
#
/’

!
1

.

56tio2aoo”1353T

Load Balancing Fictions, Falsehoods and
Fallacies

Bruce Hendrickson

Pamllel Computing Sciences Dept., Sandia National Labs
Albuquerque, NM 87185-1110

Abstract

Effective use of a parallel computer requires that a calculation be carefully divided
among the processors. This load balancing problem appears in many guises and has
been a fervent area of research for the past decade or more. Although great progress
has been made, and useful software tools developed, a number of challenges remain.
It is the conviction of the author that these challenges will be easier to address if we
first come to terms with some significant shortcomings in our current perspectives.
This paper tries to identify several areas in which the prevailing point of view is
either mistaken or insufEcient. The goal is to motivate new ideas and directions for
this important field.

1 Introduction

.%mong the factors contributing to the success of parallel computing in the

nineties, algorithms and software for load balancing have played a prominent
role. Efficient use of a parallel computer requires that the workload be evenly
distributed among processors while the amount of inter-processor communi-
cation is kept small. This basic challenge presents itself differently in different
applications, but the underlying issues are the same. It is quite common to
recast this load balancing problem in terms of graphs. Vertices of the graph
represent indivisible computations, while edges encode data dependencies be-
tween computations. Load balancing is then commonly phrased as a graph

partitioning problem – divide the vertices into sets of equal work while cut-
ting as few dependencies (edges) as possible.

1 This work was supported by the Applied Mathematical Sciences program, U.S.
DOE, Office of Energy Research, and was performed at Sandia National Labs, op
erated for the U.S. DOE under contract No. DEAC0494AL85000.

Preprint submit ted to Elsevier Preprint 3 May 2000 I

Graph partitioning software targeted at parallel computing began to appear in
the early 90’s and has since become a cottage industry. .imong the currently

available alternatives are Chaco [15], METIS [18], JOSTLE [30], P.4RTY [25]
and SCOTCH [23]). Around the same time, complex scientific computing ap-
plications began exhibit excellent performance on parallel machines. .i clear

conclusion is that the partitioning tools enabled the successful parallelizations.

Although there is some truth in this assertion, there is also a significant degree
of falsehood. .4s we will detail below in 52, the standard graph partitioning ap-

proach has serious shortcomings. In fact, it is only due to the relative simplicity

of computational meshes that graph partitioners have been successful at all.
.More generally, it is our contention that the load balancing research commu-
nity (including that of the author) has pursued a set of objectives which are

incomplete and sometimes even ill advised. We present these concerns below
as a set of load balancing fictions. In so doing, we hope to contribute to a

broadening of perspective and to encourage and identify new and important
research questions.

2 Fiction I: The 13dge-Cut Deceit

-+s mentioned above, graph partitioning is an important conceptual and prac-
tical tool for load balancing. As a prototypical example, consider a calculation
performed on a mesh, where at every step each mesh point updates its value
by some function of its neighbors’ values. Each mesh point can be considered
as a vertex in a graph, and two vertices are connected by an edge if they
need each other’s values. Graph partitioning can be used to divide the ver-
tices into sets with nearly identical numbers of vertices such that few edges

cross between sets. If each set is assigned to a processor, then the workload
will be balanced while the communication requirements are kept modest. .4

useful generalization of this model allows for weights on vertices and edges to
encode heterogeneous computation and communication requirements respec-
tively. This correspondence between load balancing and graph partitioning has
motivated much algorithmic and software development.

Unfortunately, as discussed in detail in [11], the correspondence is less close
than it appears for two reasons that we elaborate upon below. First, although
it is widely believed to be the case, the volume of communication required by
an application is not proportional to the number of graph edges cut by the
partition. Second, the volume of communication is at best a weak predictor of
communication cost. Consider the mesh example more carefully as depicted
in Fig. 1. In this example, the curve represents the “partition between two sets.
Each mesh point with neighbors in the other set needs to send its value to
the other processor. Thus, the communication volume from the left set to the

2

DISCLAIMER

This report was prepared as an account of work sponsored
by an agencyof the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or ref Iect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

<
.

