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CHAPTER 5

FINITE STRAIN ELASTICITY

5.1. Green-Elasticity

Elastic deformation does not cause irreversible rearrangement of internal

structure, and the corresponding Helmholtz free energy is a function of stress

and temperature only. Restricting consideration to isothermal elastic defor-

mation (θ̇ = 0), Eqs. (4.3.7) and (4.3.9) give

ψ̇ =
∂ψ

∂E(n)
: Ė(n) =

1
ρ0

T(n) : Ė(n), (5.1.1)

i.e.,

T(n) =
∂Ψ
∂E(n)

, Ψ = ρ0 ψ
(
E(n)

)
. (5.1.2)

Alternatively, Eq. (5.1.2) can be deduced by adopting an experimentally

observed property that there is no net work left in a body upon any closed

cycle of elastic strain, i.e., ∮
T(n) : dE(n) = 0. (5.1.3)

This implies that

T(n) : dE(n) = dΨ (5.1.4)

is a total differential, which leads to Eq. (5.1.2). The function Ψ = Ψ
(
E(n)

)
is the strain energy function per unit initial volume. It represents the work

done to isothermally deform a unit of initial volume to the state of strain

E(n). The explicit representation of the function Ψ
(
E(n)

)
depends on the

selected strain measure E(n) and the material properties.

Since the material and spatial strain tensors (see Section 2.3) are related

by

E(n) = ÊEE(n) = RT · EEE(n) · R, (5.1.5)

the strain energy per unit mass can be written as

ψ = ψ
(
E(n)

)
= ψ

(
ÊEE(n)

)
. (5.1.6)



It can be easily verified that

∂ψ

∂EEE(n)
= R · ∂ψ

∂E(n)
· RT ,

˙̂EEE(n) = RT ·
•
EEE(n) · R, (5.1.7)

and the rate of ψ becomes

ψ̇ =
∂ψ

∂E(n)
: Ė(n) =

∂ψ

∂EEE(n)
:
•
EEE(n). (5.1.8)

The stress tensor TTT (n) conjugate to spatial strain tensor EEE(n) is defined in

Section 3.6 by

T(n) : Ė(n) = TTT (n) :
•
EEE(n), TTT (n) = R · T(n) · RT . (5.1.9)

Consequently, in addition to (5.1.2), from Eq. (5.1.7) we deduce that

TTT (n) =
∂Ψ
∂EEE(n)

, Ψ = ρ0 ψ
(
ÊEE(n)

)
. (5.1.10)

In view of the expressions for the conjugate stress and strain tensors

corresponding to n = ±1, given in Section 3.6, the following expressions for

the Kirchhoff stress τ = (detF)σ are obtained from Eqs. (5.1.2) and (5.1.10)

τ = F · ∂Ψ
∂E(1)

· FT = F−T · ∂Ψ
∂E(−1)

· F−1, (5.1.11)

τ = V · ∂Ψ
∂EEE(1)

· V = V−1 · ∂Ψ
∂EEE(−1)

· V−1. (5.1.12)

If the conjugate pair associated with n = 1/2 is used, from Eq. (3.6.3)

and Eq. (5.1.2) there follows

τ̂ =
1
2

(
U · ∂Ψ

∂E(1/2)
+

∂Ψ
∂E(1/2)

· U
)
− 1

2

(
U · K̂ − K̂ · U

)
. (5.1.13)

Here, τ̂ = RT · τ · R and

K̂ =
1

J1J2 + J3

(
J1I0 − U−1

)
·
(
U−1 · ∂Ψ

∂E(1/2)
− ∂Ψ
∂E(1/2)

· U−1

)
·
(
J1I0 − U−1

)
.

(5.1.14)

The invariants of U−1 are denoted by Ji. In the derivation, the results

from Subsection 1.12.1 were used to solve the matrix equation of the type

A · X + X · A = B.

If Eq. (3.6.25) is used, Eq. (5.1.10) gives

τ =
1
2

(
V · ∂Ψ

∂EEE(1/2)
+

∂Ψ
∂EEE(1/2)

· V
)
− 1

2
(V · K − K · V) , (5.1.15)



where

K =
1

J1J2 + J3

(
J1I − V−1

)
·
(
V−1 · ∂Ψ

∂EEE(1/2)
− ∂Ψ
∂EEE(1/2)

· V−1

)
·
(
J1I − V−1

)
.

(5.1.16)

The invariants of V−1 are equal to those of U−1 and are again denoted by

Ji. The transition from Eq. (5.1.13) to (5.1.15) is straightforward by noting

that

K̂ = RT · K · R. (5.1.17)

For elastically isotropic materials, considered in the next section, the tensors

V−1 and ∂Ψ/∂EEE(1/2) are coaxial, hence commutative, and K = 0. Similar

expressions are obtained when Eqs. (3.6.6) and (3.6.26) are used to specify

the conjugate stress and strain measures corresponding to n = −1/2.

With a properly specified strain energy function Ψ
(
E(n)

)
for a given

material, Eqs. (5.1.11) and (5.1.12), or (5.1.13) and (5.1.15), define the

stress response at any state of finite elastic deformation. Since stress is

derived from the strain energy function, the equations are referred to as

the constitutive equations of hyperelasticity or Green-elasticity (Doyle and

Ericksen, 1956; Truesdell and Noll, 1965).

The nominal stress is

P =
∂Ψ
∂F

, (5.1.18)

which follows from

Ψ̇ = P · · Ḟ, (5.1.19)

and Ψ = Ψ(F). Since Ψ is unaffected by rotation of the deformed configu-

ration,

Ψ(F) = Ψ(Q · F). (5.1.20)

By choosing Q = RT , it follows that Ψ depends on F only through U, or

C = U2, i.e.,

Ψ = Ψ(C), C = FT · F. (5.1.21)

The functional dependences of Ψ on different tensor arguments such as F,

U or C are, of course, different.



5.2. Cauchy-Elasticity

Constitutive equations of finite elasticity can be derived without assuming

the existence of the strain energy function. Suppose that at any state of

elastic deformation, the stress is a single-valued function of strain, regardless

of the history or deformation path along which the state has been reached.

