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Abstract

On the basis of semiclassical kinetic equations for quark-gluon plasma (QGP) and Yang-Mills
equation in covariant gauge, Langmuir oscillation and linear Landau damping is investigated.
It is found that plasma eigen modes are directly related with the wave number and it is highly
coupled with the thermal part of QGP. The linear Landau damping also exists in QGP, which
shows that plasma modes heavily damp for | k \—> 0.

MIRAMARE - TRIESTE

August 2000

*Regular Associate of the Abdus Salam ICTP. E-mail: mofizua@bou.bangla.net; amberm@bangla.net

^Senior Associate of the Abdus Salam ICTP. E-mail: murtaza_qau@yahoo.com



I. INTRODUCTION

Recently, there has been much interest in theoretical and experimental study of quark-gluon
plasma (QGP) [1-3]. Because of asymptotic freedom of QCD, quarks are liberated at suffieciently
high temperature and densities. There is a phase transition which occurs at temperatures of
several hundred MeV. The thermodynamic properties of a quark-gluon plasma were considered
in detail in Ref.[4], in which fairly good expressions were obtained for its free energy. Kinetic
properties of the quark-gluon plasma and its collective excitations are investigated in Ref. [5].
Kalashnikov and Klimov [6] investigated the properties of the polarization operator calculated
in QCD at finite temperatures and densities in the "one-loop" approximation and the spectrum
of the elementary excitations in such a system is found explicitly.

Most of the theoretical analyses of the dynamics and signatures of QGP plasma phase have
relied on the assumption of local thermal and chemical equilibrium. These assumptions have
promoted the construction of a kinetic frame work for plasmas with non-abelian interactions,
which allow discussions of nonequilibrium phenomenon with the approach to equilibrium.

Heinz and Siemens [7] carried out an analyses of colored collective modes in a QGP on the
basis of 'quark-gluon transport theory' near equilibrium. They found that two optical modes
(one longitudinal and one transverse) exist starting for k=0 at the plasma frequency, while there
is no acoustic mode starting at co = 0. An important conclusion is done here, that linear Landau
damping is absent in QGP due to the contribution of massless gluon in the collective modes.
Further, Markov and Markova [8] developed the theory of nonlinear Landau damping on the
basis of hard thermal loop approximation. Linear Landau damping is abandoned on the basis
of an earlier paper [7].

In this paper, we re-examine the Linear Landau damping in QGP on the basis of semi-
classical kinetic equations and Yang-Mills [SU(3)] equation in a covariant gauge. In Sec.II. we
formulate the linearized system of equations for quark-gluon plasma with thermal and chemical
equilibrium. The regular distribution functions are bosonic for quarks and anti quarks, while
it is fermionic for the gluons with the global equilibrium in QGP. In Sec.III. we do the Fourier
transformation of the linearized system and a generalized expression for the conductivity (polar-
ization) tensor is obtained. The Langmuir oscillation and linear Landau damping is studied in
detail. It is found that the eigen modes in QGP is strongly related to the wave number and also
to the thermal part of the system. Linear Landau damping, depending stongly on the wave num-
ber and temperature, also exists in QGP. For smaller | k \—> 0, we find that u>p ~ | k | s, F ~ T-TT.

II. EQUATIONS FOR DISTRIBUTION FUNCTIONS AND GAUGE FIELDS

We consider an ultrarelativistic quark-gluon plasma in, or, close to thermal equilibrium, at a
temperature T. We use the natural units, c = ks = 1 and the metric g^v = diag(l, —1, —1, —1).
We consider a SU(NC) gauge theory with Nf flavors of quarks. The color indices a, b,.. run from
1 to N% — 1. The generators of the gauge group are denoted by ta and Ta, respectively, for the
fundamental and the adjoint representations, and are normalized such that Tr(tatb) = \8ab and
Tr(TaTh) = Nc8

ah. It follows that (Ta)bc = -ifabc, and tata = Cf, where Cf = (Nc - l)/(2Nc)
is the Casimir of the fundamental representation and fabc are the structure constants of the



group: [ia,£6] = ifabctc. Furthermore, D^ and D^ are the covariant derivatives which act as
By = d^ — ig[An(x),-], D^ = d^ — ig[All(x),-], [,] denotes the commutator, {,} denotes the
anticommutator, and A^ = A^ta for the fundamental representation and A^ = A^Ta for the
adjoint representation. The field F^v = F^vt

a with

Ffiu = dVAv - °vAv + 91 A^Av, I1)

obeys the Yang-Mills (YM) equation in a covariant gauge

]-i-ldvd^All(x) = -J»(x), (2)

where, £ is a gauge parameter and g is the dimensionless coupling parameter. Jv is the color
current

r = gta I d4pp»[Trta(fq - fg) + Tr(Ta.fg)}. (3)

We are neglecting the spin effects. Thus the distribution functions of quarks fq, antiquarks
fq, and gluons fg satisfy the semiclassical kinetic equations

where, the upper sign refers to quarks and the lower one to antiquarks, and F^v = F°luT
a.