.

right set is 8, while that from the right to the left is 7. This contrasts with the
value of 10 edges cut.

Fig. 1. Edge cuts versus communication volume.

The problem with the edge cut metric is that several edges can describe the

same need for data transfer. Since a datum need only be communicated once,
no matter how many vertices on the other side may need it, edge cuts tend

to over-estimate the true volume of communication. A simple corollary is
that reducing edge cuts might not reduce the true communication volume.
This behavior was observed in [13]. But unfortunately, the graph partitioning

software in wide use today fails to minimize a correct metric of communication
volume.

Two alternative approaches are possible. One is to keep the same graph de-
scription, but to explicitly try to minimize the true communication volume.
For an unweighed graph, this would merely be the number of vertices which

have neighbors in another partition. This approach has been adopted in recent
versions of Metis [17]. Unfortunately, this approach is not well suited to prob-

lems in which the amount of data associated with the different edges varies.

In this case, a more accurate and elegant approach is the hypergraph model of
~atalyiirek and .4ykanat [4,5]. In this model, the set of vertices which generate
and consume a particular value are all connected by a single hgpemige. If that
hyperedge is split between two processors then a single communication cost is

incurred. Each hyperedge can be assigned a different weight if the communi-
cation costs are non-uniform. In this way the total number (or weight) of cut
hyperedges exactly equals the volume of communication.

Xot only have the graph partitioning tools been minimizing an inaccurate

measure of communication volume, the true cost of a communication opera-
tion is not well modeled by volume. For a distributed memory, message passing
computer, the cost of a single message is usually well modeled by two terms

3

>
.

- a startup or latency cost which is independent of message size and a band-
width term which is proportional to the size of the message. Although graph
partitioning models try to minimize the latter term, they do nothing for the

former. If messages are of only modest size, the latency cost can dominate.

A second effect which is not well captured by standard graph partitioning
approaches is the effect of communication congestion. Typically in scientific
computations, many messages are simultaneously competing for network re-

sources. Messages which use independent paths through the network can pro-
ceed at the same time, but those that compete for paths must take turns.
Thus, the pattern of collective communication can have a significant impact
on the communication cost. Current graph partitioners fail to accurately deal
with this issue.

Even if latency and congestion considerations are included, graph partitioning

models invariably try to minimize some version of the total communication
cost. But the determining factor in parallel performance is the slowest pro-
cessor. Graph partitioning generally produces sets with widely varying com-
munication loads. A better objective would be to minimize the maximum
communication load, or perhaps to reduce the communication on the most
computationally burdened processors. Current partitioning formulations and
implementations are not well suited for these objectives.

In summary, current partitioning tools try to optimize an objective that is far
removed from the true cost incurred by a parallel computation. An obvious
question is -why they have proved so successful at enabling large calculations.
The reason is that the vast majority of the applications using graph partition-
ers come differential equations and so the underlying graph is a mesh. This
has several implications. First, the geometric properties of meshes ensure that
good partitions exist. If a mesh in d dimensions has n vertices it will have sepa-
rators of size ni~–l)id [27]. This ensures that for sufficiently large problems, the
ratio of communication to computation will be small, so any reasonable parti-
tion should lead to good parallel performance. Second, the vertices associated
wit h computational meshes typically have a bounded number of neighbors.

This limits the harm caused by the edge cut approximation. Finally, meshes
are generally fairly homogeneous, so the various sets are similar. This limits
the communication inhomogeneity possible in these applications.

Unfortunately, other applications are less forgiving. Matrices arising from in-
terior point methods, the singular value decomposition for latent semantic
indexing, and other applications are generally much less structured than mesh
matrices. In particular, the variation in the number of edges associated with
a vertex can be quite large. &atalyurek and Aykanat find that for such ma-
trices the hypergraph model can reduce communication by 30-40% [5]. The
corresponding percentage improvement for meshes is only in the single dig-

I 4

its [1]. But without the guarantee of good partitions, these highly unstructured
matrices are liable to require more communication that meshes, and so the
partition quality will more directly translate into increased runtime. So al-

though our flawed models have been sufficient for parallelizing the solution
of differential equations,
models and approaches.