Since no strain energy is assumed to exist, the work done by the stress

could in general be different for different deformation paths. This type of

elasticity is known as Cauchy-elasticity, although experimental evidence does

not indicate existence of any Cauchy-elastic material that is also not Green-

elastic. In any case, we write

T(n) = f
(
E(n)

)
, (5.2.1)

where f is a second-order tensor function, whose representation depends on

the selected strain measure E(n) (relative to an undeformed configuration

and its orientation), and on elastic properties of the material. In terms of

the spatial stress and strain measures, Eq. (5.2.1) can be rewritten as

T̂TT (n) = f(ÊEE(n)), T̂TT (n) = RT · TTT (n) · R. (5.2.2)

The rotated Kirchhoff stress can be expressed from these equations by using

any of the conjugate stress and strain measures. For example,

τ̂ = g
(
E(1)

)
,

g
(
E(1)

)
=

(
I0 + 2E(1)

)1/2 · f
(
E(1)

)
·
(
I0 + 2E(1)

)1/2
,

(5.2.3)

or

τ̂ = g
(
E(−1)

)
,

g
(
E(−1)

)
=

(
I0 − 2E(−1)

)1/2 · f
(
E(−1)

)
·
(
I0 − 2E(−1)

)1/2
.

(5.2.4)

Note that (detF) can be cast in terms of the invariants of E(n), since

(detF)2n = 1 + 2nIE − 4n2IIE + 8n3IIIE . (5.2.5)

Thus, Eqs. (5.2.3) and (5.2.4) also define σ̂ = RT · σ · R in terms of E(1)

and E(−1).

All constitutive equations given in this section are objective under rigid-

body rotation of the deformed configuration. The material tensors are un-

affected by the transformation F∗ = Q · F, since E∗
(n) = E(n) and T∗

(n) =

T(n). The spatial tensors transform according to EEE∗
(n) = Q · EEE(n) · QT and



TTT ∗
(n) = Q · TTT (n) · QT , preserving the physical structure of the constitutive

equations such as Eq. (5.2.2).

5.3. Isotropic Green-Elasticity

If the strain energy does not depend along which material directions the

principal strains are applied, so that

Ψ
(
Q0 · E(n) · QT

0

)
= Ψ

(
E(n)

)
(5.3.1)

for any rotation tensor Q0, the material is elastically isotropic. A scalar

function which satisfies Eq. (5.3.1) is said to be an isotropic function of its

second-order tensor argument. Such a function can be expressed in terms of

the principal invariants of the strain tensor E(n), defined according to Eqs.

(1.3.3)–(1.3.5), i.e.,

Ψ = Ψ (IE , IIE , IIIE) . (5.3.2)

Since
∂IE
∂E(n)

= I0,
∂IIE
∂E(n)

= E(n) − IEI0,

∂IIIE
∂E(n)

= E2
(n) − IEE(n) − IIEI0,

(5.3.3)

Equation (5.1.2) yields, by partial differentiation,

T(n) = c0I0 + c1E(n) + c2E2
(n). (5.3.4)

The parameters are

c0 =
∂Ψ
∂IE

− IE
∂Ψ
∂IIE

− IIE
∂Ψ

∂IIIE
, c1 =

∂Ψ
∂IIE

− IE
∂Ψ

∂IIIE
,

c2 =
∂Ψ

∂IIIE
.

(5.3.5)

For example, if it is assumed that (Saint-Venant–Kirchhoff assumption)

Ψ =
1
2
(λ+ 2µ)I2

E + 2µIIE , (5.3.6)

a generalized Hooke’s law for finite strain is obtained as

T(n) = λIEI0 + 2µE(n). (5.3.7)

The Lamé material constants λ and µ should be specified for each selected

strain measure E(n). If a cubic representation of Ψ is assumed (Murnaghan,



1951), i.e.,

Ψ =
1
2

(λ+ 2µ)I2
E + 2µIIE +

l + 2m
3

I3
E + 2mIEIIE + nIIIE , (5.3.8)

the stress response is

T(n) = [λIE + lI2
E + (2m− n)IIE ]I0

+ [2µ+ (2m− n)IE ]E(n) + nE2
(n).

(5.3.9)

The constants l, m, and n are the Murnaghan’s constants.

By choosing Q0 = R, Eq. (5.3.1) gives

Ψ
(
EEE(n)

)
= Ψ

(
E(n)

)
, (5.3.10)

so that Ψ is also an isotropic function of EEE(n). Since EEE(n) and E(n) = ÊEE(n)

share the same invariants, from Eqs. (5.1.10) and (5.3.10) it follows that

TTT (n) = c0I + c1EEE(n) + c2EEE2
(n). (5.3.11)

The parameters ci are defined by Eq. (5.3.5), with IE = IE , IIE = IIE ,

and IIIE = IIIE . Equation (5.3.11) shows that, for elastic deformation

of isotropic materials, the tensors TTT (n) and EEE(n) have principal directions

parallel. Likewise, T(n) and E(n) have parallel their principal directions.

The conjugate stress to logarithmic strain E(0) for an elastically isotropic

material is T(0) = τ̂. The corresponding constitutive structures are

τ̂ =
∂Ψ
∂E(0)

= c0I0 + c1E(0) + c2E2
(0),

τ =
∂Ψ
∂EEE(0)

= c0I + c1EEE(0) + c2EEE2
(0),

(5.3.12)

where ci are given by Eq. (5.3.5), in which the invariants of the logarithmic

strain are appropriately used. Recall that the invariants of EEE(0) = lnV are

equal to those of E(0) = lnU.

5.4. Further Expressions for Isotropic Green-Elasticity

Using Eq. (3.6.12) to express T(n) in terms of T(1/2), we have

T(n) = U1−2n · T(1/2) = U−2n · τ̂. (5.4.1)

Substituting this into Eq. (5.1.2), carrying in mind that U2n = I0 +2nE(n),

gives

τ̂ =
∂Ψ
∂E(n)

+ n

(
E(n) ·

∂Ψ
∂E(n)

+
∂Ψ
∂E(n)

· E(n)

)
, (5.4.2)



written in a symmetrized form. Equation (5.4.2) applies for either positive

or negative n. A dual representation, employing the spatial stress and strain

tensors, is

τ =
∂Ψ
∂EEE(n)

+ n

(
EEE(n) ·

∂Ψ
∂EEE(n)

+
∂Ψ
∂EEE(n)

· EEE(n)

)
. (5.4.3)

Since Ψ is an isotropic function, it follows that all material strain tensors

E(n) are coaxial with τ̂, and all spatial strain tensors EEE(n) are coaxial with

τ.

