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Abstract. A class of Probabilistic Abductive Logic Programs (PALPs)
is introduced and an implementation is developed in CHR for solving
abductive problems, providing minimal explanations with their proba-
bilities. Both all-explanations and most-probable-explanations versions
are given.
Compared with other probabilistic versions of abductive logic program-
ming, the approach is characterized by higher generality and a flexible
and adaptable architecture which incorporates integrity constraints and
interaction with external constraint solvers.
A PALP is transformed in a systematic way into a CHR program which
serves as a query interpreter, and the resulting CHR code describes in a
highly concise way, the strategies applied in the search for explanations.

1 Introduction

Logic programs provide a very flexible and general representation scheme for
knowledge about complex and interrelated phenomena. Deductive reasoning, i.e.,
reasoning about what is known, in logic programs may be done within the Prolog
programming language, and various extensions for synthetic reasoning such as
abduction and induction have been developed. Abductive reasoning means to
search for missing world facts, which can explain observations of the state of
affairs. Diagnosis in medicine and fault finding in mechanical or virtual systems
are some of the obvious applications.

In general, abductive reasoning based on logic programs tends to provide too
many and often strange explanations, and integrity constraints, which are for-
malized conditions which must hold in the possible worlds expressed by different
explanations, can be applied for ruling out some of those. Another important is-
sue is that explanations should be minimal, in the sense that they do not contain
information which is not necessary in order to explain the observation.

Finally, adding probabilities to a knowledge representation formalism pro-
vides a way to prioritize among different explanations, giving a measurement
of which one is better (i.e., more probable) than others. Probabilities may fur-
thermore be applied to optimize the search for explanations, always going in



the most probable direction, so that investigation of less probable alternatives
is suppressed or postponed.

While a lot of research has been made, and several systems developed, in
logic programming based settings, far less work has been done in combining
with probabilities. We suggest here an implementation of abduction in proba-
bilistic logic programs in Constraint Handling Rules (CHR) which serves two
purposes. Firstly, it overcomes certain limitations of earlier work and provides
a very flexible architecture, which points forward to different extensions such as
interaction with a non-monotonically evolving world. Secondly, it demonstrates
CHR’s suitability as a metalanguage for implementing advanced reasoning pat-
terns, which is a direction we have pursued also in earlier work.

In fact, the major part of the CHR rules that we present expose in a clear
and abstract way, the strategies used in the search for minimal, probabilistic
explanations. In this way, CHR is experienced as a unique metaprogramming
language for an overall methodology, which is to apply CHR’s constraint store
as a pool of pending computational processes, which collectively maintains the
meaning of the observation posted as a query to the system, and where each
process gradually moves towards an explanation, perhaps splitting into other
processes along the way. These processes can be run either exhaustively in the
arbitrary order provided by the underlying CHR system, or using an explicit
scheduling policy such as best-first.

In addition to provide working implementations, our work may also be useful
in a pedagogical context (teaching students what is and how to make probabilis-
tic abduction), and finally it may provide executable specifications for detailed
and very efficient implementations in low-level language such as C. In the present
paper, we present implementations in terms of concrete and executable code,
with only very few details left out. Notice that in some cases, we have given
priority to brevity of the code rather than ultimate efficiency.

Overview

Section 2 introduces the language of Probabilistic Abductive Logic Programs
(PALPs) with its logic and probabilistic semantics. PALP programs include dec-
larations of abducibles with prior probabilities, integrity constraints, calls to
external predicates, but no negation. External predicates can be a defined in
Prolog or be constraints for which a solver is given, by additional CHR rules or
otherwise.

In section 3, we provide specifications of auxiliary predicates used in our
subsequent implementations, which define, so to speak, an abstract datatype
for explanations. We consider two alternative implementations (details in ap-
pendix B), a straightforward and efficient one which aborts in case of nonground
abducibles, and another one with full generality.

Our implementation of PALPs is given as a systematic transformation of a
given program into a CHR program which, then, serves as a query interpreter.
Section 4 explains this transformation for a propositional subset of PALPs in



order to outline the basic principles; two implementations are given, an all-
solutions and a best-first version. Section 5 adds the remaining details to provide
implementations for the full PALP language.

We do not specify in detail the semantics used for CHR in our proofs, but
assume a semantics “as usual”, given by [24]; in our proofs, we argue in a semi-
formal style in terms of an operational semantics for CHR which in most cases
considers it as a nondeterministic rewriting system, and occasionally we need to
refer to CHR’s sequential search for rules to apply and its left-to-right execution
of rule bodies (cf. [22]).

Section 6 indicates further extensions and optimizations, firstly inspired by
Dijkstra’s shortest path algorithm [21] which is relevant in cases where the resid-
ual query in each branch is a single atom, and secondly, by using simplification
techniques [33, 18] to speed up integrity checking. Finally, we consider the ad-
dition of a limited form of negation and we can argue that a logically more
satisfactory version of negation is difficult to handle probabilistically.

Section 7 provides two fully developed example PALP programs, including
diagnosis and finding most the probable path in a network. Both are implemented
in CHR using best-first search, and the second one shows also the Dijkstra
optimization indicated above.

The final section 8 provides for a summary, an overview of related work, and
perspectives for applications and extensions of the present work.

2 Probabilistic Abductive Logic Programs

2.1 Syntax and Logic Meaning

Definition 1. A probabilistic abductive logic program (PALP) is characterized
by

– a set of predicate symbols, each with a fixed arity, distinguished into four
disjoint classes, abducibles, program defined, external and ⊥,

– for each abducible predicate a/n, a probability declaration of form
abducible(a( 1,. . ., n), p), with 0 < p < 1.

– a set of clauses of form, A0:-A1, . . . ,An, of which the following kinds are
possible,
• ordinary clauses where A0 is an atom of a program defined predicate and

none of A1, . . . , An, n ≥ 0, are ⊥,
• integrity constraints in which A0 = ⊥ and A1, . . . , An, n ≥ 1, are ab-

ducible atoms.

As usual, an arbitrary and infinite collection of function symbols, including con-
stants, are assumed and atoms defined in the standard way. �

Notice that ⊥ is a distinguished predicate rather that a representation of falsity.
The relationship |= refers to the usual, completion-based semantics for logic pro-
grams [37, 31]; for external predicates, we assume a semantics independently of



the actual program, and without specifying further, an priori defined truth value
for |= e is given for any ground external atom e. In practice, external predicates
can be Prolog built-ins or defined by additional Prolog clauses, or constraints
given either by a Prolog library or by additional CHR rules. We need to require
that any call to an external predicate always succeeds at most once; for simplic-
ity, we leave out externals defined as constraints from our formal considerations,
but indicate in the text how they should be treated. The difference is basically
that satisfiability of a constraint depends on the current execution state, which
makes statements about correctness more complicated but adds no conceptual
difficulties.

When no ambiguity arises, a clause is usually an ordinary clause, and integrity
constraints will be referred to as such. In the context of a PALP Π, a formula is
called basic, if it can be rewritten into an equivalent form using the equivalences
defined by the clauses of Π, consisting of conjunctions, disjunctions, negations
and a finite number of ground abducible atoms and ⊥. In the following we refer to
different terms or formulas being separated meaning that they have no variables
in common.

The notation [[F1, . . . , Fn]], Fi being formulas, is taken as a shorthand for
∃(F1 ∧ · · · ∧ Fn) ∧ ¬⊥. Notice the following trivial properties,

[[A ∧B]] ≡ [[A]] ∧ [[B]] for separated formulas A and B (1)
[[A ∨B]] ≡ [[A]] ∨ [[B]] for arbitrary formulas A and B. (2)

Example 1. Consider the following PALP.

abducible(some( ),0.1).
some nat:- some(N), nat(N).
nat(0).
nat(s(N)):- nat(N).
loop(N):- some(N), loop(s(N)).

(3)

Here formulas some nat and loop(0) are not basic; nat(s(s(0))) is basic. It
is well-known that natural numbers can be represented by zero and a successor
function, and that addition and multiplication can be implemented by a logic
program. For subsequent examples, we assume the program above extended with
for arithmetic and a predicate sequence/1 with the following properties; the
actual and lengthy definition is left out and n is used as a convenient writing of
sn(0).

sequence(1) ↔ some(1)
sequence(2) ↔ some(2), some(3)
sequence(3) ↔ some(4), some(5), some(6)
...
sequence(n) ↔ some( (n−1)×n

2 + 1), ..., some(n×(n+1)
2 )

...

