution 𝑉(𝑥), as the candidate value
function, to Bellman equation (10) under the conditions that
𝑉
󸀠
(𝑥) > 0 and 𝑉󸀠󸀠(𝑥) < 0 for 𝑥 > 𝑅/𝑟 and 𝑉󸀠(𝑥) = 𝑢

󸀠
(𝑅) =

𝑒
−𝛾𝑅 for a real number 𝑥 > 𝑅/𝑟. After obtaining the solution,
we can check these conditions. Under these conditions, in
particular, the first-order condition (FOC),−𝑉󸀠(𝑥)+𝑢󸀠(𝑐) = 0
with respect to 𝑐 ≥ 𝑅, is binding if 𝑅/𝑟 < 𝑥 < 𝑥 so that the
maximizing 𝑐 ≥ 𝑅 in Bellman equation (10) is 𝑅 in this case.

Thus, from the first-order conditions (FOCs) of Bellman
equation (10), we derive the candidate optimal consumption
and portfolio

𝑐
∗
=

{
{
{

{
{
{

{

𝑅, if 𝑅
𝑟

< 𝑥 < 𝑥

−

log {𝑉󸀠 (𝑥)}
𝛾

, if 𝑥 ≥ 𝑥,

𝜋
∗
= −

𝜃𝑉
󸀠
(𝑥)

𝜎𝑉
󸀠󸀠
(𝑥)

.

(12)

Remark 1. For later use, we consider two quadratic algebraic
equations:

𝑟𝑚
2
− (𝑟 + 𝛽 +

𝜃
2

2

)𝑚 + 𝛽 = 0, (13)

with two roots𝑚
1
(0 < 𝑚

1
< 1) and𝑚

2
> 1 and

𝜃
2

2𝛾

𝑛
2
+ (𝑟 − 𝛽 −

𝜃
2

2

) 𝑛 − 𝑟𝛾 = 0, (14)

with two roots 𝑛
1
< 0 and 𝑛

2
> 𝛾.
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Theorem 2. Let 𝑉(𝑥) be given by

𝑉 (𝑥) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝐶
1
(𝑥 −

𝑅

𝑟

)

𝑚
1

−

𝑒
−𝛾𝑅

𝛽𝛾

, 𝑖𝑓

𝑅

𝑟

< 𝑥 < 𝑥

1

𝛽

(𝑟 +

𝜃
2

2𝛾

𝑛
1
)𝐷
1
𝑒
(𝑛
1
−𝛾)𝜉

−

1

𝑟𝛾

𝑒
−𝛾𝜉

, 𝑖𝑓 𝑥 ≥ 𝑥,

(15)

where

𝐷
1
= −

𝑟𝑚
1
− 𝛽 − 𝜃

2
/2

𝑟
2
𝛾𝑒
𝑛
1
𝑅
(1 − ((1 − 𝑚

1
) /𝛾) 𝑛

1
)

> 0, (16)

𝑥 =

1 − 𝑚
1

𝛾

(𝑛
1
𝐷
1
𝑒
𝑛
1
𝑅
+

1

𝑟

) +

𝑅

𝑟

>

𝑅

𝑟

, (17)

𝐶
1
=

𝑒
−𝛾𝑅

𝑚
1

(𝑥 −

𝑅

𝑟

)

1−𝑚
1

> 0, (18)

and 𝜉 is determined from the algebraic equation

𝑥 = 𝐷
1
𝑒
𝑛
1
𝜉
+

1

𝑟

𝜉 +

1

𝑟
2
𝛾

(𝑟 − 𝛽 −

𝜃
2

2

) . (19)

Then it satisfies Bellman equation (10).

Proof. By using Remark 1, we can check the inequalities in
(16) and (17). The inequality in (18) holds by (17). Define the
function𝑋(𝑐) of 𝑐 on [𝑅,∞) by

𝑋 (𝑐) = 𝐷
1
𝑒
𝑛
1
𝑐
+

1

𝑟

𝑐 +

1

𝑟
2
𝛾

(𝑟 − 𝛽 −

𝜃
2

2

) . (20)

By using (16) and (17), one can check

𝑋 (𝑅) = 𝑥. (21)

Since the function 𝑋(𝑐) is increasing in 𝑐, it has the inverse
function. Let 𝐶(𝑥) for 𝑥 ≥ 𝑥 be the inverse function of 𝑋(𝑐).
In particular, we have