3 Fiction II: Simple

future applications will require much more careful

Graphs are Sufficient

As described above, the standard manner in which graph partitioning is ap-
plied to load balancing involves undirected graph with weighted vertices and

edges. In addition to the problems discussed in 32 with accurately represent-
ing communication cost in this model, these simple graphs also suffer from
a lack of expressibility. Many important classes of computations cannot be

accurately described by this model. Examples include the following.

●

●

●

Multi-Stage Calculations. Many applications consist of a sequence of
different, time-consuming calculations. One important example is multi-
physics simulations which consist of interleaved computations of, for exam-
ple, fluids and structures. More mundane examples include the application
of a matrix and a preconditioned during an iterative solver, or the different
grid calculations in a multi-grid scheme. .Mthough individual stage of such
calculations might be describable by a graph, the union of stages cannot be.
This is particularly true if there is a barrier between the different stages,
so that overall load balance is only achieved if each individual phase is bal-
anced. \flen a single phase dominates the runtime, a standard graph may
be sufficient, but the need to balance several phases is an objective which
cannot be described this way.
Complex Constraints. When calculations consists of multiple stages,
there are often complicated couplings between them. For instance, the dif-
ferent grids comprising a multigrid solver are related. In some (but not all)

cases, the coarse-grid vertices are a subset of the fine-grid vertices. Mecha-
nisms to express these relationships to the partitioned are needed. Another
important example arises in finite element calculations where some compu-
tations occur on the nodes and others on the elements. .4 partition which
balances each of these computations would be desirable, and the intimate
ties between nodes and elements needs to be encoded. The DRAM.A in-
terface provides a uniquely rich model for this problem [8]. Unfortunately,
current graph partitioning tools are not yet up to this complexity.

Unsymmetric Dependencies. In the standard graph model, if a vertex
i needs data from a vertex j, then j also needs data from i. NTotall depen-
dencies exhibit this symmetry. For instance, matrix-vector multiplication
leads to symmetric dependencies only if the matrix is structurally symmet-

5

,

ric. .41though many methodologies for solving differential equations lead to

structurally symmetric matrices, other applications do not. Important ex-
amples include latent semantic indexing, least squares problems for data
analysis and interior point methods for optimization. The standard graph

model does not describe these kind of problems well.
. Differing Inputs and Outputs. When the set of dependencies is symmet-

ric, then the set of inputs to a calculation is equivalent to the set of outputs.
But -when the dependencies are nonsymmetric the inputs and outputs can
differ. For instance, consider the problem of matrix-vector multiplication for
non-square matrices. In this case, the set of inputs is of different size than

the set of outputs. For such examples, a model is needed which allows the
inputs and outputs to be handled separately. The standard graph model is
not able to do this.

To address these deficiencies, several alternative partitioning models have been

proposed in recent years. One of these is the hypergraph model of Qatalyiirek
and Aykanat introduced in ~2. In addition to correctly accounting for commu-
nication volume, this model can encode unsymmetric dependencies and, to a
certain extent, differing inputs and outputs.

Closely related is the bipartite graph model of Hendrickson and Kolda [21,14].
In this model, inputs are designated as a set of vertices and outputs as a dis-
tinct set of vertices. .\n edge connects an input to an output that depends
upon it. This model was devised specifically to handle the problems of un-
symmetric dependencies and differing inputs and outputs. It can also encode
certain limited classes of multi-stage calculations like two matrices acting on
a vector. But it still minimizes the non-optimal metric of edge cuts.