(4)

�



Definition 2. A query or goal is a conjunction of non-⊥ atoms; a finite set
(or conjunction) of ground abducible atoms is called a state; a finite set of (not
necessarily ground) abducible atoms is called a state term. In the context of a
PALP Π, we say that state or state term S is inconsistent whenever Π∪∀S |= ⊥
and otherwise consistent. For two separated state terms S1, S2, we say that S1

subsumes S2 and that S1 is more general than S2, whenever

|= ∃S1 ← ∃S2. (5)

Whenever S1 subsumes S2 and vice-versa, we say that they are equivalent; if S1

subsumes S2 and they are not equivalent, we say that S1 strictly subsumes S2;
if neither S1 subsumes S2 nor the reverse, we say that they are incompatible.

Given a PALP Π and a query Q, an explanation for Q is a state term E
such that

Π ∪ ∃E |= [[Q]] (6)

An explanation E for Q is minimal if it is not a subsumed by any other ex-
planation for Q. A finite set of minimal and pairwise separated explanations
E = {E1, . . . En} for Q is complete whenever

Π |= [[Q]]↔ ∃E1 ∨ · · · ∨ ∃En. (7)

�

In practice, an answer for a query to an abductive logic program may include,
in addition to the explanation as defined above, also a variable substitution and
a set of normalized constraints of any external constraint solver applied. These
details, which are straightforward to add, are left out for simplicity.

In non-probabilistic abduction, a preference is often given to explanations
with as few literals as possible, but this is not relevant as we introduce a more
precise measurement for explanations, namely their probabilities.

Example 2. Explanation {a(X)} subsumes {a(1)} as well as {a(1), a(2)}.
Explanation {a(X), a(1)} is equivalent to {a(1)}. However, explanations are

built in an incremental way during the execution of a program (as explained later
in this paper), in which variables may be quantified and bound at different levels.
In the example, {a(X), a(1)} as a partial explanation may be affected by X=2 and
lead to final explanation {a(2), a(1)}. In order words, the replacement of one
explanation by a smaller, equivalent one is only relevant for a final explanation
to a query. �

Example 3. Consider again the PALP of example 1 above. The query some nat(N)
has minimal explanations {some(0)}, {some(1)}, . . . ; loop(N) has no explana-
tions; sequence(N) has explanations {some(1)}, {some(2), some(3)}, {some(4),
some(5), some(6)}, . . . . �

Lemma 1. Whenever E is an explanation for Q in a program Π and X a set
of abducible atoms, E ∪X is an explanation for Q iff E ∪X is consistent. Any
explanation E for Q has a subset which is a minimal explanation for Q. �



Proof. Trivial. �

Lemma 2. The complete set of minimal explanations {E1, . . . , En} for Q in a
PALP Π is unique qua equivalence on individual explanations. When, further-
more, E is an arbitrary explanation for Q, it holds for some i, 1 ≤ i ≤ n, that
Ei subsumes E. �

Proof. See appendix A. �

Lemma 3. Let Q be a query to a PALP Π and E1, . . . , En consistent and pair-
wise separated state terms where Ei does not subsume Ej for any i 6= j. When-
ever

Π |= [[Q]]↔ ∃E1 ∨ · · · ∨ ∃En. (8)

it holds that E1, . . . , En comprise a complete set of explanations for Q. �

Proof. See appendix A. �

Example 4. Consider the following PALP, which we call Π0.

abducible(a, 0.5).
abducible(b, 0.5).
abducible(c, 0.5).
p:- a, q.
q:- b.
q:- c.
⊥:- a,b.

(9)

We notice that {a, c} is a minimal explanation for p, and {{a, c}} is complete.
Other the other hand, we have that Π0∪{a, b} |= p, but it is not an explanation
as Π0 ∪ {a, b} |= ⊥ and thus Π0 ∪ {a, b} 6|= [[p]]. �

2.2 Probability Distributions for PALPs

A probabilistic model for a PALPΠ is given by considering any ground abducible
literal1 A as a random variable with two outcomes, true with probability p and
false with probability 1− p, where p is the probability declared in Π for A. Any
two such random variables are considered independent. We consider the outcome
of the probabilistic experiment of giving values to all those variables as the state
of those that come out as true. The joint distribution for a given PALP is defined
formally as follows.

Definition 3. For given PALP Π, the probability distribution PΠ is defined
as follows.
1 Notice that this may indicate an infinity of random variables, when an abducible

declarations contain variables. However, for any query to a well-behaved program,
only a finite number of these are actually accessed, and the infinitely many remaining
ones can be ignored.



– PΠ(true) = 1
– Whenever abducible(A,p)∈ Π, let PΠ(a) = p for any ground instance a

of A.
– Whenever Π |= A↔ B, let PΠ(A) = PΠ(B).
– Whenever PΠ(A) = p, let PΠ(¬A) = 1− p.
– Whenever a and b are two distinct ground abducibles, let PΠ(a∧b) = PΠ(a)×
PΠ(b) and PΠ(a ∨ b) = PΠ(a) + PΠ(b)− PΠ(a ∧B).

– Whenever A has an infinite set of ground explanations E1, E2, . . ., let PΠ(A)
= limn→∞ PΠ(E1 ∨ · · · ∨ En). �

We observe, for the last case of the definition, that we need only consider minimal
explanations, and that this part may overlap, but is not in conflict, with the other
cases. Notice the following properties of the probability distribution. Whenever
the program Π is clear from context, we may write P instead of PΠ .

Proposition 1. Let Π be a PALP and PΠ its probability distribution.

– Whenever A is a nonground abducible atom, PΠ(∀A) = 0 and PΠ(∃A) = 1.
– For any basic formula F over Π, P (F ) = 1 iff Π |= F .
– For any formula F over Π, P (F ) = 0 iff Π 6|= F .
– For any formula F over Π, P (F ) > 0 iff Π ∪ S |= F for some state S. �

The restriction to basic terms is essential in the second case. For example, when
a/1 is an abducible predicate, we have that PΠ(∃x a(x)) = 1 but not necessarily
Π |= ∃x a(x). To see this, assume ∅ is a model Π, but ∅ is not a model of ∃x a(x).
Notice that the exclusion of probabilities 0 and 1 for abducibles is essential for
the proposition.

Example 5. Consider the PALP of example 1. Here we get the following examples
of probabilities for non-basic formulas.

P (∃nsome nat(n)) = 1
P (∃nloop(n)) = 0
P (∃nsequence(n)) = p

where 0.1 < p < 0.1 + (0.1)2 + (0.1)3 + · · · = 0.1111 · · ·

The last example indicates that the limit construction may give a sum different
from one or zero. This conclusion is based on formula (17) below. �

As is customary in formulas of probability theory, comma is used interchangeably
with ∧. Whenever F is a formula with free variables, we let P (F ) be a shorthand
for P (∃F ).

It is crucial for defining a probability distribution with reasonable properties,
that ⊥ is defined as a special predicate rather that falsity; using falsity would
mean that a set of integrity constraints implied a complicated set of dependencies
among the random variables (i.e., they were no longer independent).



Example 6. . Consider again the program of example 4. We notice that P (⊥) =
P (a, b) = P (a)×P (b) = 0.25 and thus P (¬⊥) = 0.75. This means the only 75%
of all states are relevant for the search for explanations for, say, p.

The probability P (p) is an uninteresting number as it counts also contribu-
tions from inconsistent states. The probability P ([[p]]) = 0.125 measures p among
all states, and gives here a lower figure than P ([[p]]|¬⊥) = 0.167 which measures
among consistent states only. �

In the example, we indicated that P ([[Q]]|¬⊥) for some query Q may be more
appropriate than P ([[Q]]) to characterize Q, but we should be aware that P ([[Q]])
is sufficient for comparing the relative order of probabilities, as the two measures
are proportional:

P ([[Q]]|¬⊥) =
P ([[Q]],¬⊥)
P (¬⊥)

=
P ([[Q]])
P (¬⊥)

. (10)

Notice that the introduction of integrity constraints in probability distribution
has an interesting effect on observed probabilities of abducibles.

Example 7. We consider the program of examples 4 and 6. While P (a) = 0.5
according to its declaration, we have the following since state {a, b} is inconsis-
tent.

P ([[a]]|¬⊥) =
P ([[a]])
P (¬⊥)

=
P (a ∧ ¬b)

P (a ∧ ¬b) + P (¬a ∧ b) + P (¬a ∧ ¬b)
(11)

=
0.25

0.25 + 0.25 + 0.25
= 1/3. (12)

In other words, the restriction to consistent states modifies the probability ab-
ducibles. An integrity constraint such as ⊥:- a,b does not conflict with the
basic assumption of a and b being independent. However, [[a]] and [[b]] becomes
dependent. �

The following observations may help to simplify the notation.