𝐶 (𝑥) = 𝑅. (22)

By (19), we have

𝜉 = 𝐶 (𝑥) for 𝑥 ≥ 𝑥. (23)

By using Remark 1, (16), (18), (22), and (23), we can show
that the function𝑉(𝑥) defined by (15) is continuous. By using
Remark 1, (20), (23), and the inverse relationship between 𝑋
and 𝐶, we can obtain

𝑉
󸀠
(𝑥) = 𝑒

−𝛾𝐶(𝑥)
, 𝑉

󸀠󸀠
(𝑥) = −

𝛾𝑒
−𝛾𝐶(𝑥)

𝑋
󸀠
(𝐶 (𝑥))

, for 𝑥 > 𝑥.

(24)

By (15), (18), (20), (22), and (24), we get the smooth-pasting
(𝐶1) condition

𝑉
󸀠
(𝑥−) = 𝑚

1
𝐶
1
(𝑥 −

𝑅

𝑟

)

𝑚
1
−1

= 𝑒
−𝛾𝑅

= 𝑉
󸀠
(𝑥+) , (25)

and the high-contact (𝐶2) condition

𝑉
󸀠󸀠
(𝑥−) = 𝑚

1
(𝑚
1
− 1)𝐶

1
(𝑥 −

𝑅

𝑟

)

𝑚
1
−2

= −

𝛾𝑒
−𝛾𝑅

𝑋
󸀠
(𝑅)

= 𝑉
󸀠󸀠
(𝑥+) .

(26)

Thus, the function 𝑉(𝑥) is twice continuously differentiable.
Furthermore, 𝑉󸀠(𝑥) > 0 and 𝑉

󸀠󸀠
(𝑥) < 0 for 𝑥 > 𝑅/𝑟 and

𝑉
󸀠
(𝑥) = 𝑢

󸀠
(𝑅) = 𝑒

−𝛾𝑅.
For 𝑅/𝑟 < 𝑥 < 𝑥, if we substitute FOCs (12) into Bellman

equation (10), we obtain the changed Bellman equation

(𝑟𝑥 − 𝑅)𝑉
󸀠
(𝑥) −

1

2

𝜃
2
(𝑉
󸀠
(𝑥))

2

𝑉
󸀠󸀠
(𝑥)

− 𝛽𝑉 (𝑥) −

𝑒
−𝛾𝑅

𝛾

= 0.

(27)

We can easily check that𝑉(𝑥) is the solution to (27) for 𝑅/𝑟 <
𝑥 < 𝑥.

For 𝑥 ≥ 𝑥, we also obtain the changed Bellman equation
from (10):

𝑟𝑥𝑉
󸀠
(𝑥) −

1

2

𝜃
2
(𝑉
󸀠
(𝑥))

2

𝑉
󸀠󸀠
(𝑥)

− 𝛽𝑉 (𝑥)

+

𝑉
󸀠
(𝑥)

𝛾

(log𝑉󸀠 (𝑥) − 1) = 0.

(28)

If we substitute (24) into Bellman equation (28), then we
obtain the equation

𝑟𝑋 (𝑐) 𝑒
−𝛾𝑐

+

𝜃
2

2𝛾

𝑋
󸀠
(𝑐) 𝑒
−𝛾𝑐

− 𝛽𝑉 (𝑋 (𝑐))

−

𝑒
−𝛾𝑐

𝛾

(𝛾𝑐 + 1) = 0.

(29)

By using (15) and (23), we can check that (29) holds.

Now we can derive the candidate optimal policies with
the function 𝑉(⋅) in Theorem 2.

Theorem 3. The candidate optimal policies are given by
(𝑐
∗
, 𝜋
∗
) such that

𝑐
∗

𝑡
=

{

{

{

𝑅, 𝑖𝑓

𝑅

𝑟

< 𝑋
𝑡
< 𝑥,

𝜉
𝑡
, 𝑖𝑓 𝑋

𝑡
≥ 𝑥,

(30)

𝜋
∗

𝑡
=

{
{
{

{
{
{

{

𝜃

𝜎 (1 − 𝑚
1
)