.i more general approach than the bipartite model is the multi-constraint,
multi-objective partitioning approach of Karypis, Kumar and Schloegel [20,26].
This model was designed to partition multi-stage calculations, but its gener-
ality allows for other applications. It begins with a standard graph model,

but aubgnents it in two ways. First, instead of having a single weight for each
vertex, vertices are given a vector of weights. .4 partition is only considered bal-
anced if each of the components of the weight vector is balanced. For instance,
~alue k in the weight vector could reflect the computational cost associated
with phase k of the computation. The partitioned would then try to find a

single decomposition that partitions each phase evenly. The second augmen-
tation involves edge weights. As with vertices, each edge is allowed to have
several weights, reflecting the communication cost associated with different
phases.

The generality of this model is appealing, but it leads to very challenging
partitioning problems. In many cases, a more focused model may be easier to
work wit h. However, in many ways even the multi-objective, multi-constraint

6

model is not general enough. It cannot, for instance, address the problem of
minimizing both the volume of communication and the number of messages.
And the model still suffers from all the shortcomings of the edge-cut metric.

Despite the recent activity in alternative partitioning models, much work re-
mains to be done. New approaches which address some of the remaining defi-
ciencies are urgently needed.

4 Fiction III: Partition Quality is Paramount

When advocating a new partitioning algorithm, researchers invariably ar-
gue their case by comparing their partition quality and (sometimes) runtime

against existing tools. While these two criteria are important, they are far
from comprehensive. .4s discussed in more detail in [12], desirable properties
of a partitioned include the following.

●

●

●

●

Balance the Load. This requirement may seem obvious, but it isn’t always
simple. For example, the challenge of balancing multi-phase calculations was
discussed in $3. More generally, how should the work load be measured? How
important is precise balance?
Minimize Communication Cost. .4s argued in ~2, communication cost is
a some-what elusive quantity. The most appropriate metric certainly depends

upon the properties of the parallel computer, and probably on those of the
application as well.

Run Fast in Parallel. When static partitioning can be performed as a
serial preprocessing step, efficiency isn’t crucial. But when the partitioning
is being performed on an expensive parallel machine instead of a cheap
workstation, runtime can be critical. Time spent partitioning is time lost

to the application, and can only be justified by a resulting improvement in
application performance. This is particularly true for dynamic or adaptive
calculations which need to be repartitioned repeatedly.

Be Incremental. The issue of incrementality is critical for dynamic prob-
lems, but has no counterpart in static partitioning. When an adaptive or
dynamic calculation becomes unbalanced and invokes a repartitioner, the

data is already distributed across processors. If the partitioned dictates a
new decomposition which is quite different from the current one, then sig-
nificant quantities of data will need to be transferred between processors.
Thus, partitioners which adjust the decomposition in an incremental way
are desirable. As an example of the importance of this issue, Touheed, et
al. report results of several different partitioning algorithms for an adaptive
flow calculation on 32 processors of an SGI Origin [29]. In their experiments,
the time for data migration was significantly larger than the time spent de-

termining the new partition. Obviously, the relative importance of partition

7

●

●

●

,

quality, runtime and incrementality depends upon the application. But it
may be worthwhile to sacrifice partition quality to improve incrementality.

Be Frugal With Memory. As with runtime, the partitioned is competing
with the application for finite space on the parallel machine. .4 partitioned

which requires only modest memory will allow larger calculations to be

performed. .4gain, the importance of this issue varies enormously between
applications.

Support Determination of Communication Pattern. Once a new de-
composition has been determined and the data redistributed, the application
still needs to figure out how to work with the new partition. Specifically,
each processor needs to know what data to exchange with which other pro-

cessors. In its most general form, this determination can be expensive. Some
partitioners, generally those based upon geometric properties of the data,
can greatly simplify this task.
Be Easy to Use. .41though difficult to quantify, ease of use is a critical

aspect of a good tool. Many, if not most, application developers would gladly
trade some performance for simplicity. For static partitioners with their

file interfaces, this isn’t a big issue. But for dynamic partitioners which
are invoked via parallel subroutine calls, the design of the interface is very
important.

The importance of these different issues varies between applications. But it is
insufficient to focus our attention solely on only one or two criteria.