When the strain energy Ψ is represented in terms of the strain invariants,

Eqs. (5.4.2) and (5.4.3) give, upon partial differentiation,

τ̂ = b0I0 + b1E(n) + b2E2
(n), (5.4.4)

τ = b0I + b1EEE(n) + b2EEE2
(n), (5.4.5)

with the parameters

b0 = c0 + 2nc2IIIE , b1 = c1 + 2n (c0 + c2IIE) ,

b2 = c2 + 2n (c1 + c2IE) .
(5.4.6)

More specifically, these are

b0 =
∂Ψ
∂IE

− IE
∂Ψ
∂IIE

− (IIE − 2nIIIE)
∂Ψ

∂IIIE
, (5.4.7)

b1 = 2n
∂Ψ
∂IE

+ (1 − 2nIE)
∂Ψ
∂IIE

− IE
∂Ψ

∂IIIE
, (5.4.8)

b2 = 2n
∂Ψ
∂IIE

+
∂Ψ

∂IIIE
. (5.4.9)

5.5. Constitutive Equations in Terms of B

The finite strain constitutive equations of isotropic elasticity are often ex-

pressed in terms of the left Cauchy–Green deformation tensor B = V2. Since

EEE(1) = (B − I)/2, from Eq. (5.4.3) it follows that

τ = B · ∂Ψ
∂B

+
∂Ψ
∂B

· B, (5.5.1)

written in a symmetrized form. Alternatively, this follows directly from

Ψ̇ =
∂Ψ
∂B

:
◦
B = τ : D, (5.5.2)



and the connection
◦
B = B · D + D · B. (5.5.3)

The function Ψ(B) is an isotropic function of B. Introducing the strain

energy representation

Ψ = Ψ (IB , IIB , IIIB) , (5.5.4)

Equation (5.5.1) gives (Rivlin, 1960)

τ = 2
[(

IIIB
∂Ψ

∂IIIB

)
I +

(
∂Ψ
∂IB

− IB
∂Ψ
∂IIB

)
B +

(
∂Ψ
∂IIB

)
B2

]
. (5.5.5)

If B2 is eliminated by using the Cayley–Hamilton theorem, Eq. (5.5.5) can

be restructured as

τ = 2
[(

IIIB
∂Ψ

∂IIIB
+ IIB

∂Ψ
∂IIB

)
I +

(
∂Ψ
∂IB

)
B +

(
IIIB

∂Ψ
∂IIB

)
B−1

]
.

(5.5.6)

These are in accord with Eq. (5.4.5), which can be verified by inspection.

In the transition, the following relationships between the invariants of E(1)

or EEE(1), and B are noted

IE =
1
2

(IB − 3) , IIE =
1
4
IIB +

1
2
IB − 3

4
,

IIIE =
1
8

(IIIB + IIB + IB − 1) ,
(5.5.7)

IB =2IE + 3, IIB = 4IIE − 4IE − 3,

IIIB = 8IIIE − 4IIE + 2IE + 1.
(5.5.8)

The constitutive equation of isotropic elastic material in terms of the

nominal stress is

P = F−1 · τ = FT ·
(
∂Ψ
∂B

+ B−1 · ∂Ψ
∂B

· B
)
. (5.5.9)

By using the strain energy representation of Eq. (5.5.4), this becomes

P = 2FT ·
[(

∂Ψ
∂IB

− IB
∂Ψ
∂IIB

)
I +

(
∂Ψ
∂IIB

)
B +

(
IIIB

∂Ψ
∂IIIB

)
B−1

]
.

(5.5.10)

Different specific forms of the strain energy function were used in the

literature. For example, Ogden (1984) constructed a strain energy function

Ψ =
a

2
(IB − 3 − ln IIIB) + c

(
III

1/2
B − 1

)2

, (5.5.11)



where a and c are the material parameters. Based on their theoretical anal-

ysis and experimental data Blatz and Ko (1962) proposed an expression for

the strain energy for compressible foamed elastomers. Other representations

can be found in Blatz, Sharda, and Tschoegl (1974), Morman (1986), Ciarlet

(1988), Beatty (1996), and Holzapfel (2000).

5.6. Constitutive Equations in Terms of Principal Stretches

The strain energy of an isotropic material can be often conveniently ex-

pressed in terms of the principal stretches λi (the eigenvalues of U and V,

which are invariant quantities), i.e.,

Ψ = Ψ(λ1, λ2, λ3). (5.6.1)

Suppose that all principal stretches are different, and that Ni and ni are the

principal directions of the right and left stretch tensors U and V, respec-

tively, so that

U =
3∑
i=1

λi Ni ⊗ Ni, E(n) =
3∑
i=1

1
2n

(
λ2n
i − 1

)
Ni ⊗ Ni, (5.6.2)

and

V =
3∑
i=1

λi ni ⊗ ni, F =
3∑
i=1

λi ni ⊗ Ni. (5.6.3)

For an isotropic elastic material, the principal directions of the strain tensor

E(n) are parallel to those of its conjugate stress tensor T(n), and we can

write

T(n) =
3∑
i=1

T
(n)
i Ni ⊗ Ni. (5.6.4)

The principal stresses are here

T
(n)
i =

∂Ψ

∂E
(n)
i

= λ1−2n
i

∂Ψ
∂λi

, (5.6.5)

with no sum on i. Recall that λ2n
i = 1 + 2nE(n)

i . For example, for n = 1 we

obtain the principal components of the symmetric Piola–Kirchhoff stress,

T
(1)
i =

∂Ψ

∂E
(1)
i

=
1
λi

∂Ψ
∂λi

. (5.6.6)