(𝑋
𝑡
−

𝑅

𝑟

) , 𝑖𝑓

𝑅

𝑟

< 𝑋
𝑡
< 𝑥,

𝜃

𝜎𝛾

(𝑛
1
𝐷
1
𝑒
𝑛
1
𝜉
𝑡
+

1

𝑟

) , 𝑖𝑓 𝑋
𝑡
≥ 𝑥,

(31)

where 𝜉
𝑡
is determined from the optimal wealth process

𝑋
𝑡
= 𝐷
1
𝑒
𝑛
1
𝜉
𝑡
+

1

𝑟

𝜉
𝑡
+

1

𝑟
2
𝛾

(𝑟 − 𝛽 −

𝜃
2

2

) . (32)
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Theorem 4 (verification theorem). The value function of the
optimization problem (9) is equal to 𝑉(𝑥) in Theorem 2. That
is, 𝑉∗(𝑥) = 𝑉(𝑥). Consequently the candidate consumption
and portfolio in Theorem 3 are the optimal policies of problem
(9).

Proof. For arbitrary given consumption and portfolio plan
(c,𝜋) ∈ A(𝑥) and 𝑇 ∈ (0,∞), we have

E[−∫
𝑇

0

𝑒
−𝛽𝑡−𝛾𝑐

𝑡

𝛾

𝑑𝑡]

≤ E [−∫
𝑇

0

𝑒
−𝛽𝑡

{ (𝑟𝑋
𝑡
+ 𝜋
𝑡
(𝜇 − 𝑟) − 𝑐

𝑡
) 𝑉
󸀠
(𝑋
𝑡
)

+

1

2

𝜎
2
𝜋
2

𝑡
𝑉
󸀠󸀠
(𝑋
𝑡
) − 𝛽𝑉 (𝑋

𝑡
)} 𝑑𝑡]

= E [−∫
𝑇

0

𝑑 (𝑒
−𝛽𝑡
𝑉 (𝑋
𝑡
))]

+ E [∫
𝑇

0

𝑒
−𝛽𝑡
𝜎𝜋
𝑡
𝑉
󸀠
(𝑋
𝑡
) 𝑑𝐵
𝑡
]

= 𝑉 (𝑥) − E [𝑒
−𝛽𝑇

𝑉 (𝑋
𝑇
)] ,

(33)

where the inequality is obtained from Bellman equation (10),
the first equality from applying Itô’s formula to 𝑒

−𝛽𝑡
𝑉(𝑋
𝑡
),

and the second equality from E[∫
𝑇

0
𝑒
−𝛽𝑡
𝜎𝜋
𝑡
𝑉
󸀠
(𝑋
𝑡
)𝑑𝐵
𝑡
] = 0.

Taking𝑇 ↑ ∞ andusing transversality condition (11), we have

𝑉 (𝑥) ≥ E[−∫
∞

0

𝑒
−𝛽𝑡−𝛾𝑐

𝑡

𝛾

𝑑𝑡] , (34)

for arbitrary given consumption and portfolio plan (c,𝜋) ∈
A(𝑥); that is,

𝑉 (𝑥) ≥ sup
(c,𝜋)∈A(𝑥)

E[−∫
∞

0

𝑒
−𝛽𝑡−𝛾𝑐

𝑡

𝛾

𝑑𝑡] . (35)

Now we consider the candidate optimal consumption and
portfolio plan (c∗,𝜋∗) ∈ A(𝑥) inTheorem 3. For 𝑇 ∈ (0,∞),
we have

E[−∫
𝑇

0

𝑒
−𝛽𝑡−𝛾𝑐

∗

𝑡

𝛾

𝑑𝑡]

= E [−∫
𝑇

0

𝑒
−𝛽𝑡

{ (𝑟𝑋
𝑡
+ 𝜋
∗

𝑡
(𝜇 − 𝑟) − 𝑐

∗

𝑡
) 𝑉
󸀠
(𝑋
𝑡
)

+

1

2

𝜎
2
(𝜋
∗

𝑡
)
2

𝑉
󸀠󸀠
(𝑋
𝑡
) − 𝛽𝑉 (𝑋

𝑡
)} 𝑑𝑡]

2 3 4 5 6 7 8
0.0
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Figure 1: This figure is the optimal consumption rate 𝑐∗
𝑡
when 𝛽 =

0.05, 𝑟 = 0.01, 𝜇 = 0.07, 𝜎 = 0.2, 𝑅 = 0.02, and 𝛾 = 3. Solid line
gives the optimal consumption rate with a subsistence consumption
constraint and dotted line gives the optimal consumption rate
without the constraint.

