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Abstract: Thymidylate kinase (TMK) is a potential chemotherapeutic target since it is directly 
involved in the synthesis of deoxythymidine 5’-triphosphate an essential component in DNA 
replication. Inhibiting the function of TMK blocks DNA synthesis in replicating organisms. We 
report 3D-QSAR analysis on a series of thymidine mimetics exhibiting potent inhibitory activity 
against TMK. Molecular docking, Comparative molecular field analysis (CoMFA) and comparative 
similarity indices analysis (CoMSIA) were carried out to determine the requisite 3D structural 
features required for potent thymidylate kinase inhibitory activity. The molecules were divided into 
training set and test set, a PLS analysis was performed and QSAR models were generated. The 
model showed good statistical reliability which is evident from the q2

loo, r
2
ncv and r2

pred. The models 
were graphically interpreted using CoMFA and CoMSIA contour maps. The results obtained from 
this study were used for rational design of potent inhibitors against thymidylate kinase. 

Keywords: Thymidylate kinase, Thymidine triphosphate, Thymidine mimetics, Molecular docking, 
Comparative molecular field analysis, Comparative similarity indices analysis  

Introduction 

New antibacterial therapeutics that utilizes novel mechanism of action is urgently needed to 
combat growing resistance to existing antibacterial agents for both gram-positive and gram-
negative infections. Although the discovery of new antibacterial classes is extraordinarily 
difficult1, need is especially high for gram negative organisms prevalent, in hospitals and in 
particular for infections caused by Pseudomonas aeruginosa.  

 Pseudomonas aeruginosa is a gram negative bacterium and an opportunistic human 
pathogen. It mainly targets the immuno-compromised patients and typically infects the 
pulmonary tract, urinary tract and even  causes  blood infections. P.aeruginosa is highly  
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resistant to a wide range of antibiotics and disinfectants 2. This pathogen has been reported 
to have poorer outer membrane permeability to small molecules3, for which treatment 
options are often limited4-6. 

 Thymidylate kinase (TMK) has emerged as an attractive therapeutic target because 
inhibiting TMK functions blocks DNA synthesis in replicating organisms7. Thymidylate 
kinase (TMK, EC:2.7.4.9, ATP: phosphotransferase) belongs to the nucleoside monophosphate 
kinase (NMPK) family and catalyzes the reversible phosphorylation of dTMP to 
deoxythymidine  5’-diphosphate (dTDP) in the presence of  ATP as its preferred phosphoryl 
donor8, situated at the junction of the de novo and salvage pathways for synthesis of 
deoxythymidine 5’-triphosphate (dTTP). TMK is the last specific enzyme in these pathways, 
therefore being essential for DNA replication & cell growth. 

  Biochemical and structural characterization of PaTMK has revealed subtle differences 
compared to the corresponding human isozyme (21% of sequence identity)9, it represents an 
attractive target for selectively inhibiting Pseudomonas aeruginosa DNA synthesis.  
Necessity for development of more potent and specific PaTMK inhibitors is an important 
task due to development of resistance by the organism against existing inhibitors. Recently 
Jun yong choi et al.10, reported imidazopyridinones as inhibitors of Pseudomonas aeruginosa 
targeting PaTMK, the inhibitors showed good hydrogen bond interactions with Thr101, 
Tyr104, Gln105 and Arg74. In an effort to design novel inhibitors of PaTMK several 
computational approaches are employed in development & optimization of inhibitors. In 
present article we report receptor based 3D-QSAR studies using CoMFA11,12  and CoMSIA13 

methodologies on imidazopyridinones derivatives. PLS14 based statistical analysis was 
carried out on 40 molecules to identify the correlation. The contour maps generated enabled 
us to explain the observed variation in activity and guided us to design new molecules.  