The principal directions of the Kirchhoff stress τ of an isotropic elastic

material are parallel to those of V, so that

τ =
3∑
i=1

τi ni ⊗ ni. (5.6.7)

The corresponding principal components are

τi = λ2
iT

(1)
i = λi

∂Ψ
∂λi

. (5.6.8)

Finally, decomposing the nominal stress as

P =
3∑
i=1

Pi ni ⊗ Ni, (5.6.9)

we have

Pi = λiT
(1)
i =

∂Ψ
∂λi

. (5.6.10)

5.7. Incompressible Isotropic Elastic Materials

For an incompressible material the deformation is necessarily isochoric, so

that detF = 1. Only two invariants of E(n) are independent, since

IIIE = − 1
4n2

(IE − 2nIIE) . (5.7.1)

Thus, the strain energy can be expressed as

Ψ = Ψ (IE , IIE) , (5.7.2)

and we obtain

σ = (b0 − p)I + b1EEE(n) + b2EEE2
(n). (5.7.3)

Here, p is an arbitrary pressure, and bi are defined by Eqs. (5.4.7)–(5.4.9),

without terms proportional to ∂Ψ/∂IIIE . Alternatively, if Eqs. (5.5.5) and

(5.5.6) are specialized to incompressible materials, there follows

σ = −pI + 2
[(

∂Ψ
∂IB

− IB
∂Ψ
∂IIB

)
B +

(
∂Ψ
∂IIB

)
B2

]
, (5.7.4)

and

σ = −p0I + 2
[(

∂Ψ
∂IB

)
B +

(
∂Ψ
∂IIB

)
B−1

]
. (5.7.5)

In Eq. (5.7.5), all terms proportional to I are absorbed in p0.

Equation (5.7.4) can also be derived by viewing an incompressible ma-

terial as a material with internal constraint

IIIB − 1 = 0. (5.7.6)



A Lagrangian multiplier −p/2 can then be introduced, such that

Ψ = Ψ (IB , IIB) − p

2
(IIIB − 1) , (5.7.7)

and Eq. (5.5.1) directly leads to Eq. (5.7.4).

For the Mooney–Rivlin material (rubber model; see Treloar, 1975), the

strain energy is

Ψ = aIE + bIIE =
a+ b

2
(IB − 3) +

b

4
(IIB + 3) , (5.7.8)

and for the neo-Hookean material

Ψ = aIE =
a

2
(IB − 3) . (5.7.9)

The strain energy representation, suggested by Ogden (1972,1982),

Ψ =
N∑
n=1

antrE(n) =
N∑
n=1

an
αn

(λαn
1 + λαn

2 + λαn
3 − 3) (5.7.10)

may be used in some applications, where N is positive integer, but αn need

not be integers (the tensors E(n) are here defined by Eq. (2.3.1) with αn

replacing 2n; Hill, 1978). The material parameters are an and αn. In-

compressibility constraint is λ1λ2λ3 = 1. Other representations in terms of

principal stretches λi have also been explored (Valanis and Landel, 1967;

Rivlin and Sawyers, 1976; Anand, 1986; Arruda and Boyce, 1993).

5.8. Isotropic Cauchy-Elasticity

For isotropic elastic material the tensor function f in Eq. (5.2.1) is an

isotropic function of strain,

f
(
Q0 · E(n) · QT

0

)
= Q0 · f

(
E(n)

)
· QT

0 , (5.8.1)

and, by the representation theorem from Section 1.11, the stress response

can be written as

T(n) = c0I0 + c1E(n) + c2E2
(n). (5.8.2)

The parameters ci are scalar functions of the invariants of E(n). Similarly,

from Eq. (5.2.2) it follows that

TTT (n) = c0I + c1EEE(n) + c2EEE2
(n). (5.8.3)

In view of the isotropic elasticity relationships

τ̂ = U2n · T(n), τ = V2n · TTT (n), (5.8.4)



equations (5.8.2) and (5.8.3) can be rephrased as

τ̂ = b0I0 + b1E(n) + b2E2
(n), τ = b0I + b1EEE(n) + b2EEE2

(n), (5.8.5)

where bi are given by Eq. (5.4.6). The constitutive equations of Green-

elasticity are recovered if the strain energy function exists, so that the con-

stants ci in Eq. (5.4.6) are specified by Eq. (5.3.5).

Finally, it is noted that Eqs. (5.8.5) can be recast in terms of C = U2

and B = V2, with the results

τ̂ = a0I0 + a1C + a2C2, τ = a0I + a1B + a2B2. (5.8.6)

The scalar parameters ai depend on the invariants of C or B. The last

expression can also be deduced directly from T(1) = f
(
E(1)

)
by the repre-

sentation theorem for the isotropic function f , dependent on the Lagrangian

strain E(1) =
(
C − I0

)
/2. Furthermore, since (detF) = III

1/2
C , Eqs. (5.8.6)

define the stress tensors σ̂ and σ, as well (σ being the Cauchy stress). For

incompressible materials

σ = −p1I + b1EEE(n) + b2EEE2
(n) = −p2I + a1B + a2B2, (5.8.7)

where p1 and p2 are arbitrary pressures. Additional discussion can be found

in the books by Leigh (1968) and Malvern (1969).

5.9. Transversely Isotropic Materials

For an elastically isotropic material, elastic properties are equal in all direc-

tions. Any rotation of the undeformed reference configuration before the ap-

plication of a given stress has no effect on the subsequent stress-deformation

response. The material symmetry group is the full orthogonal group. If the

symmetry group of the material is less than the full orthogonal group, the

material is anisotropic (aelotropic). For the most general anisotropy, the

isotropy group consists only of identity transformation 1 and the central in-

version transformation 1̄. Any rotation of the reference configuration prior

to application of stress will change the elastic response of such a material.

The material is said to have a plane of elastic symmetry if the reference

configuration obtained from the undeformed configuration by reflection in

the plane of symmetry is indistinguishable from the undeformed configura-

tion (in the sense of elastic response).