= E [−∫
𝑇

0

𝑑 (𝑒
−𝛽𝑡
𝑉 (𝑋
𝑡
))]

+ E [∫
𝑇

0

𝑒
−𝛽𝑡
𝜎𝜋
∗

𝑡
𝑉
󸀠
(𝑋
𝑡
) 𝑑𝐵
𝑡
]

= 𝑉 (𝑥) − E [𝑒
−𝛽𝑇

𝑉 (𝑋
𝑇
)] ,

(36)

where the first equality is obtained from Bellman equation
(10), the second from applying Itô’s formula to 𝑒−𝛽𝑡𝑉(𝑋

𝑡
), and

the third from E[∫
𝑇

0
𝑒
−𝛽𝑡
𝜎𝜋
∗

𝑡
𝑉
󸀠
(𝑋
𝑡
)𝑑𝐵
𝑡
] = 0. Taking 𝑇 ↑ ∞

and using transversality condition (11), we have

𝑉 (𝑥) = E[−∫
∞

0

𝑒
−𝛽𝑡−𝛾𝑐

∗

𝑡

𝛾

𝑑𝑡] . (37)

Thus, from (35) and (37), we show that 𝑉(𝑥) which is the
solution to Bellman equation (10) is a real value function of
the optimization problem (9).

Now we compare our solution in Theorem 3 with the
Merton’s solution with CARA utility. The optimal consump-
tion and portfolio policies without the subsistence constraint
are given by

𝑐
𝑀

𝑡
= 𝑟𝑋
𝑡
+

1

𝑟𝛾

(𝛽 − 𝑟 +

1

2

𝜃
2
) , 𝜋

𝑀

𝑡
=

𝜃

𝜎𝑟𝛾

, (38)

respectively. Figures 1 and 2 give the numerical results for the
optimal consumption and portfolio.

Remark 5. Dynamic programming principle can be also
applied to the CRRA utility function with a subsistence
consumption constraint following our approach. See Gong
and Li [4] and Lee and Shin [10].

Remark 6. Following Shin et al. [5] we can use themartingale
method to derive a similar solution with CARA utility. We
will give (rough) sketch of the derivation.
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Figure 2:This figure is the optimal portfolio 𝜋∗
𝑡
when 𝛽 = 0.05, 𝑟 =

0.01, 𝜇 = 0.07, 𝜎 = 0.2, 𝑅 = 0.02, and 𝛾 = 3. Solid line gives
the optimal portfoliowith a subsistence consumption constraint and
dotted line gives the optimal portfolio without the constraint.

From the agent’s wealth dynamics𝑋
𝑡
in (6), we obtain the

budget constraint

E [∫
∞

0

𝑐
𝑡
𝐻
𝑡
𝑑𝑡] ≤ 𝑥, (39)

where the state price density𝐻
𝑡
is defined by

𝐻
𝑡
≜ 𝑒
−(𝑟+(1/2)𝜃

2
)𝑡−𝜃𝐵

𝑡
. (40)

A dual utility function 𝑢̃(𝑦) of the CARA utility function
𝑢(𝑐) = −𝑒

−𝛾𝑐
/𝛾 is derived by

𝑢̃ (𝑦) = sup
𝑐≥𝑅

[−

𝑒
−𝛾𝑐

𝛾

− 𝑐𝑦] = [

1

𝛾

𝑦 log𝑦 − 1

𝛾

𝑦] 1
{0<𝑦≤𝑦}

+ [−

𝑒
−𝛾𝑅

𝛾

− 𝑅𝑦] 1
{𝑦>𝑦}

,

(41)

where 𝑦 = 𝑒−𝛾𝑅. The dual value function V(𝑦) is given by

V (𝑦) = E
𝑦
0
=𝑦
[∫

∞

0

𝑒
−𝛽𝑡

[{

1

𝛾

𝑦
𝑡
log (𝑦

𝑡
) −

1

𝛾

𝑦
𝑡
} 1
{0<𝑦
𝑡
≤𝑦}

+{−

𝑒
−𝛾𝑅

𝛾

− 𝑅𝑦
𝑡
} 1
{𝑦
𝑡
>𝑦}
] 𝑑𝑡]