Initially, we are interested with the linear response in the QGP plasma. Therefore, we
decompose the distriburion functions into two parts, namely, regular and random (turbulent)
ones

Is = ff + fJ-< s = QiQ-, 9-, (5)

so that

< fs >= ff, < fl >= 0, (6)

where angular brackets < . > indicate a statistical ensamble of averaging. Further we set

by definition. For simplicity, the regular part of the field A^ is considered equal to zero. Simi-
larly,

J» = J? + Jj, < h >= J?, < Jl >= 0- (8)

Let

,T fT(l) , fT(2) ,

f f ^ + ... (9)
Substituting Eqs. (5) - (9) into Eqs.(2) - (4), and collecting only the first order of perturba-

tions, we obtain the following linearized system of equations for the QGP plasma:



= -gta I d4pp»[Trta(fTW - /g
T«) + T r ( T % T « ) ] . (10)

= 0, (11)

4 \ % ) L , d£-u) = o, (12)

where,

(Fju)L = d,Al - dvAl = {d.Al* - dvAla)ta = (Fft)ta. (13)

(tfuh = d»K - dvA~l = (d^AT
v
a - dvA~la)Ta = (FTu

a)Ta. (14)

We suppose that the characteristic time of relaxation of oscillations is small as compared
to the time of relaxation of the f^. Therefore, we neglect the variation of the regular part of
the distribution functions in space and time, assuming that these functions are specified and
describe the global equilibrium in QGP [8]

fR = f -
Jq,q-Jq,q

q,q-Jq,q

R -- f ~ 2J^yfdW >e(Pu)/T_l

III. LANGMUIR OSCILLATION AND LANDAU DAMPING

Taking the Fourier transformation of the linearized equations (11) and (12), we find

lp • k
(16)

p . k + iepo VV> dpx ' K '

where,

XvX = {p-kgvX-pvkx). (18)

Thus, the Fourier transformation of equation (10) takes the form

v> — hv> A^\ — fi~lhu'h^1 A — — Tu'(h\

(19)
p - k + i

We may write



uk). (20)

In the above, for simplicity, we omit the suffix " T " for the gauge field.
Now, we can write the linear current as

r'(k) = Uv'vAu(k), (21)

where,

d4p—-^ {puk ~-p- k^-)Neq, (22)
y p k + iep dp F dpu> qj K '

with Neq = \(fq + fq ) + Ncfg , is the conductivity (polarization) tensor of QGP.
We are interested in the study of oscillation and Landau damping of Langmuir mode in

QGP. The term LT00 represents such oscillation, thus we study LT00 in detail.

' "e« (23)
p • k + tepo op op

For an easy calculation of the integral, we begin with the one dimensional case of the problem.
Therefore, we consider p\\ k \\ u. Then

where,

e(p°u°-pu-ns)/T
(25)

with aq = o>q = l,ag = 2Nc,fiq = /J,,fiq = —q,fig = 0, represents a combined distribution of
quarks, antiquarks and gluons.

The principal value of the integral related with the combined distribution function F(p) is
given by the integral type

Jo
pku + Ukp e(p°u0-pu-u,)/T

Po p°k° -kp + iep° (e(p°«o-pu-/0/T + 1)2 '

which is very much complicated to yield any physical results. Therefore, we chose that

F{p) « G{p) = ae-^v~w"i\ (27)

where a,(3,W are some chosen parameters as function of free parameters (/J,,T,U,U°). The
function F(P) and G(p) may be close to identical with the proper selection of the parameters
satisfying at least the following conditions:

i) F(0) = G(0), ii) F'(W) = G'(W), in) F(oo) = G(oo).

We plot the functions F(p) and G(p) with the fixed values of parameters u° = P° = T =
u = 1,/J, = .01, Nc = 8, with the chosen parameters a = 4, /3 = .1, W = .8. These functions
are shown in Fig. la and Fig.lb, respectively. The figures validate our approximation to some
extent.
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FIG. 1. Dependence of functions F(p) and G(p) for the fixed values free parameters

Thus, the integral equation (24 ) may be written approximately as

n oo
T (2vr)3 JO l J



Let

i=r
Jo

dp p^+ukp
p°k° — kp + iep°

J P- Pres X TeS J p~ Pres

w h e r e G\{p) = e~^P~w) ,G2(p) = pe~^P~w) ,pres = p
 fc

rea, respect ively .

Now, expanding

1 l M • / P " • ' P "2 •- } , (30)
P Pres Pres Pres Pres

and keeping up to 2nd order in ( r 2 - ) , from the principal and residual values of the integral, we

find

From equation (19) we find the dielectric tensor for the Langmuir oscillation

e = (1 — £~ )kQ + II . (32)

To extract Langmuir oscillation and damping of longitudinal spectrum, we split k° = k®+ik®.

In fact, &;{? = cor and h® = cjj.

Thus the dielectric tensor splits into two parts

J — J A_ jj (Q^
o — c.j. n̂  "^ii \ )

where

4(&,&r)=0, (34)

determines the Langmuir spectrum and

k% = ThTTuToVi (35 J
afcOl*o=fco

gives the Landau damping. Accordingly, from equations (28) and (29), we find tha t

U V\- 2 Ak Bk2 Ck3

and

Then the equation

£l
r(cjr,k)=0, (38)

yields



UJr LOy CO

where

2 Ak Bk2 Ck3 , ,
r = — + — + — , (39)

UJr LOy CO*

( 4 0 )

Equation (35) determines the Landau damping, which is given by

,

For k —> 0, we find

and

( ) 3 "^

For u = 0 ( thermal bath)

1

k

(43)

(44)
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