Transversely isotropic material has a single preferred direction (axis of

isotropy). Its symmetry group consists of arbitrary rotations about the axis

of isotropy, say m0, and rotations that carry m0 into −m0. Every plane

containing m0 is a plane of elastic symmetry, so that reflections in these

planes also belong to the symmetry group. The elastic strain energy function

can be consequently written as

Ψ = Ψ
(
IE , IIE , IIIE , E33, E

2
31 + E2

32

)
, (5.9.1)

provided that the coordinate axes are selected so that m0 is in the coor-

dinate direction e3. The arguments in Eq. (5.9.1) are invariant under the

transformations from the symmetry group of transverse isotropy. This can

be derived as follows. For transversely isotropic material, the strain energy

is a scalar function of the strain tensor E(n) and the unit vector m0,

Ψ = Ψ
(
E(n), m0

)
. (5.9.2)

The function Ψ is invariant under all orthogonal transformations of the ref-

erence configuration that carry both E(n) and m0, i.e.,

Ψ
(
Q0 · E(n) · QT

0 , Q0 · m0
)

= Ψ
(
E(n), m0

)
. (5.9.3)

Such a function Ψ is said to be an isotropic function of both E(n) and m0,

simultaneously. Physically, the rotated strain Q0 ·E(n) ·QT
0 , applied relative

to the rotated axis of isotropy Q0 · m0, gives the same strain energy as the

strain E(n) applied relative to the original axis of isotropy m0. Of course, Ψ

is not an isotropic function of the strain alone, i.e.,

Ψ
(
Q0 · E(n) · QT

0 , m
0
)
�= Ψ

(
E(n), m0

)
(5.9.4)

in general, although the equality sign holds for those Q0 that belong to the

symmetry group of transverse isotropy.

Representation of isotropic scalar functions of second-order tensors and

vectors is well-known (e.g., Boehler, 1987). The function Ψ
(
E(n),m0

)
can

be expressed in terms of individual and joint invariants of E(n) and m0, i.e.,

Ψ = Ψ
(
IE , IIE , IIIE , m0 · E(n) · m0, m0 · E2

(n) · m0
)
. (5.9.5)

It is convenient to introduce the second-order tensor

M0 = m0 ⊗ m0. (5.9.6)



This is an idempotent tensor, for which

M0 · M0 = M0, IM = 1, IIM = IIIM = 0. (5.9.7)

When applied to an arbitrary vector a0, the tensor M0 projects it on m0,

M0 · a0 = (m0 · a0)m0. (5.9.8)

The joint invariants of E(n) and m0 in Eq. (5.9.5) can thus be written as

K1 = m0 · E(n) · m0 = tr
(
M0 · E(n)

)
,

K2 = m0 · E2
(n) · m0 = tr

(
M0 · E2

(n)

)
,

(5.9.9)

and the strain energy becomes

Ψ = Ψ (IE , IIE , IIIE , K1, K2) . (5.9.10)

The stress response is accordingly

T(n) = c0I0 + c1E(n) + c2E2
(n) + c3M0 + c4

(
M0 · E(n) + E(n) · M0

)
.

(5.9.11)

The parameters c0, c1 and c3 are defined by Eqs. (5.3.5), and

c3 =
∂Ψ
∂K1

, c4 =
1
2

∂Ψ
∂K2

. (5.9.12)

If we choose Q0 = R (rotation tensor from the polar decomposition of

deformation gradient), from Eq. (5.9.3) it follows that

Ψ
(
EEE(n), m

)
= Ψ

(
E(n), m0

)
, (5.9.13)

where

m = R · m0. (5.9.14)

Thus, Ψ is also an isotropic function of the spatial strain EEE(n) and the vector

m. A dual equation to Eq. (5.9.11), expressed relative to the deformed

configuration, is consequently

TTT (n) = c0I + c1EEE(n) + c2EEE2
(n) + c3M + c4

(
M · EEE(n) + EEE(n) · M

)
. (5.9.15)

The tensor M is defined by

M = m ⊗ m = R · M0 · RT . (5.9.16)

For example, if n = 1, Eq. (5.9.15) gives the Kirchhoff stress

τ = b0I + b1EEE(1) + b2EEE2
(1) + c3M + c4

(
M · EEE(1) + EEE(1) · M

)
. (5.9.17)

The coefficients bi are written in terms of ci by Eqs. (5.4.6), and

M = m ⊗ m = F · M0 · FT , m = V · m = F · m0. (5.9.18)



The vector m in the deformed configuration is obtained by deformation

F from the vector m0 in the undeformed configuration. However, while

m0 and m are the unit vectors, the (embedded) vector m is not. The

tensor M0 = F−1 · M · F−T is induced from M by a transformation of the

contravariant type.

If transversely isotropic material is inextensible in the direction of the

axis of isotropy, so that there exists a deformation constraint

m0 · C · m0 = m · B · m = 1, or m0 · E(1) · m0 = m · EEE(1) · m = 0,
(5.9.19)

the strain energy can be written by using the Lagrangian multiplier as

Ψ = Ψ (IE , IIE , IIIE , K1, K2) + (detF)σm m0 · E(1) · m0. (5.9.20)

Thus, we add to the right-hand side of Eq. (5.9.11) the term (detF)σmM0,

and to the right-hand side of Eq. (5.9.17) the term (detF)σmM, where the

Lagrangian multiplier σm is an arbitrary tension in the direction m.

5.9.1. Transversely Isotropic Cauchy-Elasticity

In this case, the stress is assumed to be a function of E(n) and M0 at the

outset,

T(n) = f
(
E(n), M0

)
. (5.9.21)

This must be an isotropic tensor function of both E(n) and M0, so that

Q0 · T(n) · QT
0 = f

(
Q0 · E(n) · QT

0 , Q0 · M0 · QT
0

)
. (5.9.22)

Representation of isotropic second-order tensor functions of two symmetric

second-order tensor arguments is well-known. The set of generating tensors is

given in Eq. (1.11.10). Indeed, consider the most general isotropic invariant

of E(n), M0 and a symmetric tensor H, which is linear in H. Since M0 is

idempotent, this invariant is

g = c0 trH + c1 tr
(
E(n) · H

)
+ c2 tr

(
E2

(n) · H
)

+ c3 tr
(
M0 · H

)
+ c4 tr

[(
M0 · E(n) + E(n) · M0

)
· H

]
+ c5 tr

[(
M0 · E2

(n) + E2
(n) · M0

)
· H

]
.