5 Fiction IV: Existing Tools Solve the Problem

.Anumber of good partitioning and load balancing tools have been developed in
recent years, and new packages continue to appear. Developers of such software
(including the author) like to believe that their tools meet the needs of a wide

range of parallel applications. Clearly, the usage of these tools supports this

belief. But application developers have no choice but to use the available tools.
In fact, the existing tools are far from ideal. Two shortcomings in particular
are worth mentioning.

The first shortcoming is the inadequacy of the graph partitioning model which
was discussed in ~2. .41though it has been a useful abstraction, load balancing
is not identical to graph partitioning.

The second shortcoming is in the nature of the software engineering. Here, it
is worth differentiating between static and dynamic tools. Most load balancing
packages address the static partitioning problem, and run on a serial computer.
They are designed to work as part of a preprocessing step in which a large

computation is prepared for a parallel machine. The tools are generally invoked

8

L
,

as stand-alone codes with file interfaces. This approach is fairly mature, and
sufficient for many applications.

However, a growing number of applications are ill-suited to this approach
and would benefit from more sophisticated software engineering. Parallel load
balancing tools are clearly needed for adaptive calculations, but they are nec-
essary in several other settings as well. For instance, if the computational
problem is generated on a parallel machine (e.g. by a parallel mesh gener-

ator) then the load balancing needs to be done in parallel too. Also, if the
target parallel computer is heterogeneous, then the partitioning can’t easily

be done in adwmce, Only at runtime will an application know what resources
are available to it, and without this information it cannot properly balance
the load.

Unfortunately, parallel or dynamic partitioning software is much less mature
than its static counterpart. To a large degree this is merely a consequence
of the added complexity associated with developing parallel algorithms and
software. But several algorithmic and software issues make dynamic load bal-
ancing libraries inherently more difficult. First, as discussed in $4, the dynamic
partitioning problem has to contend with the issue of incrementality. For the

static problem, there are only two principle metrics: quality and runtime. And
multilevel methods seem to cover this two-dimensional space quite well, pro-
viding high quality solutions in modest time. But the need for incrementality

adds a t bird key metric to the dynamic problem. It seems unlikely that a single
algorithm will be able to cover this full three-dimensional space adequately.

So a good tool will need to provide a suite of partitioners, some with greater
incrementality, some with higher quality, etc. It requires more work to build
such a toolkit than to implement a single algorithm.

.\nother important difference between the static and the dynamic cases is that
dynamic partitioners cannot be stand-alone codes with file interfaces. Instead,

they will be invoked as subroutine libraries, which raises new challenges in
software desiem. The input arguments to most existing parallel partitioners

(e.g. ParMETIS [19], PJostle [30], DRAMA [8]) include a graph in some for-
mat. The burden of constructing the graph in the specified format is placed
upon the application developer. The exception to this rule is Zoltan [2], in
which functions are passed across the interface instead of data. In our view,

this object-oriented design has several advantages. It reduces memory require-

ments, allows for the partitioned to only extract the information it needs, and
the tool can be modified without changing the interface. But must importantly,
we believe it is easier to use.

In summary, the load balancing community has yet to embrace the software en-
gineering techniques which have simplified the inter-operability of commercial
software. lJ’e believe that new tools developed with this mindset will signifi-

9

cantly improve the utility of load balancing software. This is particularly true
for dynamic load balancing tools.

6 Fiction V: Load Balancing Means Finding the Right Partition

A good distribution of work among processors is the key to obtaining high
performance on a parallel computer. Each processor should have useful work,

to do for the duration of the computation, and the overhead of interprocessor
communication must be minimized. A natural, but flawed, conclusion is that
the best way to parallelize an application is to find a good partitioning.

This conclusion is flawed for two reasons. First, as discussed in ~4, dynamic

and adaptive calculations require the partition to be adjusted on the fly. No
single partition is adequate for the duration of the computation. The second,
and more interesting, reason arises in the context of multi-stage calculations
which were introduced in $3. The different stages in these calculations can

have conflicting partitioning objectives. An optimal partition for one stage
may be far from optimal for another.