P ([[F ]]) = 0 whenever Π ∪ F |= ⊥ (13)
P (F ) = P ([[F ]]) whenever Π ∪ F 6|= ⊥ (14)

Especially when F is a set of abducibles {a1, ..., an}, we can write [[a1, ..., an]] in
a probabilistic formula to give it same weight as F when consistent (as are, e.g.,
explanations) and 0 otherwise. We notice the following trivial properties.

P ([[A ∧B]]) = P ([[A]] ∧ [[B]]) for separated formulas A and B (15)
P ([[A ∨B]]) = P ([[A]] ∨ [[B]]) for arbitrary formulas A and B. (16)



Notice especially, when E1, . . . , En are separated state terms that we have the
following.

P (E1 ∨ . . . ∨ En) = P (E1) + · · ·+ P (En)
−

∑
1≤i1<i2≤n P (Ei1 , Ei2)

+
∑

1≤i1<j2<j3≤n P (Ei1 , Ei2 , Ei3)
...
+(−1)k+1

∑
1≤i1<···<ik≤n P (Ei1 , . . . , Eik)

...
+(−1)n+1P (E1, . . . En)

(17)

P ([[E1 ∨ . . . ∨ En]]) = P ([[E1]]) + · · ·+ P ([[En]])
−

∑
1≤i1<i2≤n P ([[Ei1 , Ei2 ]])

+
∑

1≤i1<j2<j3≤n P ([[Ei1 , Ei2 , Ei3 ]])
...
+(−1)k+1

∑
1≤i1<···<ik≤n P ([[Ei1 , . . . , Eik ]])

...
+(−1)n+1P ([[E1, . . . En]])

(18)

When using (18), we need for each summand P ([[Ei1 , . . . , Eik ]]), to check if the
state comprised by Ei1 , . . . , Eik together with the integrity constraints can prove
⊥ in which case the result is 0; otherwise, duplicates are removed and probabil-
ities for the abducibles are multiplied.

The following propositions and observation indicate relationships between
probabilities and subsumption.

Proposition 2. Let S1 and S2 be state terms. Whenever S1 subsumes S2 it
holds that P (S1) ≥ P (S2).

When, furthermore, S1 and S2 are ground and subsumption is strict, it holds
that P (S1) > P (S2). �

Proposition 3. Let S1 and S2 be ground state terms with P (S1) ≥ P (S2); then
either S1 subsumes S2 or they are incompatible.

When P (S1) > P (S2), either S1 strictly subsumes S2 or they are incompati-
ble. �

The first part of proposition 3 does not hold for nonground state terms. For
example, if a(−) and b are abducible, we have with S1 = {a( ), b} and S2 = {b}
that P (S1) = P (S2) = P (b), but S1 does not subsume S2.



3 Specifications of Auxiliary Predicates

The different query interpreters use a common collection of auxiliary predicates
specified as follows; alternative implementations are shown appendix B.

We do not need to specify a representation for explanations here but we
assume there is a notion of a reduced form of representations; we anticipate
representations as lists of abducible literals, and the reduced form meaning no
such literals entailed by others. From a logical point of view, the reduced form is
not interesting, but is useful for efficiency and when presenting final explanations
to the user. We assume a context which includes a PALP so that we can refer
to the notion of consistency and a probability distribution P .

subsumes(E1,E2) ≡ E1 subsumes E2, i.e., |= ∃E2 → ∃E1, when E1, E2 are
consistent and separate state terms.

entailed(A,E) ≡ |= ∀(E → A) when A is an abducible atom and E a consis-
tent state term.

extend(A,E,P (E),E′,P (E′)) ≡ |= ∀(E′ ↔ A ∧ E) when A is an abducible
atom and E, E′ consistent state terms so that entailed(A,E) does not
hold.

normalize final(E1,E2) ≡ E2 is a normalized explanation such that E1 and
E2 are equivalent.

Notice the different usages of quantifiers. For entailed/2 and extend/5, the
presence of common variables in the arguments is significant, and variables may
be bound later in the computation, whereas subsumes/2 concerns different final
explanations arising in different branches of computation; compare with exam-
ple 2.

The normalize final/2 predicate is logically redundant but is used to pro-
vide an intuitively more pleasing appearance of final explanations. We can il-
lustrate the purpose, referring to example 2, above. Here it was argued that
{a(X), a(1)} is equivalent to {a(1)} and also that it is incorrect to replace
{a(X), a(1)} by the smaller one during the execution as X might be bound to
some value. However, in the case {a(X), a(1)} is recognized as an explanation
for the initial query, the situation is different; there is no partial query left to
manipulate X, so we can now replace it by the smaller and logically equivalent
{a(1)}. We leave the predicate out in the detailed descriptions of the interpreters
below as this is anyhow trivial to add and has no influence on the correctness
statements.

The following predicate is used whenever an explanation may be affected by
unifications, which may be a consequence of applying a rule of the given PALP
or executing a call to an external predicate.

recalculate(E,E1,P (E1)) ≡ ∀(E ↔ E1), E1 is in reduced form, when E and
E1 are consistent state terms.

We have introduced this predicate since it can be implemented quite efficiently
by multiplying probabilities for the abducibles in E1. It very seldom pays off



to analyze the detailed effect of a unification in order to reuse the previous
probability.

Finally, we need the following renaming predicates in order to create alter-
native variants of a query when the execution splits in different branches for
alternative clauses of the given PALP.

rename(T1,T2) ≡ T2 is a variant of T1 with new variables that are not used
anywhere else.

Be aware that these predicates, as specified only works when external predicates
exclude constraints of delayed calls. To include constraints, subsumption needs
to be defined as Σ ∪∆ |= ∃E2 → ∃E1 where is Σ refers to the current execution
state and ∆ gives the semantics of the underlying constraint solver. The other
predicates above that refer to |= should be extended in similar ways, and rename
must also add constraints to the state whenever variables in the input argument
are covered by constraints. More details and examples are discussed in section 5.3
below.

As shown in the appendix, the implementation of subsumption and entail-
ment can be greatly simplified if it can be guaranteed that the explanations
always are ground. In that case, explanations can be represented as lists sorted
by Prolog’s term ordering (denoted @<) and subsumption test becomes an effi-
cient sublist test for sorted lists (see appendix B). It is possible to define syntactic
restrictions to ensure that abducibles always are ground so that the efficient im-
plementation can be used, but our ground version uses runtime checks instead.

Lists of nonground abducibles have, furthermore, also the complication that
a unification induced by a rule application or external predicate can destroy the
sortedness of a list as well as making elements equal (more generally, making
some elements subsumed by others).

4 Query Interpreters for Propositional Programs

We consider firstly a propositional version of probabilistic abductive logic pro-
grams (PPALPs), i.e., all predicates have arity 0. For simplicity we assume also
that PPALPs contain no recursion, and that any non-abducible predicate ap-
pears as the head of at least one clause; furthermore, we exclude integrity con-
straints and external predicates, which means that there are no loops and failures
to worry about.

Example 8. The following is a PPALP which introduces abducibles a, b, c, d,
each with probability 0.5, and three clauses.

abducible(a, 0.5).
abducible(b, 0.5).
abducible(c, 0.5).
abducible(d, 0.5).
g:- a,b.
g:- c.
g:- c,d.

(19)



A set of minimal explanations for g with probabilities is given by P (a, b) = 0.25,
P (c) = 0.5. Using (17), we get P (g) = 0.52 + 0.5− 0.53 = 0.625. �

4.1 Transforming PPALPs into All-Explanations Query Interpreters
in CHR

Here we explain how any given PPALP Π can be transformed into a CHR pro-
gram ΓΠ , which serves as a query interpreter. Such an interpreter takes a query
Q to Π as input and returns a final constraint store, which contains a complete
set of minimal explanation for Q in Π with their probabilities. The best-first in-
terpreters and interpreters for more general classes of programs described later
are all adaptation of what we show for PPALPs here.

We demonstrate the principles for compiling PPALPs into CHR for the pro-
gram of example 8.

To find explanations for a goal such as g, we call the top-level predicate
explain([g]) which is defined as follows.

explain(G):- explain(G,[],1). (20)

The predicate explain(Q,E,p) is a CHR constraint governed by the rules given
below; its meaning is that the query Q is what remains to be proven in order
to find an explanation for the initial query; E is the partial explanation used so
far in order to get from the initial query to Q, and p is the probability of E; Q
is represented as a list of atomic goals. We do not need to consider the actual
representation of explanations as the auxiliary predicates specified in section 3
provide an abstract datatype for them; the only assumption is that the empty
explanation is represented as [].