(5.9.23)



The parameters ci are scalar invariants of E(n) and M0. The stress tensor

is derived as the gradient of g with respect to H, which gives

T(n) = c0I0 + c1E(n) + c2E2
(n) + c3M0 + c4

(
M0 · E(n) + E(n) · M0

)
+ c5

(
M0 · E2

(n) + E2
(n) · M0

)
.

(5.9.24)

The term proportional to c5 in Eq. (5.9.24) for transversely isotropic Cauchy-

elasticity is absent in the case of transversely isotropic Green-elasticity, cf.

Eq. (5.9.11). Also, it is noted that in the transition to linearized theory (re-

taining linear terms in strain E(n) only), the Cauchy-elasticity of transversely

isotropic materials involves six independent material parameters, while the

Green-elasticity involves only five of them.

5.10. Orthotropic Materials

Elastic material is orthotropic in its reference configuration if it possesses

three mutually orthogonal planes of elastic symmetry. Its symmetry group

consists of reflections in these planes. Therefore, we introduce two second

-order tensors

M0 = m0 ⊗ m0, N0 = n0 ⊗ n0, (5.10.1)

which are associated with the unit vectors m0 and n0, normal to two of

the planes of elastic symmetry in the undeformed configuration. The tensor

associated with the third plane of symmetry is I0 −M0 −N0, and need not

be considered. The strain energy is then

Ψ = Ψ
(
E(n), M0, N0

)
. (5.10.2)

This must be an isotropic function of all three tensor arguments,

Ψ
(
Q0 · E(n) · QT

0 , Q0 · M0 · QT
0 , Q0 · N0 · QT

0

)
= Ψ

(
E(n), M0, N0

)
,

(5.10.3)

and thus dependent on individual and joint invariants of its tensor argu-

ments. Since M0 · N0 = 0, by the orthogonality of m0 and n0, it follows

that

Ψ = Ψ (IE , IIE , IIIE , K1, K2, K3, K4) . (5.10.4)

The invariants K1 and K2 are defined by Eq. (5.9.9), and K3 and K4 by

the corresponding expressions in which M0 is replaced with N0. The stress



response is

T(n) = c0I0 + c1E(n) + c2E2
(n) + c3M0 + c4

(
M0 · E(n) + E(n) · M0

)
+ c5N0 + c6

(
N0 · E(n) + E(n) · N0

)
.

(5.10.5)

The coefficients c0 to c4 are specified by Eqs. (5.3.5) and (5.9.12), and c5

and c6 by equations (5.9.12) in which the derivatives are taken with respect

to K3 and K4.

Equation (5.10.5) has a dual equation in the deformed configuration

TTT (n) = c0I + c1EEE(n) + c2EEE2
(n) + c3M + c4

(
M · EEE(n) + EEE(n) · M

)
+ c5N + c6

(
N · EEE(n) + EEE(n) · N

)
,

(5.10.6)

where

M = m ⊗ m, N = n ⊗ n, (5.10.7)

and

m = R · m0, n = R · n0. (5.10.8)

In particular, for n = 1, Eq. (5.10.6) gives

τ = b0I + b1EEE(1) + b2EEE2
(1) + c3M + c4

(
M · EEE(1) + EEE(1) · M

)
+ c5N + c6

(
N · EEE(1) + EEE(1) · N

)
.

(5.10.9)

The coefficients bi are expressed in terms of ci by Eqs. (5.4.6), and

M = m ⊗ m, N = n ⊗ n. (5.10.10)

The vectors m and n are

m = V · m = F · m0, n = V · n = F · n0. (5.10.11)

5.10.1. Orthotropic Cauchy-Elasticity

The stress is here assumed to be a function of three tensor arguments, such

that

T(n) = f
(
E(n), M0, N0

)
. (5.10.12)

If the undeformed configuration is rotated by Q0, we have

Q0 · T(n) · QT
0 = f

(
Q0 · E(n) · QT

0 , Q0 · M0 · QT
0 , Q0 · N0 · QT

0

)
,

(5.10.13)



which implies that f must be an isotropic tensor function of all three of its

tensor arguments. The most general form of this function is

T(n) = c0I0 + c1E(n) + c2E2
(n) + c3M0 + c6N0

+ c4
(
M0 · E(n) + E(n) · M0

)
+ c5

(
M0 · E2

(n) + E2
(n) · M0

)
+ c7

(
N0 · E(n) + E(n) · N0

)
+ c8

(
N0 · E2

(n) + E2
(n) · N0

)
.

(5.10.14)

The terms proportional to c5 and c8 in Eq. (5.10.14) are absent in the case of

orthotropic Green-elasticity, cf. Eq. (5.10.5). In the transition to linearized

theory (retaining linear terms in strain E(n) only), the Cauchy-elasticity

of orthotropic materials involves twelve independent material parameters,

while the Green-elasticity involves only nine of them.

5.11. Crystal Elasticity

5.11.1. Crystal Classes

Anisotropic materials known as crystal classes possess three preferred direc-

tions, defined by unit vectors a1, a2, and a3. There are thirty two crystal

classes (point groups). Each class is characterized by a group of orthog-

onal transformations which carry the reference undeformed configuration

into an equivalent configuration, indistinguishable from the original config-

uration. Since elastic properties of crystals are centrosymmetric, the eleven

Laue groups can be identified. All point groups belonging to the same Laue

group have common polynomial representation of the strain energy function

in terms of the corresponding polynomial strain invariants. Crystal classes

are grouped into seven crystal systems. In describing them, the following

convention will be used. By n
m is meant the rotation by an angle 2π/n,

followed by a reflection in the plane normal to the axis of rotation. By n̄ is

meant the rotation by an angle 2π/n, followed by an inversion.

i) Triclinic System (Laue group N). For this crystal system there is no

restriction on the orientation of the vectors ai. Two point groups of this

system are (1, 1̄). Since components of the strain tensor E(n) are unaltered

by identity and central inversion transformations, no restriction is placed on

the form of the polynomial representation of the strain energy in terms of



the six strain components, i.e.,

Ψ = Ψ (E11, E22, E33, E12, E31, E32) . (5.11.1)