Methodology 

A total of 40 molecules were available with reported IC50 values for inhibition of paTMK10 and 
these values were converted to corresponding pIC50 values (Table 1). The data set was divided 
into training and test set of 30 and 10 molecules respectively. All molecular modeling 
calculations were performed on a linux operating system. The crystal structure of PaTMK 
bound with 1-methyl-6-benzamido-imidazopyridinone inhibitor (PDB Id: 3UWO)10 was 
downloaded from protein data bank. GLIDE 5.615 was used for molecular docking, protein was 
prepared using protein preparation module applying the default parameters and a receptor grid 
was generated around active site of PaTMK by selecting the cocrystallized ligand with 
receptor van der Waals16 scaling for non-polar atoms as 0.9. Molecules were built using 
maestro build panel and prepared by LigPrep application. Structures of molecules and their 
IC50 and pIC50 are given in Table 1. LigPrep produces low energy conformer of the ligand 
using the MMFF94s force field. These molecules were docked into the grid generated from 
TMK protein structures using standard precision docking mode16. Cocrystallised ligand was 
also docked and its root mean square deviation (RMSD) was calculated to validate the docking 
process. Dock pose of each ligand docked into the protein was analyzed for their hydrogen 
bond interactions with the receptor. Analysis of dock poses of all molecules showed similar 
hydrogen bond interactions with Arg74, Thr101, Tyr104 and Gln105 of active site residues. 

 Overlay of the most promising poses (best glide score along with most physiologically 
similar positions) has been taken directly into 3D-QSAR analysis in this way QSAR is taken 
a step beyond what is usually done in such analysis. Overlay of dock pose of each ligand is 
shown in Figure 1.  
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Table 1. Structure of PaTMK inhibitors along with IC50, pIC50, predicted pIC50 and Dock Score 
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R
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R R1 R2 
IC50 
µM 

pIC50 

Predicted    pIC50 Dock 
Score 

kcal/mol CoMFA CoMSIA 

1 H H H 0.12 6.920 6.703 6.623 -10.651 
2* H H F 0.12 6.920 6.551 6.577 -10.890 
3* H H CF3 0.16 6.795 5.451 5.938 -10.979 
4 -CO2CH3 H H 0.37 6.431 6.494 6.496 -10.902 
5* H H -CH2NH2

 3.2 5.498 6.093 6.228 -10.684 
6 H -CH2NH2 H 2.2 5.657 5.669 5.618 -10.772 
7* H COOH H 2.4 5.619 5.710 5.687 -10.537 
8 H H COOH 2.7 5.568 5.738 5.617 -10.691 
9 COOH H H 2.0 5.698 5.871 5.739 -11.177 

R NH

O

N

NH

N

OCH3

R2

R1

10* Ph COOH H 0.25 6.602 5.783 5.582 -9.612 
11 -C5H9 H H 0.81 6.091 6.112 6.583 -10.194 

12 
N

N
H

 

H H 0.99 6.004 6.054 5.926 -10.366 

13 
N

 

H H 0.51 6.294 6.204 6.171 -10.398 

14 
N
H

 

H H 0.20 6.698 6.564 6.718 -11.388 

N N
H

N

O

C H 3

R
R 1

R 2

15 H H H 58 4.236 4.429 4.322 -9.089 
16 OH H H 11 4.958 4.790 4.877 -9.358 
17 NH2 H H 63 4.200 4.278 4.326 -9.533 

Contd… 
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18 CH2OH H H 37 4.431 4.231 4.336 -9.652 
19 H H C(O)N(CH3)2 104 3.982 4.101 4.142 -9.913 
20 H H -NHC(O)CH3 3.4 5.468 5.631 5.563 -10.148 
21 H H -C(O)CH3 13 4.886 4.970 4.496 -10.037 
22 H OH H 21 4.677 4.754 4.734 -10.278 
23 H -CH2NH2 H 4.9 5.309 4.806 5.296 -9.642 

N N
H

N

O

CH3
NH

O

R

24* -CH3 2.2 5.657 5.027 5.488 -10.238 
25 -CH2C(O)NH2 0.88 6.055 6.119 5.879 -10.463 
26* -CH2C(O)OH 0.88 6.055 5.579 5.698 -10.510 
27 -CH2CH2S(O)2OH 1.3 5.886 5.936 5.873 -10.125 
28 -CH2CN 2.1 5.677 5.552 5.605 -10.322 