.4s discussed in $3, several alternative partitioning models are able to combine
two or more stages into a single partitioning problem. However, this may not
be the best answer. Perhaps no single decomposition exists which enables
good performance from all the stages. -An alternative is to support multiple
decompositions so that each stage can be performed efficiently, independent
of the partitioning demands of the other stages. The disadvantage of this
approach is that data must be moved between the decompositions, incurring a
cost in both time and memory. But in some applications, this approach enables
complex calculations to run efficiently on many more processors than a single
decomposition would allow. One such application is the crash simulation work
of Plimpton, et al. [24].

Low speed impacts (e.g. car crashes) are usually simulated with Lagrangian
techniques. .4 mesh is constructed of the car in its native geometry. .4s the

simulation proceeds and the car hits a telephone pole, the mesh distorts to
follow the deformation of the bumper. .As the bumper deforms, it eventually
strikes the radiator. In the simulation, this is revealed when the mesh of the
bumper contacts the mesh of the radiator. At this point, new forces need to
be included in the simulation.

There are two dominant stages in these calculations. The first is a finite ele-
ment analysis of the impacting bodies to reveal how
The second is the geometric search for contacts in
these two stages have quite different decomposition

10

they deform under stress.
the mesh. Unfortunately,
needs. The finite element

, .
,>

analysis is a prototypical example for which graph partitioning works well.
The pattern of data dependencies is static and determined by the topological

structure of the mesh. The contact detection stage changes every timestep,

and data dependencies reflect geometric proximity. In the work by Plimpton,
et al., graph partitioning is used for the finite element stage and a geometric
partitioned is used for contact detection. The resulting crash code was the first
to scale well to hundreds and even thousands of processors and has enabled

simulations of unprecedented scale and fidelity [3].

Several aspects of crash simulations make them good candidates for the multiple-
decomposition approach. These applications are generally not memory inten-
sive, so the duplication of date associated with the multiple decompositions is
not a problem. .Also, each stage of the computation is expensive, so the cost
of the data transfer can be tolerated. And finally, the partitioning needs of
the two stages are quite different, so single-decomposition approaches have ex-
hibited only quite limited scalability. For multi-stage applications with these
features, multiple decompositions should be considered.

7 Fiction VI: All the Problems are Solved

Within the load balancing community, there is a sense of satisfaction with the

status quo. The complacency that this engenders makes this the biggest and
most damaging fiction of all. .4s discussed above, there is a compelling need for
more accurate and expressive models, new partitioning algorithms to address
these models” and better desibqed soft-ware tools and interfaces. In addition to
these general needs, a number of interesting and important problems have not
yet been adequately addressed. .4mong them are the following.

●

●

Partitioning for sparse solve on each sub domain Some preconditions

based on domain decomposition involve a sparse, direct solver on each sub-
domain. .4n important example is the FETI class of preconditioners [10].

The -work and memory required by each sub domain for such a calculation is
quite difficult to predict in advance. It requires a much more detailed analy-
sis than can be provided by merely summing vertex weights. Current graph

partitioning models are unable to balance the work or memory required on
each subdomain. New models and partitioning ideas would be very helpful

here, and would also be applicable to the parallelization of sparse direct

methods.
Partitioning for good aspect ratios Another property of FETI precon-
ditioners is that they work best when the individual subdomains have small
aspect ratios (i.e. not be long and skinny) [9]. Recent work by Diekman, et
al. [6,7] has shown an elegant method for encoding this objective into the
standard graph model. Further work in this area would be welcome.

11

. , ,
.