The following CHR rule interprets a query whose first subgoal is an abducible,
adds it to the accumulating explanation if necessary (and adjusts the probability
accordingly) and emits a recursive call for the remaining part of the query.

explain( [A|G], E, P) <=> abducible(A,PA) |
(entailed(A,E) -> explain(G, E, P)
;
extend(A,E,P,E1,P1), explain(G, E1, P1) ).

(21)

Each collection of clauses defining a given predicate in the PPALP is transformed
into one CHR rule which produces new calls to explain/3 for each clause. For
our example program there is one such CHR rule.

explain( [g|G], E, P) <=>
explain([a,b|G],E,P),
explain([c|G],E,P),
explain([c,d|G],E,P).

(22)

These clauses are sufficient to produce a complete set of explanations, repre-
sented as a final constraint store consisting of constraints explain([],E,P (E))
where E is an explanation for the initial query.



In order to remove non-minimal explanations, the following CHR rule is
added as a first one to the interpreter program.2

explain([],E1, ) \ explain( ,E2, ) <=>
subsumes(E1,E2) | true.

(23)

Notice that it may discard a branch early as soon as it can be seen that the
possible explanations generated along that branch are deemed non-minimal.

To interpret the query g in the original PPALP, we can now pose the query
explain([g]) to the CHR program described above, which, in accordance with
our expectations, yields the following final constraint store.

explain([],[c],0.5),
explain([],[a,b],0.25)

(24)

Notice that the constraint explain([d],[c],0.5) has appeared in the con-
straint store during the execution, but discarded by rule (23) and thus never
executed until the end.

Lemma 4. Let Π be a PPALP, Q a query, and Γ the transformation of Π into
a CHR program as described above in this section. Any constraint store which
arises in the execution of explain(Q,[],1) in Γ is of the form

explain(Q1,E1,p1), . . . , explain(Qn,En,pn) (25)

where

Π |= Q↔ ((Q1 ∧ E1) ∨ · · · ∨ (Qn ∧ En)) (26)

and for all i, 1 ≤ i ≤ n, Π |= (Qi ∧ Ei)→ Q and P (Ei) = pi. �

Proof. See appendix A. �

Theorem 1. Assume the setting of lemma 4. Whenever explain(Q) is posed
as a query to Γ , the final constraint store is of the form

explain([],E1,p1), . . . , explain([],En,pn) (27)

where E1, . . . , En comprise a complete set of minimal explanations for Q in Π,
and all i, 1 ≤ i ≤ n, P (Ei) = pi. �

Proof. See appendix A. �

2 Logically, rule (23) can be placed anywhere in the CHR program, but having it as
the first rule makes it more effective in discarding irrelevant branches as early as
possible.



4.2 Conditional Probabilities

For a typical abductive problem, the probability of a given explanation may be
very small and not very informative to the user. It may be more interesting
to have the interpreter produce instead the conditional probability of each ex-
planation E given the observation Q (i.e., the initial query), which is given as
follows.

P (E|[[Q]]) =
P (E, [[Q]])
P ([[Q]])

=
P (E)
P ([[Q]])

(28)

Probabilities P (E) are those calculated by the CHR program shown above, and
P ([[Q]]) can be calculated from the final constraint store based on formula (17)
(or (18) when we generalize to PALPs). In the example, we get P (g) = 0.625 and
thus, with the hinted extensions to the program, the following final constraint
store.

explain conditional([],[c],0.8),
explain conditional([],[a,b],0.4)

(29)

Notice that the sum of these probabilities is > 1, which comes from the fact
that both minimal explanations subsumes the non-minimal [a,b,c], which has
conditional probability 0.53/0.625 = 0.2.

Whenever an abdicible a appears in more that one explanation, it may be
interesting to calculate the probability of a given the observation.

P ([[a]]|[[Q]]) =
P ([[a]], [[Q]])
P ([[Q]])

=
P ([[a,Q]])
P ([[Q]])

(30)

This can be found by first calculating P ([[Q]]) as above and then P ([[a,Q]]).
However, with a bit of programming, it is be possible to obtain the value of
P ([[a,Q]]) from the final constraint store used for finding P ([[Q]]), by summing
up probabilities for the explanations that include a (or, in the general case, entail
a).

4.3 Best-first Query Interpreters for PPALPs

For complex abductive problems it can be too cumbersome to calculate all pos-
sible minimal explanations, and instead we may want to calculate a minimal
explanation with highest probability.

We can change the query interpreters shown so far, so they consider the con-
straint store as a priority queue of calls to explain/3, ordered by their current
probabilities. During the process, we select the one with highest probability, al-
lows it to make one step, and put back the derived calls; this continues until an
explanation is found.

To implement this, we may replace explain/3 by two other constraints
queue explain/3 and step explain/3. Whenever queue explain/3 is called,
it means to enter a call into the queue; selecting a queue explain(q,e,P (e)) for
execution is done by promoting it to another constraint step explain(q,e,P (e)),



which then makes one step for the first subgoal of q similarly to what we have
seen above.

There will be at most one step explain/3 constraint in the store at a time,
and it is selected either by an explicit call (when it is known by context that a
particular constraint can be selected) or by an explicit search process. Searching
the currently most probable partial explanation is done by posting a constraint
select best/0 implemented by the following rules; max prob/1 is an auxiliary
constraint used in the guard to check that the queue explain/3 constraint in
focus actually is the best one.

queue explain(G,E,P)#W, select best <=> max prob(P) |
step explain(G,E,P)
pragma passive(W).

max prob(P0), queue explain( , ,P1)#W <=> P0 < P1 | fail
pragma passive(W).

max prob( ) <=> true.

(31)

This is clearly not the most efficient way to implement a priority queue, but
has been chosen here for the brevity of the code. See [42, 30] for more detailed
studies of priority queues in CHR. Notice, that while constraints in the guard of
a CHR rule may lead to dubious semantics, the call to max prob in (31) makes
sense as it does not change the constraint store or bind variables; it is handled
sensibly by most CHR implementations.

We can extend this interpreter so it can generate more explanations in or-
der of decreasing probabilities when requested by the user. This requires that
we store solutions already printed out so that (partial) explanations subsumed
by any of those can be discarded; to this end, we introduce an additional con-
straint printed explain/3 in order to avoid interference with the search for the
currently best among non-printed, partial explanation.

We show the entire query interpreter which is a straightforward adaptation
of the one shown in section 4.1; it encodes the same sample PPALP program as
above (example 8).

explain(G):- step explain([G],[],1).

printed explain([],E1, ) \ queue explain( ,E2, ) <=>
subsumes(E1,E2) | true.

queue explain(G,E,P)#W, select best <=> max prob(P) |
step explain(G,E,P)
pragma passive(W).

step explain([],E,P) <=>
printed explain([],E,P),
write(’Most probably solution: ’), write(E),
write(’, P=’), write(P),nl,
( user wants more -> select best ; true ).

(32)



step explain( [g|G], E, P) <=>
queue explain([a,b|G],E,P),
queue explain([c,d|G],E,P),
step explain([c|G],E,P). % select an arbitrary one

step explain( [A|G], E, P) <=> abducible(A,PA) |
(entailed(A,E) -> explain(G, E, P)
;
extend(A,E,P,E1,P1), explain(G, E1, P1) ).

user wants more:-
Ask user; if answer is y, succeed, otherwise fail.

(33)

The following shows part of the dialogue for the execution of the query q to the
sample program.

| ?- explain(g).
Most probably solution: [c], P=0.5
Another and less probable explanation? y
Most probably solution: [a,b], P=0.25

(34)

Correctness of the best-first query interpreter can be stated and proved similarly
to theorem 1 above. In fact a CHR derivation made by the best-first query inter-
preter corresponds to one possible derivation performed by the all-explanations
query interpreter (given a nondeterministic operational semantics for CHR).

For any solution found by the query interpreter, it is possible to provide an
estimate3 of the probability of the observation (in the example: g) and thus of the
conditional probabilities considered in section 4.2 above. Assume that the query
interpreter at a given stage of executing a query Q prints a minimal explanation
Ek and that it has already printed E1, . . . , Ek−1, and let Ek+1, . . . , En be the
remaining partial explanations in the store. Then we have

P (E1, . . . , Ek) ≤ P (Q) ≤ P (E1, . . . , En) (35)

The probabilities defining the upper and lower limits can be calculated from the
current constraint store based on formula (17).

5 Programs with Variables, Unification, Integrity
Constraints and External Predicates

We now generalize the construction above to handle general PALPs, including
parameterized abducibles, integrity constraints, and possibly external predicates.