29 
N

N
H

 2.3 5.638 5.578 5.498 -9.918 

30 -CH2CH2C(O) OH 2.6 5.585 5.770 5.634 -10.865 
31 -CH2CH2OH 2.6 5.494 5.656 5.444 -10.436 
32 -CH2CH2N

+H3 3.2 5.850 5.671 5.818 -9.670 
33 -(CH3)CHCOOH 5.0 5.301 5.176 5.360 -10.168 

34 
N

 
2.0 5.698 5.838 5.795 -10.105 

35* -CH2 CH2Ph 2.9 5.537 5.389 4.968 -9.843 

36* 
N
H

N  

3.0 5.522 5.686 5.980 -11.023 

37 
N

 
6.2 5.207 5.142 5.327 -10.127 

38 

N
H

N  

 

68 4.167 4.088 4.103 -9.282 

39* 

N N
H

N

O

CH3

N

 

66 4.180 4.535 4.210 -9.690 

40 
N

NH

N O

CH3

N

 

152 3.818 3.972 3.981 -9.155 

*represent test set of molecules 
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Figure 1. Dockpose alignment of TMK inhibitors 

 Molecules were imported into SYBYLX-1.2 molecular modeling program package17, 
Gasteiger-Huckel18 charges were assigned. Standard Tripos force fields were employed for 
CoMFA and CoMSIA analysis. A 3D cubic lattice of dimension 4Ǻ in each direction with 
each lattice intersection of regularly spaced grid of 2.0 Ǻ was created. Steric and 
electrostatic parameters were calculated in CoMFA fields while hydrophobic, acceptor and 
donor parameters in addition to steric and electrostatic were calculated in CoMSIA fields at 
each lattice intersection of regularly spaced grid of 2.0 Ǻ was created. The sp3 carbon atom 
was used as a probe atom to generate steric (Lennard-jones potential) field energies and a 
charge of +1 to generate electrostatic (columbic potential) field energies. A distance 
dependent dielectric constant of 1.00 was used. Steric and electrostatic fields were truncated 
at +30.00 kcal/mol. The similarity indices descriptors were calculated using the same lattice 
box employed for CoMFA calculations using sp3 carbon as a probe atom with a +1 charge ,+1 
hydrophobicity & +1 hydrogen bond donor and +1 hydrogen bond acceptor properties. 

 A PLS regression was used to generate a linear relationship that correlates changes in 
the computed fields with changes in corresponding experimental values of biological 
activity (pIC50) for the data set of ligands. Forty molecules were divided into training and 
test set. Biological activity values of ligands were used as dependent variables in PLS 
statistical analysis. Column filtering value(s) was set to 2.0 kcal/mol to improve the signal-
to-noise ratio by omitting those lattice points whose energy variations were below the 
threshold. Cross-validations were performed by leave -one -out [LOO] procedure to 
determine the optimal number of components (ONC) and coefficient q2

loo. ONC obtained are 
then used to derive the final QSAR model using all the training set compounds with non-
cross validation and to obtain conventional correlation coefficient (r2

ncv). To validate 
CoMFA and CoMSIA derived models, the predictive ability for the test set of compounds 
(expressed as r2

pred) was determined by using the following equation.  

r2
pred = (SD-PRESS)/SD 

 SD is the sum of squared deviations between biological activities of test set molecules and 
mean activity of the training set. PRESS is sum of squared deviation between observed & 
predictive activities of the test set molecules. Since the statistical parameters were found to be 
the best for further predictions of the designed molecules. The designed molecules were also 
constructed, minimized and docked into the protein active site, as mentioned above.  

Results and Discussion 
TMK inhibitors, shown in Table 1 along with IC50 and pIC50 values, were docked into the 
active site; they showed five hydrogen bond interactions with the active site residues. 
Accuracy of docking protocol was evaluated by redocking the crystal structure ligand and its  
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RMSD from the experimental binding mode determined by x-ray crystallography was 
calculated, and it gave a value of 0.4803 Ǻ (Figure 2).The correlation between dock score 
(glide score) and pIC50 gave a correlation coefficient value (r) of 0.693, which shows 
appreciable relation between biological activity and docking, scatter plot of pIC50 and glide 
score is shown in Figure 3.  

 
Figure 2. Superimposition of crystal structure pose (cyan) on docked pose (green) of co-
crystallized ligand 

 
 

Figure 3. Scatter Plot of pIC50 vs. Dock Score 

 Molecules  having specific hydrogen bond interactions with active site of the receptor, 
where imidazopyridinone C=O act as  hydrogen bond acceptor to Arg74, Thr101, while both –
NH of cyclic imidazopyridinone ring act as donor and acceptor to  C=O  group of Gln105 and 
benzamido C=O act as  hydrogen bond acceptor to –OH of Tyr104 in TMK ,were considered. 
The 3D-QSAR, CoMFA and CoMSIA analysis were carried out in the reported inhibitors 
(Table 1). Molecules having precise IC50 values were selected and those that did not show 
interactions with the protein active site (via docking) were removed from the data set.  