●

●

Partitioning for heterogeneous parallel architectures Most new and

emerging parallel architectures have heterogeneous networks. For instance,

many machines are clusters of symmetric multi-processors. The communi-

cation properties within an SMP are different than those for communication
between SMPS. The growth of commodity cluster computing is also lead-
ing to parallel machines with heterogeneity y among the processors. Existing

partitioning and load balancing tools fail to incorporate this information.
Several important questions arise including how to model the architecture
and how to adapt partitioning algorithms for them. Some interesting early
work on these questions has been pursued by Teresco, et al. [28], but much

remains to be done.
Partitioning to minimize congestion.% discussed in $2, the true cost of
a collective communication operation can be difficult to predict. In the not–
too-distant past, vendors provided specialized high performance networks
that efficiently routed complex sets of messages. But for the large number of

current machines with commodity networking, network performance is less
robust. In particular, if many messages are all competing to use a single wire,

then performance will suffer. Methods for generating partitions in which this
contention is avoided are needed. Some ideas along this line can be found in
the work of Pellegrini [22] or Hendrickson, Leland and Van Driessche [16],

but new insights are needed.

Despite the general feeling that load balancing is a mature area, there is a great
need for new ideas and insights. The wide range of open or only imperfectly

solved problems provides many opportunities for new research.

Acknowledgements

The ideas in thk paper have been influenced by my collaborations with Rob
Leland, Tammy Kolda and Karen Devine. I have also benefited from conver-
sations with .Alex Pothen, Steve Plimpton and George Karypis. In addition,
I am indebted to Guy Lonsdale and the organizers of the Second DR%MA
l~orkshop for an invitation to speak which motivated the organization of this
paper.

References

[1] C. AYKANAT.Private Communication, 1998.

[2] E. BOMAN, K. DEVINE, B. HEPiiRICKSON, W. MITCHELL, M. ST. JOHN,
AND C. VAUGHAN.http: //www.cs.sandia. gov/ZoItan.

12

u.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

K. BROWN, S. ATTAWAY,S. PLIMPTO~, AND B. HENDRICKSON,Para//ei
strategies for crash and impact simulations, Comp. Meth. Appl. Mech. Eng.,
184 (2000), pp. ??–?? Invited paper.

U. V. ~ATALtiREK AND C. AYKANAT, Decomposing irregularly sparse
matrices for parallel matn”x-vector multiplication, in Parallel Algorithms for
Irregularly Structured Problems, Irregular ’96, no. 1117 in Lecture Notes in
Computer Science, Springer-Verlag, 1996, pp. 75-86.

u. QATALYtiREK AND c. AYKANAT,
Hypergraph-partitioning based decomposition for parallel sparse-matrix vector
multiplication, IEEE Trans. Parallel Distrib. Syst., 10 (1999), pp. 673–693.

R. DIEKMAIYN,R. PREIS, F. SCHLIMBACH,AND C. WALSHAW,Aspect-ratio
for mesh partitioning, in Proc. Euro-Par’98, D. Pritchard and J. Reeve, eds.,
LNCS 1470, Springer-Verlag, 1998, pp. 347-351.

— Shape-optimized mesh partitioning and load balancing for adaptive fern,
Par~lel Comput., (2000). To appear.

http: //~~.m.kuleuven. ~.be/cwis/rese~ch/natw/D~MA.

C. FARHAT, N. MAMAN, AND G. BROWN, Mesh partitioning for implicit
computation via domain decomposition: Impact and optimization of the
subdomain aspect ratio, Internat. J. Numer. Methods Engrg., 38 (1995), pp. 989–
1000.

[10] C. FARHAT AND F. X. ROUX, An unconventional domain decomposition
method for an eficient parallel solution of large-scale finite element spstems,
SLAM J. Sci. Stat. Comp., 13 (1992), pp. 379-396.

[11] B. HE~DRICKSON,Graph partitioning and parailel solvers: Has the emperor no
ciothes ?, in Solving Irreb@arly Structured Problems in Parallel, Irree@m ’98,
no. 1457 in Lecture Notes in Computer Science, Springer-Verlag, 1998, pp. 218–
225.

[12] B. HENDRICKSONAND K. DEWNE, Dynamic load balancing in computational
mechanics, Comp. Meth. Appl. Mech. Eng., 184 (2000), pp. 485-500. Invited
paper.

[13] B. HENDRICKSONAND T. KOLDA, Graph partitioning models for parallel
computing, Parallel Comput., (2000). To appear.