3 This is inspired by [34]; our formula is a bit different from that of [34] since the basic
assumptions are different.



The query interpreters for PPALPs of section 4.1 are straightforward to ex-
tend to handle variables. Whenever a non-abducible subgoal g with continuation
c is rewritten into alternatives corresponding to clauses of the PALP, we produce
a variant with new variables g′, c′ for each alternative; if g′ unifies with the head
of a clause, this alternative is continued, otherwise this branch is discarded (and
thus avoiding failure in the overall process).

As already mentioned, the auxiliary predicates specified in section 3 are pro-
vided in two versions, an efficient one which aborts in case of nonground ab-
ducibles, and a more general and less efficient one which handles nonground
abducibles in a correct way; both are given in appendix B.

5.1 Variables in Queries and Abducibles

Bindings made to variables an a query during its execution should be reported
to the user. We may extend the interpreters with an extra argument for this,
but we can also access the values by introducing a special abducible predicate
for the purpose.

abducible(value of( , ),1). (36)

Stating now a query to a correct query interpreter (such as those introduced
below) in the following way,

query([value of(’X’,X), q(X)]), (37)

any explanation will be of the form {value of(’X’,v)} ∪ Ev, where v is the
value (if any; otherwise it is returned as a variable) bound to variable X in the
construction of explanation Ev.

Notice that we defined abducibles earlier to have probabilities strictly less
that 1 in order to have proposition 1. However, as value of atoms are expected
to be posted in the top-level query only and will remain fixed (but possibly
affected by unifications) throughout the execution and with probability 1, it
does not itself affect the probabilities of the explanations. The intuition that
variable bindings add additional commitments is reflected in the subsumbtion
hierarchy.

Example 9. Let E1 = {value of(’X’,X), a(X)} and E2 = {value of(’X’,1),
a(1)} where a is an abducible predicate declared with probability 0.5. Then E1

subsumes E2 and P (E1) = 1 > 0.5 = P (E2). �

5.2 Unification and Failure

We illustrate the general principle by an example. Assume the predicate p/1 is
defined by the following clauses.

p(X):- q(X,Y), r(Y).
p(X):- a(X).
p(1).

(38)



These clauses are compiled into the CHR rule (39) below; notice for a variable
in the head of a clause, that we can propagate this variable into the body rather
than performing an explicit unification; when all arguments in the head are vari-
ables, the unification is deemed to succeed, so a test for failure can be omitted.
The last line shows handling of failure which in this case may arise when the
variable Xr3 has a ground value different from 1. Notice for the last alternative,
that renaming is suppressed since no further usages are made of the variables in
the original query. The pattern (test -> continue ; true) means that a possible
failure of test is absorbed, and the branch continue vanishes rather that pro-
voking a failure in the execution of the CHR rules (that would make the entire
process fail); this technique is also used in [25, 12]. Recalculation of the proba-
bility in the last alternative is needed as the unification might have unified some
variable in the explanation with a value, thus possibly lowering the probability.

explain( [p(X)|G], E, P) <=>
rename([p(X)|G]+E,[p(Xr1)|Gr1]+E1),
explain([q(Xr1,Y),r(Y)|Gr1], E1, P),
rename([p(X)|G]+E,[p(Xr2)|Gr2]+E2),
explain([a(Xr2)|Gr2], E2, P),
(X=1 ->
recalculate(E,Er,Pr), explain(G, Er, Pr)

; true).

(39)

With the version of the auxiliaries that assumes always ground explanations (and
aborts otherwise), the explanations need not be passed through the renaming
and the call to recalculate/3 can be left out.

The rule for accessing abducibles (21) is unchanged.

An aside Remark on Splitting by Unification of Abducible: Aiming at
explanations that are minimal in the number of abducible atoms, the majority
of non-probabilistic abduction methods [28, 20] tries to unify a new abducible
with existing ones if possible. However, in order not to sacrifice completeness,
two brances of computation are initiated in each such case. For example if a(s)
is added to a partial explanation {a(t), · · ·}, one branch may continue after
unifying s and t, with {a(t), · · ·}, and another one with {a(s), a(t), · · ·} with
the additional constraint that s and t must remain different. Our notion of
minimality is based on subsumption and we avoid this splitting into two brances,
and even we produce minimal explanations.

We have, in fact, two objections to the splitting approach; first of all concep-
tually since the unification of the two abducibles above indicates a commitment
which is not grounded for in the knowledge base (see a detailed argument in [13]),
and secondly, it may result in an exponential explosion in the number of brances
that needs to be investigated.



5.3 External predicates

External predicates are exported to the underlying Prolog+CHR system by the
following rule; when placed following rules (39,21), there is no need to include a
test that the predicate of the first subgoal (X below) actually is external. Possible
failure of the external predicates is handled as described above, section 5.2.

explain([X|G], E, P) <=> true |
(call(X) ->
recalculate(E,Er,Pr), explain(G,Er,Pr)

; true).

(40)

All other parts of the query interpreters are unchanged, i.e., rules (20,21,23).
In case of external predicates that use constraints or delays, we need to have

the renaming of the current query produce new versions of constraints and other
delayed calls pending on the variables in the query. Implementing a generalized
renaming predicate that takes care of delayed call is quite straightforward pro-
vided that facilities are available for getting access to the delayed calls pending
on specific variables.

Example 10. SICStus Prolog [43] includes a delaying predicate for non-equality,
dif/2. Consider the case when there is a delayed call dif(X,7) for the vari-
able X occurring in a query [p(X),. . .]. When this query is renamed into, say
[p(X1),. . .], we need also produce the new variant dif(X1,7) of the delayed
call in order to provide a correct semantics.

The SICStus built-in predicate frozen(X,C) will assign to C a representation
of all calls delayed on variable X, including C=prolog:dif(X,7) in the example
above. The delayed calls can now have their variables renamed simultaneously
with the query, and the resulting variant calls, say dif(X1,7), can be entered
into the program state simply by calling them. In this way the semantics is
preserved in the copied query. �

Example 11. The clpr and clpq libraries of SICStus Prolog [43, 9] provide con-
straint solvers over real, resp., rational numbers, which can be used as external
predicates in PALP. It provides a predicate projecting assert by means of
which a clause capturing the constraints on indicated variables can be created
dynamically. Such a clause can be used in a straightforward way to produce the
desired variants of constraints. We illustrate its use by an example; the curly
brackets indicate the syntax for calling the constraint solver. Executing

{X=Y+Z}, projecting assert(aux(p(X,Y,Z))). (41)

creates a clause equivalent with the following,

aux(p(X,Y,Z)):- {X=Y+Z}. (42)

Calling this predicate with new arguments can set up the relevant constraints.
The renaming predicate in appendix B is defined in the following standard way,

rename(X,Y):- assert(aux(X)),retract(aux(Y)). (43)



and we can modify it for clpr and clpq as follows.

rename(X,Y):-
assert(aux(X)),retract(aux(Y)),
projecting assert(aux(X)),
aux(Y), retract((aux( ):- )).

(44)

No more adjustments are needed to incorporate these constraint solvers. �

We have not developed extended definitions (nor implementations) of subsump-
tion and entailment that takes external constraints into account. For exam-
ple, explanations including constraints {a(X), {X>7}} and {a(X)} are consid-
ered equally good; intuitively, the last one should be preferred by a best first
interpreter.

5.4 Correctness of the All-Explanations Query Interpreter for a
PALP

To sum up, the PALPs interpreters are similar to those given for PPALPs in
section 4 except that rules of form (39) replaces those of form (22), and that (40)
is added.

Lemma 5. Let Π be a PALP, Q a query, and Γ the transformation of Π into a
CHR program, including auxiliary definitions, as described above in sections 5.2–
5.3. Any constraint store which arises in the execution of explain(Q,[],1) in
Γ is of the form

explain(Q1,E1,p1), . . . , explain(Qn,En,pn) (45)

where Q1 + E1, . . . , Qn + En are pairwise separate, and

Π |= [[Q]]↔ [[Q1, E1]] ∨ · · · ∨ [[Qn, En]] (46)

and for all i, 1 ≤ i ≤ n, Π |= [[Qi, Ei]]→ [[Q]] and P (Ei) = pi. �

Proof. See appendix A. �

Theorem 2. Assume the setting of lemma 5. Whenever explain(Q) is posed
as a query to Γ , and the derivation terminates without error messages, the final
constraint store is of the form

explain([],E1,p1), . . . , explain([],En,pn) (47)

where E1, . . . , En comprise a complete set of explanations for Q in Π, and for
all i, 1 ≤ i ≤ n, P (Ei) = pi. �

Proof. See appendix A. �

Whether the interpreter terminates depends on the program, and since PALP
is a Turing complete language, termination is undecidable, and we can refer to
general termination proof methods that are based on sufficient conditions.