Any rectangular Cartesian coordinate system may be chosen as a reference

system.

ii) Monoclinic System (Laue group M). The preferred directions a1 and

a2 are not orthogonal, and the direction a3 is perpendicular to the plane

(a1,a2). There are three point groups of the monoclinic system. They are(
2, m, 2

m

)
. The symmetry transformation of the first point group is the

rotation Q3 about X3 axis through 180◦, for the second it is reflection R3 in

the plane normal to X3 axis, and for the third it is the rotation Q3 followed

by the reflection R3. For each point group, the strain energy is a polynomial

of the seven polynomial strain invariants of this system, i.e.,

Ψ = Ψ
(
E11, E22, E33, E12, E

2
31, E

2
32, E31E32

)
. (5.11.2)

The rectangular Cartesian system is used with the axis X3 parallel to a3, and

with the axes X1 and X2 in any two orthogonal directions within (a1,a2)

plane.

iii) Orthorombic System (Laue group O). The preferred directions ai
are mutually perpendicular. There are three point groups of this system.

They are
(
222, mm2, 2

m
2
m

2
m

)
. For each point group, the strain energy is a

polynomial of the seven polynomial strain invariants,

Ψ = Ψ
(
E11, E22, E33, E

2
12, E

2
31, E

2
32, E12E31E32

)
. (5.11.3)

The axes of the reference coordinate system are parallel to ai.

iv) Tetragonal System (Laue groups TII and TI). The vectors ai are

mutually perpendicular, but the direction a3 has a special significance and

is called the principal axis of symmetry. The Laue group TII contains three

point groups
(
4, 4̄, 4

m

)
. The corresponding strain energy is expressible as a

polynomial in the twelve polynomial strain invariants. These are

E11 + E22, E33, E2
31 + E2

32, E2
12, E11E22,

E12(E11 − E22), E31E32(E11 − E22), E12E31E32,

E12

(
E2

31 − E2
32

)
, E11E

2
32 + E22E

2
31, E2

31E
2
32,

E31E32

(
E2

31 − E2
32

)
.

(5.11.4)



The Laue group TI contains four point groups
(
422, 4mm, 4̄2m, 4

m
2
m

2
m

)
.

The corresponding strain energy can be expressed as a polynomial in the

eight polynomial strain invariants,

E11 + E22, E33, E2
31 + E2

32, E2
12, E11E22,

E12E31E32, E11E
2
32 + E22E

2
31, E2

31E
2
32.

(5.11.5)

The axes of the reference coordinate system are parallel to ai.

v) Cubic System (Laue groups CII and CI). The vectors ai are mutually

perpendicular. The Laue group CII contains two point groups
(
23, 2

m 3̄
)
.

The corresponding strain energy is a polynomial in the fourteen polynomial

strain invariants. They are listed by Green and Adkins (1960), Eq. (1.11.2).

The Laue group CI contains three point groups
(
432, 4̄3m, 4

m 3̄ 2
m

)
. The

corresponding strain energy is a polynomial in the nine polynomial strain

invariants, which are listed in op. cit., Eq. (1.11.4).

vi) Rhombohedral System (Laue groups RII and RI). The vector a3 is

perpendicular to the basal plane defined by vectors a1 and a2, where a2

is at 120◦ from a1. The Laue group RII contains two point groups (3, 3̄).

The corresponding strain energy is a polynomial in the fourteen polynomial

strain invariants. They are listed in op. cit., Eq. (1.12.5). The Laue group

RI contains three point groups
(
32, 3m, 3̄ 2

m

)
. The corresponding strain

energy is a polynomial in the nine polynomial strain invariants, listed by

Green and Adkins (1960) in Eq. (1.12.8) (rhombohedral system is there

considered to be hexagonal).

vii) Hexagonal System (Laue groups HII and HI). The vector a3 is per-

pendicular to the basal plane defined by vectors a1 and a2, where a2 is at

120◦ from a1. The Laue group HII contains three point groups
(
6, 6̄, 6

m

)
.

The corresponding strain energy is a polynomial in the fourteen polynomial

strain invariants; Eq. (1.12.11) of op. cit. The Laue group HI contains four

point groups
(
622, 6mm, 6̄m2, 6

m
2
m

2
m

)
. The corresponding strain energy is

a polynomial in the nine polynomial strain invariants. These are given by

Eq. (1.12.13) of op. cit.

In the remaining two subsections we consider the general strain energy

representation, with a particular attention given to cubic crystals and their

elastic constants.



5.11.2. Strain Energy Representation

For each Laue group, the strain energy can be expanded in a Taylor series

about the state of zero strain and stress as

Ψ =
1
2!

CijklEijEkl +
1
3!

CijklmnEijEklEmn + · · · . (5.11.6)

The Eij are the rectangular Cartesian components of the strain tensor E(n),

and Cijklmn... are the corresponding elastic stiffness constants or elastic mod-

uli. For simplicity, we omit the label (n). The components of the conjugate

stress are

Tij =
∂Ψ
∂Eij

= CijklEkl +
1
2
CijklmnEklEmn + · · · . (5.11.7)

Elastic constants of the kth order are the components of the tensor of the

order 2k. Since they are the strain gradients of Ψ evaluated at zero strain,

Cijkl =
(

∂2Ψ
∂Eij∂Ekl

)
0

, Cijklmn =
(

∂3Ψ
∂Eij∂Ekl∂Emn

)
0

, . . . , (5.11.8)

they possess the obvious basic symmetries. For example, the third-order

elastic constants satisfy

Cijklmn = Cjiklmn, Cijklmn = Cklijmn = Cmnklij . (5.11.9)

Following the Voigt notation

11 ∼ 1, 22 ∼ 2, 33 ∼ 3, 23 ∼ 4, 13 ∼ 5, 12 ∼ 6, (5.11.10)

and the recipe

Eij =
1
2
(1 + δij)ηϑ, ϑ = 1, 2, ..., 6, (5.11.11)