[14]— Partitioning rectangular and structurally nonsymmettic sparse matrices
for p;rallel processing, SIAM J. Sci. Comput., (2000). To appear.

[15] B. HENDRICKSONANDR. LELAND,The Chaco user’s guide, version 2.0, Tech.
Rep. SAND9>2344, Sandia National Labs, Albuquerque, NM, 1995.

[16] B. HENDRICKSON, R. LELAND, AND R. V. DRIESSCHE, Skewed graph
partitioning, in Proc. 8th SIAM Conf. Parallel Processing for Scientific
Computing, SLAM, 1997.

13

, .

[17] G. KARYPIS.Private Communication, 1998.

[18] G. KARYPISAND V. KUMAR, A fast and high qualitg multilevel scheme for
partitioning irregular graphs, Tech. Rep. 95-035, Dept. Computer Science, Univ.
Minnesota, Minneapolis, MN, 1995.

[19]— Parallel multilevel graph partitioning, Tech. Rep. 95-036, Dept. Computer
Scie;ce, Univ. Minnesota, Minneapolis, MN, 1995.

[20]_ Multilevel algorithms for multi-constraint graph partitioning, Tech, Rep.
98-01’9,Dept. Computer Science, Univ. Minnesota, Minneapolis, MN, 1998.

[21] T. G. KOLDA,Partitioning sparse rectangular matrices for parallel processing,
in Solving Irregularly Structured Problems in Parallel, Irregular ’98, no. 1457
in Lecture N-otes in Computer Science, Springer-Verlag, 1998, pp. 68–79.

[22]F. PELLEGRISI, Static mapping by dual recursive bipartitioning of process and
architecture graphs, in Proc. Scalable High Performance Comput. Conf., IEEE,
1994, pp. 486-493.

[23]— SCOTCH 3.1 user’s guide, Tech. Rep. 1137-96, LaBRI, Universit6
Bord;aux 1, France, August 1996.

[24] S. PL1hmTox, S. ATTAWAY,B. HE~DRICKSON, J. SWEGLE, C. VAUGHAN,
AXD D. GARDNER, Transient dynamics simulations: Pamllel algorithms for
contact detection and smoothed particle hydrodynamics, J. Parallel Distrib.
Comput.. .50 (1998), pp. 104-122. Previous version appeared in Proc.
Supercomputing’96.

[25] R. PREIS AXD R. DIEKMA~~, The PARTY partitioning-library, user guide -
version 1.1, Tech. Rep. tr-rsfb-96-024, Dept. of Computer Science, University
of Paderborn, Paderborn, Germany, 1996.

[26] K. SCHLOEGEL,G. KARYPIS, AND V. KuhlAR, A new algorithm for multi-
objective graph partitioning, in Proc. EuroPar’99,, Lecture Notes in Computer
Science, Springer-Verlag, 1999.

[27] S.-H. TEXG. Points, Spheres and Separators: A Unified Gwmetric Approach
to Graph ParMioning, PhD thesis, Dept. Computer Science, Carnegie Mellon
Univ., Pittsburgh, PA, 1991.

[28] J. D. TERESCO, M. W. BEALL, J. E. FLAHERTY,AND M. S. SHEPHARD,A
hierarchical partition model for adaptiue jinite element computation, tech. rep.,
Rensselaer Polytechnic Institute, Troy, NY, 1998. Submitted to Comp. Meths.
Appl. Mech. Engrg.

[29] N. TOtXEED, P. SELWOOD,P. K. JIMACK, ANDM. BERZUSS,A comparison
of some dynamic load-balancing algorithms for a parallel adaptive Bow solver
application, Parallel Comput., (2000). To appear.

[30] C. WALSHAW,‘M. CROSS, AND M. EVERETT, Mesh partitioning and
load-balancing for distributed memoy parallel systems, in Proc. Parallel &

~ Distributed Computing for Computational Mechanics: Systems and Tools, Saxe-
Coburg Publications, 1998.

14