5.5 Other Variants of the PALP Query Interpreter

The principles for calculation of conditional probabilities and for best-first search
described for the propositional case in sections 4.2 and 4.3 can be incorporated
into the general PALP query interpreter described here with no problems, so we
omit the details.

Any query which terminates correctly for a given PALP in the all-explanations
version will also terminate correctly with the best-first version. Some programs
may terminate with best-first, giving a best solution, but loop with all-solutions.
This may happen when the program has a loop in a branch with lower proba-
bility, or if it has an infinite number of explanations.

There is a small blemish in the best-first interpreter as it may emit non-
minimal explanations containing non-ground abducibles. This comes from the
fact that the search is controlled by probabilities, which means that

queue explain([],[a( ),b], 0.5) (48)

may be selected before

queue explain([Rest],[b],0.5); (49)

and it may be the case the Rest succeeds later without referring to other ab-
ducibles (see also proposition 3 with remarks, above).

The remedy is to hold back final explanations with non-ground abducibles, as
in (48), until there are no subsuming explanations with the same probability as
in (49). In the example, this means that (48) must wait until (49) has transformed
into c = queue explain([],[b],0.5). Then c would be selected and printed out
before (48), and (48) then immediately eliminated by the subsumption removal
rule (2nd rule of (32) above).

Another efficient, but admittedly ad-hoc approach, is to fake a probability of
0.999 to non-ground abducibles instead of the correct value 1. This may work
correctly in all but extreme cases.

6 Optimizations and Extensions

The architecture of the query interpreters described above provide a flexibility
to plug in different optimizations and extensions, of which we consider some
examples here.

6.1 Optimization à la Dijkstra’s Shortest Path Algorithm

We suggest here an optimization of the best-first query interpreters inspired by
Dijkstra’s shortest path algorithm [21]. Whenever we have two or more processes
with the same remaining subgoal (e.g., for finding a path from the same inter-
mediate node to the terminal node in the shortest path example), we keep only
the best one; in CHR:

queue explain([G],E1,P1) \ queue explain([G],E2,P2) <=>
prority less than(P2,P1) | true.

(50)



This will suppress the partial execution of some branches which are deemed not
to become best in the end.

Notice that we indicated the rest query by a pattern that matches only queries
with a single atom, which means that the rule is quickly bypassed for any query
with two or more atoms. We could in principle have used a variable that matches
any query, but this would lead to slower tests for matching of the two queries
(and which likely fails in most cases).

If, furthermore, an analysis of the PALP under consideration tells which
predicate(s) that may appear in singleton queries, we can make the pattern even
more specific. An example of this optimization is given in section 7.2 below.

6.2 Optimizing Integrity Checks by Simpification

We mention also the possibility of applying simplified integrity constraints in spe-
cialized rules for each abducibles predicate. Simplification was suggested by [33]
for database integrity checking; an unfolding of the theoretical foundations and
a powerful method is given by [18]. The overall idea is to assume the database
(here the current explanation) be consistent before an update, and based on
that knowledge, to construct for each possible update a specialized check that
considers only the part of the database which may interfere with the update.
A typical speed up by this technique is an order of magnitude or more, when
compared with a full check.

Integrity checking in our interpreters shown so far are hidden in the extend
and recalculate auxiliary predicates, which do not take the actual update into
account. Consider, as an example, the integrity constraint

⊥:- a(X), b(X). (51)

Without any special indexing techniques, this needs quadratic time measured in
the size of the explanation E being checked, e.g., by a combination of two calls
to member, member(a(X),E), member(b(X),E). If we know that explanation E
is consistent, we can obtain by simplification for update a(Y) the linear check
member(b(Y),E).

We may now replace the generic rule for handling abducibles by specialized
ones for each abducible predicate, e.g., as follows.

explain([a(X)|G],E,P) <=>
(member(b(X),E) -> true % vanish
;
insert(a(X),E,E1), P1 is P*0.9,
explain(Q,E1,P1)).

(52)

This principle can be further extended with specialized treatment for PALP
clauses with more that one abducible in the body.



6.3 A Note on Negation

A limited form of explicit negation of abducibles can be implemented through
integrity constraints. When a/1 is an abducible predicate, we may let not a/1
stand for the negation of a/1 and define the intended semantics by the integrity
constraint ⊥:- a(X), not a(X).

While this may be practical for many applications, we lack support for the
other axiom for negation, namely a(X) ∨ not a(X). We cannot handle this cur-
rently, as integrity checking becomes considerably more complicated. The extra
axiom will imply that arbitrary logic programs can be encoded in the integrity
constraints; the check, then, amounts to testing satisfiability of such programs,
for which we have no straightforward embedding in CHR. See section 8.2 below
which gives a suggestion for a more satisfactory treatment of negation.

We notice that the approach of [35], described in more detail in section 8.1
below, to probabilistic abduction includes negation with support of both axioms,
but excludes integrity constraints and require any negated call to an abducible
or defined predicate to be ground.

7 Program Examples

7.1 A Standard Diagnosis Case

We consider a power supply network which has one power plant pp, a number
of directed wires wi and connecting nodes ni, which may lead electricity to a
collection of villages vi. The overall structure is as follows.

pp n1 n2 n3

n4

v4 v5

v1 v2

v3
w1 w2 w3 w4

w5 w6 w7

w8 w9

Probabilistic abduction will be used to predict to most likely damages in the
network given observations about which villages have electricity and which have
not. As abducibles, we use up/1 and down/1 which apply to the power plant
and the wires (for simplicity, the connecting nodes are assumed always to work).



The network structure is represented by the following facts.

edge(w1, pp, n1). edge(w4, n3, v3). edge(w7, n3, v2).
edge(w2, n1, n2). edge(w5, n1, n4). edge(w8, n4, v4).
edge(w3, n2, n3). edge(w6, n2, v1). edge(w9, n4, v5).

(53)

The fact that a given point in the network has electricity, is described as follows.

haspower(pp):- up(pp).
haspower(N2):- edge(W,N1,N2), up(W), haspower(N1).

(54)

As no negation is supported, the program includes also clauses that simulate the
negation of haspower.

hasnopower(pp):- down(pp).
hasnopower(N2):- edge(W, ,N2), down(W).
hasnopower(N2):- edge( ,N1,N2), hasnopower(N1).

(55)

To express that up/1 and down/1 are each other’s negation, we introduce an
integrity constraint, and define probabilities that sum to one.

abducible(up( ), 0.9).
abducible(down( ), 0.1).
⊥:- up(X), down(X).

(56)

The predicate definitions are compiled in CHR as explained above; we show here
the one for the haspower predicate.

step explain( [haspower(N)|G], E, P) <=>
rename([haspower(N)|G], [haspower(Nr1)|Gr1]),
(Nr1=pp -> queue explain([up(pp)|Gr1], E, P) ; true),
queue explain([edge(W2,N12,N),up(W2),haspower(N12)|G],E,P),
select best.

(57)

The implementation of the extend auxiliary (which is used when a new abducible
is encountered) includes the checking of the integrity constraint. The following
excerpt of a screen dialogue shows how the observation that no village have



electricity is explained by the interpreter.

| ?- explain([hasnopower(v1), hasnopower(v2),
hasnopower(v3), hasnopower(v4), hasnopower(v5)]).

Best solution: [down(w1)]
Prob=0.1
Another solution? y
Best solution: [down(pp)]
Prob=0.1
Another solution? y
Best solution: [down(w2),down(w5)]
Prob=0.01
Another solution? y
Best solution: [down(w3),down(w5),down(w6)]
Prob=0.001
Another solution? y
Best solution: [down(w2),down(w8),down(w9)]
Prob=0.001
Another solution?
...

(58)

It appears that the two intuitively most reasonable hypotheses, namely that
the power plant or the single wire connecting it with the rest of the network
is down, are generated as the first ones with highest probability. Then follow
combinations with lower and lower probability of different wires being down.
The original output indicated insignificant rounding errors in the calculated
probabilities which have been retouched away above.

7.2 Most Probable Path with Dijkstra Optimization

Here we illustrate both the optimization described in section 6.1 above for a
best-first interpreter and an extended syntax for declaration of abducibles. We
consider the problem of finding most probable paths through a network such as
the following.

n0 n1 n4

n2

0.4 0.3

0.6

n3 n5

0.5

0.5 0.5

0.5
0.7

The figures for the outgoing edge of a node indicate the probability for choosing
a particular edge from that node. We could in principle declare one nullary
abducible predicate for each edge, but to facilitate writing the PALP, we use
one common predicate select(n,m) describing the event that the indicated
edge is chosen. We declare it as follows, extending the syntax of definition 1
above.



abducible(select(n0,n1), 0.4).
abducible(select(n0,n2), 0.6).
etc.