Equation (5.11.6) can be rewritten as (Brugger, 1964)

Ψ =
1
2

∑
i

ciiη
2
i +

∑
i<j

cijηiηj +
1
6

∑
i

ciiiη
3
i

+
1
2

∑
i 	=j

ciijη
2
i ηj +

∑
i<j<k

cijkηiηjηk + · · · .
(5.11.12)

For triclinic crystals, whose symmetry group consists solely of the iden-

tity transformation, there are
(
5+k
k

)
independent kth order elastic constants

(Toupin and Bernstein, 1961), i.e., there are at most 21 independent second-

order elastic constants cij , and at most 56 independent third-order elastic

constants cijk. For other crystal systems, fewer independent constants are

involved, since they must be invariant under the group of transformations



defining the material symmetry. This requires certain constants to vanish

and supplies relations among some of the remaining ones. The tables for the

second- and third-order independent elastic constants in crystals for all crys-

tallographic groups can be found in Brugger (1965) and Thurston (1984).

An analysis of eigenvalues and eigentensors of the elastic constants Cijkl

of an anisotropic material is given by Ting (1987), Mehrabadi and Cowin

(1990), and Sutcliffe (1992).

5.11.3. Elastic Constants of Cubic Crystals

For cubic crystals belonging to the Laue group CI, there are at most three

independent second-order and six independent third-order elastic constants.

Written with respect to principal cubic axes, the strain energy can be ex-

pressed as (Birch, 1947)

Ψ =
1
2
c11

(
η2
1 + η2

2 + η2
3

)
+

1
2
c44

(
η2
4 + η2

5 + η2
6

)
+ c12 (η1η2 + η2η3 + η3η1) +

1
6
c111

(
η3
1 + η3

2 + η3
3

)
+

1
2
c112

[
η2
1

(
η2 + η3) + η2

2(η3 + η1

)
+ η2

3 (η1 + η2)
]

+
1
2
c144

(
η2
4η1 + η2

5η2 + η2
6η3

)
+

1
2
c244

[
η2
4 (η2 + η3)

+ η2
5 (η3 + η1) + η2

6 (η1 + η2)
]
+ c123 η1η2η3 + c456 η4η5η6,

(5.11.13)

to third-order terms in strain. The corresponding components of the fourth-

order tensor of the second-order elastic moduli, written with respect to an

arbitrary rectangular Cartesian basis, are

Cijkl = c12δijδkl + 2c44Iijkl + (c11 − c12 − 2c44)Aijkl . (5.11.14)

The components of the symmetric fourth-order unit tensor are again denoted

by Iijkl , and

Aijkl = aiajakal + bibjbkbl + cicjckcl. (5.11.15)

The vectors a, b, and c are the orthogonal unit vectors along the principal

cubic axes (previously denoted by a1, a2, and a3).

Two independent linear invariants of the elastic moduli tensor Cijkl are

Ciijj = 3 (c11 + 2c12) , Cijij = 3 (c11 + 2c44) . (5.11.16)

In the case when c11 − c12 = 2c44, the components Cijkl are the components

of an isotropic fourth-order tensor,



Cijkl = c12δijδkl + 2c44Iijkl . (5.11.17)

If the Cauchy symmetry

Cijkl = Cikjl (5.11.18)

applies, then c12 = c44. For example, in atomistic calculations the Cauchy

symmetry is an inevitable consequence whenever the atomic interactions are

modeled by pairwise central forces.

The sixth-order tensor of the third-order elastic moduli has the Cartesian

components

Cijklmn = c1δijδklδmn + c2δ(ijIklmn) + c3δ(ikδlmδnj )

+ c4δ(ijAklmn) + c5a(iajbkblcmcn) + c6a(ibjckalbmcn).
(5.11.19)

The following constants are conveniently introduced

c1 = −1
2

(c111 − 3c112 + 4c144 − 4c244) ,

c2 = 6c144, c3 = 4 (c244 − c144) ,

c4 = −3
2

(c112 − c111 + 4c244) , c5 = 6 (c123 − c1) ,

c6 = 24 (c144 − c244 + 2c456) .

(5.11.20)

The notation such as δ(ijAklmn) designates the symmetrization. For exam-

ple, we have

δ(ijIklmn) =
1
3

(δij Iklmn + δklImnij + δmnIijkl) ,

δ(ikδlmδnj) =
1
4

(δikIjlmn + δilIjkmn + δimIklnj + δinIklmj ) .
(5.11.21)

The tensors δijδklδmn, δ(ijIklmn), and δ(ikδlmδnj) constitute an integrity basis

for the sixth-order isotropic tensors (Spencer, 1982). The tensors appearing

on the right-hand side of Eq. (5.11.19) are the base tensors for the sixth-order

elastic stiffness tensor with cubic symmetry. Other base tensors could also

be constructed. The tensor representations of the second- and third-order

elastic compliances are given by Lubarda (1997,1999).

Three independent linear invariants of the sixth-order tensor in Eq.

(5.11.19) are

Ciijjkk = 3 (c111 + 6c112 + 2c123) ,

Ciiklkl = 3 (c111 + 2c112 + 2c144 + 4c244) ,

Cijjkki = 3 (c111 + 6c244 + 2c456) .

(5.11.22)



For isotropic materials

c111 = c123 + 6c144 + 8c456,

c112 = c123 + 2c144,

c244 = c144 + 2c456,

(5.11.23)

so that Cijklmn becomes an isotropic sixth-order tensor

Cijklmn = c123δijδklδmn + 6c144δ(ijIklmn) + 8c456δ(ikδlmδnj ). (5.11.24)

If the Milder symmetry

Cijklmn = Cikjlmn (5.11.25)

applies, then c123 = c144 = c456.

The three independent third-order elastic constants of an isotropic ma-

terial (c123, c144, and c456) are related to Murnaghan’s constants l, m, and

n, which appear in the strain energy representation (5.3.8), by

l = c144 +
1
2
c123, m = c144 + 2c456, n = 4c456. (5.11.26)

Toupin and Bernstein (1961) used the notation ν1 = c123, ν2 = c144, and

ν3 = c456, referring to them as the third-order Lamé constants.
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