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑐
1
𝑦
𝑝
+
+

1

𝑟𝛾

𝑦 log𝑦

+

1

𝑟
2
𝛾

(𝛽 − 2𝑟 +

1

2

𝜃
2
)𝑦, if 0 < 𝑦 ≤ 𝑦,

𝑑
2
𝑦
𝑝
−
−

𝑅

𝑟

𝑦 −

𝑒
−𝛾𝑅

𝛽𝛾

, if 𝑦 > 𝑦,

(42)

where 𝑦
𝑡
≜ 𝑦𝑒
𝛽𝑡
𝐻
𝑡
and 𝑝

+
> 1 and 𝑝

−
< 0 are two real roots

of the quadratic algebraic equation

1

2

𝜃
2
𝑝
2
+ (𝛽 − 𝑟 −

1

2

𝜃
2
)𝑝 − 𝛽 = 0. (43)

The undetermined coefficients of V(𝑦) are given by

𝑐
1
=

((𝑝
−
− 1) /𝑟

2
) (𝛽 − 2𝑟 + (1/2) 𝜃

2
) + 𝑝
−
/𝛽 − 1/𝑟

𝛾 (𝑝
+
− 𝑝
−
)

× 𝑒
−𝛾𝑅(1−𝑝

+
)
,

𝑑
2
=

((𝑝
+
− 1) /𝑟

2
) (𝛽 − 2𝑟 + (1/2) 𝜃

2
) + 𝑝
+
/𝛽 − 1/𝑟

𝛾 (𝑝
+
− 𝑝
−
)

×𝑒
−𝛾𝑅(1−𝑝

−
)
.

(44)

Then we use the Legendre transform inverse formula to
obtain the value function 𝑉

𝑚
(𝑥) as follows:

𝑉
𝑚
(𝑥)

= inf
𝑦>0

[V (𝑦) + 𝑥𝑦]

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑝
−
− 1

𝑝
−

(−

1

𝑝
−
𝑑
2

)

1/(𝑝
−
−1)

×(𝑥 −

𝑅

𝑟

)

𝑝
−
/(𝑝
−
−1)

−

𝑒
−𝛾𝑅

𝛽𝛾

, if 𝑅
𝑟

< 𝑥 < 𝑥
𝑚
,

(1 − 𝑝
+
) 𝑐
1
(𝑦
∗
)
𝑝
+

−

1

𝑟𝛾

(𝑦
∗
) , if 𝑥 ≥ 𝑥

𝑚
,

(45)

where

𝑥
𝑚
= −𝑝
+
𝑐
1
𝑒
−𝛾𝑅(𝑝

+
−1)

+

𝑅

𝑟

+

1

𝑟
2
𝛾

(𝑟 − 𝛽 −

1

2

𝜃
2
) , (46)

and 𝑦∗ is determined from the following algebraic equation:

𝑥 = −𝑝
+
𝑐
1
(𝑦
∗
)
𝑝
+
−1

−

1

𝑟𝛾

log (𝑦∗) + 1

𝑟
2
𝛾

(𝑟 − 𝛽 −

1

2

𝜃
2
) .

(47)

Actually we can show that𝑉
𝑚
(𝑥) in (45) and 𝑥

𝑚
in (46) agree

with𝑉(𝑥) in (15) and 𝑥 in (17), respectively, if we set𝑦∗ = 𝑒−𝛾𝜉
and show that

𝑚
1
𝐶
1
= (−𝑝

−
𝑑
2
)
1/(1−𝑝

−
)

, 𝐷
1
= −𝑝
+
𝑐
1
. (48)

Refer to Lee and Shin [10].

Remark 7. We simplify the calculation by using the dynamic
programming approach, where, instead of Legendre transfor-
mation in themartingale approach,we introduce the function
𝑋(𝑐) in (20) whose inverse is 𝐶(𝑥) in (23). The link between
the two methods is the relation 𝑦

∗
= 𝑒
−𝛾𝜉

= 𝑒
−𝛾𝐶(𝑥)

=

𝑢
󸀠
(𝐶(𝑥)) = 𝑉

󸀠
(𝑥) for 𝑥 ≥ 𝑥, where the last equality is in (24).

4. Concluding Remarks

We have considered the optimal consumption and port-
folio choice problem with constant absolute risk aversion
(CARA) utility and a subsistence consumption constraint.
The existence of a subsistence consumption constraint is
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realistic since one needs a minimum level of consumption
to live. For example, we cannot live without necessities.
We have obtained the closed form solution to optimization
problem by using the dynamic programming approach. We
have illustrated the effects of the subsistence consumption
constraint on the optimal consumption and portfolio by
the numerical results. Furthermore one can consider the
optimization problem under regime switching as future
research.
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