(59)

I.e., we have several declarations for the same abducible predicate, specifying
different probabilities for different arguments. The intuitively correct seman-
tics is preserved provided that no two declared abducible atoms can unify. The
implementation needs one single adjustment so that the call to an abducible
predicate, say select(n0,X), launches a new branch for each possible choice
of declaration with which it unifies; this is done analogously to the way that
defined predicates are handled (section 5.2, above). The path program can be
implemented as follows, using the “generic” abducible predicate.

path(N1,N3):- select(N1,N2), path(N2,N3).
path(N,N).

(60)

We may add integrity constraints of the form ⊥:- select(n,x), select(n,y),
for all cases of n→ x and n→ y being different differet edges going out from n,
but due the best-first search, they are in fact not necessary.

This program is translated into a best-first query interpreter in CHR as
decribed above, and we add the following rule in order to prune any initial path
segment, which is less optimal than another such segment ending in the same
node.

queue explain([path(N,M)], ,P1)
\ queue explain([path(N,M)],E,P2)

<=> P2 < P1 | true.
(61)

The query

?- explain(path(n0,n4)). (62)

provides one answer, namely

[select(n0,n2),select(n2,n3),select(n3,n4)], Prob=0.15. (63)

No more answers are produced as rule (61) has removed all segments that could
lead to less optimal paths through the graph. A test print indicates that the
following constraints have been deleted by this rule.

queue explain(path(n1,n4),[select(n0,n2),select(n2,n1)],0.3)
queue explain(path(n3,n4),[select(n0,n1),select(n1,n3)],0.28)
queue explain(path(n4,n4),[select(n0,n1),select(n1,n4)],0.12)

(64)



8 Conclusion

We have defined a class of Probabilistic Abductive Logic Programs and described
implementations in terms of a systematic transformation into CHR rules. This
framework differs from other approaches to probabilistic logic programming (that
we are aware of) by having both interaction with external constraint solvers
and integrity constraints. We support no general negation in abductive logic
programs, as is done in several methods for non-probabilistic abduction, and we
have argued that (at least our approach to) the probabilistic semantics is difficult
to adapt to negation; we have, however, indicated how a simplified version of
explicit negation can be implemented with integrity constraints.

8.1 Related Work

Abduction in logic programming without probabilities has attracted a lot of
attention, and several algorithms, including metainterpreters written in Prolog
have been made; see [28, 20] for overview and references. We may emphasize an
early work by Console et al [19] from 1991, that explained abductive reasoning
in terms of deductive reasoning in the completion of the abductive logic pro-
gram. This principle was extended into an abstract procedure for abduction by
Fung and Kowalski in 1997 [27], which inspired several implemented systems.
Ignoring the probabilistic part of our own interpreters, they show similarity with
the principle of [19] in the sense that we map abductive programs into CHR,
which is a purely deductive paradigm; as shown in lemmas 4, 5, the execution
state represents at any time the semantics given by the initial query and any
transformation made by a CHR rules can be explained from and respects the
program completion.

Abduction without probabilities has been approached using CHR, initially
by [1] translating abductive logic programs into the dialect called CHR∨ [2]
that features disjunctions in rule bodies. In that approach, abducibles are repre-
sented directly as CHR constraints and integrity constraints as CHR rules, and
predicate definitions are translated into CHR∨ with a disjunct for each clause.
In later work [16], this principle has been modified by representing the clauses
of an abductive logic program directly as their Prolog equivalents, leading to
a very efficient implementation of abduction with no interpretational overhead;
[13] provides an overview of this direction and extends with methods for in-
teraction with arbitrary external constraint solvers, similarly to what we have
explained in the present paper in a probabilistic version. These implementations
could in principles be adapted to top-down (but not best-first) abduction, simply
by calculating the probability for each generated answer when printing it out.
However, integrity constraints would here need to be limited to the sort we use
in the present paper, as an instance of the more general pattern such as a,b ==>
c indicates a probabilistic dependency, which our semantics is not prepared for;
an analogous phenomenon was discussed in 6.3 in relation to negation.

In [16], it is also shown how so-called assumptions can be implemented in a
similar way with CHR; assumptions are like abducibles, but with explicit cre-



ation, application (perhaps being consumed) and scope rules; [15, 11, 17, 16] show
linguistic applications of logical grammars (as DCGs or bottom-up parsing with
CHR) extended with abduction using CHR. A notion of Global Abduction [40,
41], allowing a sort of destructive non-monotonic updates and interaction be-
tween different processes (or agents) have been implemented in CHR by [12]
using the constraint store as a process pool, as in the present paper.

In [10], a reversal implementation of the proof predicate demo(p,q), meaning
that query q succeeds in program p, is described and implemented using CHR
for the primitive operations within the metainterpreter that defines the proof
predicate. Reversibility means that it can fill in missing parts of the program ar-
gument in order to make specified queries provable, and thus it can also perform
abduction, although no notion of minimality is supported.

Recent approaches to abductive logic programming, e.g., [29, 23, 4], have
studied the interaction with externally defined constraint solvers, but imple-
mentations tend to be specialized to specific constraint solvers. SCIFF [4] is
an approach to abductive logic programming which includes negation, integrity
constraints, external constraints solvers, and other specialized facilities; the ex-
istence of an implementation made with CHR is indicated in [3], but no details
are given which allow for a comparison.

Probabilistic versions of abductive logic programming have not been studied
nearly to the same extent. We can refer to the work by D. Poole [34] considering
probabilistic abduction for a class of Probabilistic Horn Abduction Theories; this
is later [35] generalized into Independent Choice Logic. Abducible predicates are
grouped by so-called disjoint declarations of the form disjoint([a1:p1, . . .,
an:pn]). The intension is that common instances of ai, aj , i 6= j cannot coexist
in the same explanation, corresponding to integrity constraints ⊥:-ai, aj for all
i 6= j; other integrity constraints are not possible. Probabilities are given by
P (a′i) = pi for a ground instance a′i of ai, and it holds that p1 + · · · + pn =
1. The framework does not assign probabilities to non-ground abducibles. A
metainterpreter written in Prolog is described in [34], which works best-first
using a probability ranked priority queue analogous to what we have described
(however, with a more complicated way of attaching probabilities to items in
the queue). In [35], the appoach is extended for negation as failure of ground
goals G, presupposing that the set of all minimal explanations {Ei}i∈I is finite
and each of those finite and always ground. In such a case, explanations for
the negation of G can be found by regrouping of negated elements of the Ei
explanations; this excludes best-first search as the interpreter needs to keep
track of all explanations.

The PRISM system [38] is a powerful reasoning system, which is based
on logic programming extended with multivalued random variables that work
slightly differently from abducible predicates as descibed in the present paper,
but it is straightforward to rewrite an abductive logic program into a PRISM
program. PRISM has no support for integrity constraints or interface to external
constraint solvers. PRISM includes a variety of top-level predicates which can
generate abductive explanations, including finding the best ones using a general-



ized viterbi algorithm. Another central feature of PRISM is its machine learning
capabilities, which means that in can learn probabilities from training data.

Reasoning in Bayesian networks can also be considered an instance of prob-
abilistic abduction, but we will refrain from giving detailed references, since the
knowledge representations are different. Bayesian networks are easily embedded
in abductive logic programming and can be simulated in our system as well as [34,
38]. One of the advantages of Bayesian networks is that there exist very efficient
implementations which can find approximative solution for huge networks.

Logic programs with associated probability distribution have been used else-
where, including for inductive logic programming, but the issue of abduction
does not seem to have been addressed; e.g., [32, 36].

Probabilistic Constraint Handling Rules are introduced by [26]; probabilities
are assigned to each rule of a program for it to apply and it is defined by a
an operational semantics and implemented by a transformation into CHR; [30]
describes user-defined priorities for CHR.

There is an inherent similarity between answer set programming (ASP) and
abductive reasoning with integrity, which has been noted by many authors; [6]
describes an extension of ASP with probabilities which, thus, is capable of doing
probabilistic abductive reasoning (no implementation is reported, though). How-
ever, this framework excludes programs that exhibit the property illustrated in
example 7, that the probability of abducibles considering consistent states only is
different from the probability defined by the programmer; this means that many
probabilistic abductive programs with integrity constraints are not covered. By
nature, ASP programs can only produce ground abductive explanations.

8.2 Perspectives and Future Work

Obvious applications of our framework seem to be diagnosis and stochastic lan-
guage processing. Relatively efficient methods exist for stochastic context-free
grammars already, but we may approach property grammars [8, 7] which are a
formalism based entirely on constraint satisfaction rather than tree structure; by
nature, these grammars have a very high degree of ambiguity so a probabiistic
approach using best-first search may be relevant.

Probabilistic extensions of Global Abduction (see related work section above)
or similar frameworks may be relevant to apply for applications monitoring and
interacting with the real world. It seems also possible to extend the probabilistic
best-first search strategy to take into account changing probabilities, e.g., pro-
duced by a learning agent or an agent monitoring specific subsystems by means
of, say, a Bayesian network.

The present approach can be immediately generalized for arbitrary mono-
tonic priority functions, e.g., represent some object function to be optimized or
adjusted probabilities; in computational linguistics in may be relevant to use ad-
justed probabilities for partial explanations according to the length of the text
segment they represent. See [14] for an initial publication on this approach; it is
also relevant to compare with [30] that considers CHR with rule priorities.



In order to extend the approach with negation and maintain a relatively
good efficiency, the principle of compiling a logic program into another one that
expresses its negation is under consideration; see [5, 39] for such methods. The
example of section 7.1 showed a trivial and manually produced example of such
a translation.

Finally, we mention that our implementation principle, transforming PALPs
systematically into CHR, can be embedded in a compiler, so that PALPs can
be written in Prolog source files and compiled automatically into CHR. Prolog’s
metaprogramming facilities including the so-called term expansion facilities, see,
e.g., [43], make the implementation of such a compiler a minor task; [11, 16]
explain systems based on CHR implemented in this way.

A Proofs for Important Properties

Proof (lemma 2). Let {E1, . . . , En} be a complete set of minimal explanation
for Q in a PALP Π and E an arbitrary explanation for Q. Since Π ∪ ∃E |= [[Q]]
and Π |= [[Q]] ↔ ∃E1 ∨ · · · ∨ ∃En, both by definition, we have that Π |= ∃E →
∃E1 ∨ · · · ∨ ∃En and thus |= ∃E → ∃E1 ∨ · · · ∨ ∃En. Since E,E1, . . . , E2 are
conjunctions of atoms, this means that |= ∃E → ∃Ei for some Ei, 1 ≤ i ≤ n
which the same as Ei subsumes E.

From this part of the lemma, the uniqueness of complete sets of minimal
explanations follows immediately. �

Proof (lemma 3). It is sufficient to show that every Ei is a minimal explanation.
Clearly Ei is an explanation, and according to lemma 1 there is a minimal
explanation E′i with E′i ⊆ Ei. As in the proof of lemma 2, we find that |= E′i →
E1∨· · ·∨En: By assumption we cannot have |= E′i → Ej for i 6= j, which means
that |= E′i → Ei. In other words Ei ⊆ E′i and thus Ei = E′i. �

Proof (lemma 4). The initial constraint store {explain(Q,[],1)} satisfies the
property. It is straightforward to verify that each of the CHR rules (21,22,23)
preserves the property, so it follows by induction that it holds for any subsequent
constraint store. �

Proof (theorem 1). Termination is guaranteed as a PPALP has no recursion,
and since each step performed by CHR rules (21,22) introduces new explain/3
constraints, each of which represents a step in an SLD derivation in Π∪A where
A is the set of all abducibles.

From lemma 4 and the fact that rule (23) removes any explain( ,Ei, )
constraint for which there is another explain([],Ej, ) with Ej ⊆ Ei, i 6= j, it
can be seen the final constraint store is of the form

explain([],E1,p1), . . . , explain([],En,pn) (65)

where Ej 6⊆ Ei for all i 6= j. The theorem follows now from lemmas 3 and 4. �



Proof (lemma 5). As in the proof of lemma 4, we notice that the initial constraint
store satisfies the property and that each possible derivation step preserves the
property. It should be noticed that rules (39,21,40) in some cases suppress con-
straints explain(Q,E,p) for which Π 6|= [[Q,E]]. �

Proof (theorem 2). The arguments are identical to those in the proof of theorem 1
except that we refer to lemma 5 instead of lemma 4. �

B Implementations of Auxiliary Predicates

We describe here the two alternative implementations for the auxiliary predicates
specified in section 3, an effficient one for ground abducibles, and another one
at more general one that can handle nonground abducibles.

B.1 For Ground Abducibles

Here we represent explanations as lists of ground abducibles sorted by Prolog’s
built on term ordering denoted @<.

subsumes(S1,S2):- fastsubset(S2).

fastsubset([],_).
fastsubset([X|Xs],[Y|Ys]):-
X==Y -> fastsubset(Xs,Ys)
; X @> Y -> fastsubset([X|Xs],Ys).

entailed(A,S):- fastmember(A,S).

fastmember(X,[Y|Ys]):-
X==Y -> true
; X @> Y -> fastmember(X,Ys).

extend(A,S,P,S1,P1):-
extend1(A,S,S1),
\+ inconsistent(S1),
abducible(A,PA), P1 is P*PA.

extend1(X,[],[X]).
extend1(X,[Y|Ys],[X,Y|Ys]):- X@<Y, !.
extend1(X,[Y|Ys],[Y|Ys1]):- extend1(X,Ys,Ys1).

% recalculate/3 not used here

% normalize/2 not relevant here

rename(X,Y):- assert(aux(X)), retract(aux(Y)).



Inconsistency is defined specifically for the PALP at hand. Assume, as an exam-
ple, that it contains the following integrity constraints.

⊥:- a, b.
⊥:- c(X), b(X).

(66)

Then the predicate is defined as follows.

inconsistent(E):- subset([a,b],E).
inconsistent(E):- subset([c(X),b(X)],E).

subset([], ).
subset([X|Xs],S):- member(X,S), subset(Xs,S).

(67)

B.2 For Nonground Abducibles

Sideeffects in terms of unifications can occur which will destroy the term ordering
within a list of nonground abducibles, so we use non-sorted lists instead. We
show here a version which does not take into account possible delayed called or
external constraints pending on the variables of the explanations and abducibles
that are operated on. This is a bit tricky to add but involves no conceptual
difficulties.

subsumes(S1,S2):-
rename(S1,S1copy),
rename(S2,S2sko), numbervars(S2sko,0,_),
subset(S1copy,S2sko).

entailed(A,S):- \+ hard_member(B,S).

extend(A,S,P,[A|S],P1):-
\+ inconsistent([A|S]),
(ground(A) -> P=P1 ; abducible(A,PA), P1 is P*PA).

recalculate(E,E1,P1):-
remove_dups(E,E1),
prob(E1,P1).

remove_dups([],[]).

remove_dups([A|As], L):-
hard_member(A,As) -> remove_dups(As, L)
; remove_dups(As, L1), L=[A|L1].

hard_member(A,[B|Bs]):-
A==B -> true ; hard_member(A,Bs).



prob([],1).
prob([A|As],P):-

\+ ground(A) -> prob(As,P)
; abducible(A,PA), prob(As,PAs), P is PA*PAs.

% rename/2, as above

% inconsistent/2, as above

% subset/2 as above

The predicate normalize final(E1,E2) is in its present version defined in a
way so it tries out all possible subsets, and selects as E2 a smallest one which
is equivalent to E1; in the final version of this paper, we may provide a more
efficient implementation.
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2923 of Lecture Notes in Computer Science, pages 21–33. Springer, 2004.

7. Philippe Blache. Property grammars: A fully constraint-based theory. In Hen-
ning Christiansen, Peter Rossen Skadhauge, and Jørgen Villadsen, editors, CSLP,
volume 3438 of Lecture Notes in Computer Science, pages 1–16. Springer, 2004.

8. Philippe Blache and Jean-Marie Balfourier. Property grammars: a flexible
constraint-based approach to parsing. In IWPT. Tsinghua University Press, 2001.



9. Christian Holzbaur. OFAI clp(q,r) Manual, Edition 1.3.3. Technical Report TR-
95-09, Austrian Research Institute for Artificial Intelligence, Vienna, 1995.

10. Henning Christiansen. Automated reasoning with a constraint-based metainter-
preter. Journal of Logic Programming, 37(1-3):213–254, 1998.

11. Henning Christiansen. CHR Grammars. Int’l Journal on Theory and Practice of
Logic Programming, 5(4-5):467–501, 2005.

12. Henning Christiansen. On the implementation of global abduction. In Katsumi
Inoue, Ken Satoh, and Francesca Toni, editors, CLIMA VII, volume 4371 of Lecture
Notes in Computer Science, pages 226–245. Springer, 2006.

13. Henning Christiansen. Executable specifications for hypotheses-based reasoning
with Prolog and Constraint Handling Rules. Journal of Applied Logic, 2008. to
appear.

14. Henning Christiansen. Prioritized abduction with CHR. In Tom Schrijvers, Frank
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