 A set of 40 molecules were used for derivation of model, these were divided into a 
training set of 30 molecules & test set of 10, keeping in view that the activity range is with a 
minimum of 3 log units differences in both the sets. CoMFA& CoMSIA statistical analysis 
is summarized in Table 2. Statistical data shows q2

loo 0.577 for CoMFA 0.670 for CoMSIA 
models ,r2

ncv of 0.961 and 0.962 for CoMFA & CoMSIA, respectively, which indicates a 
good internal predictive ability of models. To test the predictive ability of models, a test set 
of 10 molecules exchanged from the model derivation was used. The predictive correlation 
coefficient r2

pred of 0.521 for CoMFA and 0.603 for the CoMSIA models indicate good 
external predictive ability for the models. Scatter plot for actual and predicted pIC50 values 
for CoMFA and CoMSIA studies shown in Figure 4. The CoMSIA model showed better 
results than CoMFA model, this shows that the hydrophilic and hydrophobic fields which 
were not included in the CoMFA model are important for explaining the potency of the 
molecules. This is also evident from the docking results. The predicted activity and glide 
scores of the molecules are provided in Table 1. 
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Table 2. Summary of PLS results 
Statistical parameters CoMFA CoMSIA 

q2
loo 0.577 0.670 

No. of molecules in training set 30 30 
No. of molecules in test set 10 10 

ONC 5 4 
SEE 0.176 0.168 
r2

ncv 0.961 0.962 
Fratio 116.750 159.649 
r2

pred 0.521 0.603 
Fraction of field contributions 

Steric 72.8 20.1 
Electrostatic 27.2 7.8 
Hydrophobic -- 18.9 

Donor -- 33.3 
Acceptor -- 19.9 

q2
loo: Cross-validated correlation coefficient by leave one out method; r2

ncv: non-cross-validated 
correlation coefficient; r2

pred: predictive correlation coefficient on test set; SEE: standard error of 
estimate; Fratio: Fischer test value; ONC: optimal Number of principal components 

  

Figure 4. Graphs of the experimental versus predicted pIC50 values of the training ( ) and 
test ( ) compounds from the CoMFA and CoMSIA models 

CoMFA and CoMSIA contour maps 
To visualize the information content of the derived 3D-QSAR models, CoMFA and 
CoMSIA contour maps were generated. The Contour plots are representation of the lattice 
points & the difference in the molecular field values, at lattice points, strongly connected 
with difference in the receptor binding affinity. Molecular fields define favorable or 
unfavourable interaction energies of aligned molecules with a probe atom traversing across 
lattice plots suggests modification required to design new molecules. Contour maps of 
CoMFA denote region in the space where molecules would favourably or unfavourably 
interact with the receptor while CoMSIA contour maps denote those areas within the 
specified region where presence of a group with a particular physicochemical activity binds 
to the receptor. CoMFA and CoMSIA results were graphically interpreted by field 
contribution maps using “STDEV*COEFF” field type. All contours represented default 80 
and 20% level contribution for favoured and disfavoured regions.  
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 The most potent analogue, molecule 1 was embedded in the map Figure 5(a, b), to 
demonstrate its affinity for steric and electrostatic regions of inhibitors. The areas of 
yellow indicate regions of steric hindrance to activity, while green areas indicate a steric 
contribution to potency. The blue regions indicate a positive electrostatic charge potential 
associated with increased activity, while red region show negative charge potential. The 
steric contour maps of CoMFA show, the green regions surrounding alkyl linker attached 
to benzene ring for substitution of sterically bulky favoured groups. The yellow contour 
over the benzamide ring suggests steric bulk disfavoured region in molecule 1. 
Electrostatic contour maps shows two regions of blue contours above amide group and at 
para position of benzene ring attached to the alkyl chain for positive electrostatic 
potentials, a red contour is seen near the meta position of both the phenyl rings in 
molecule 1 suggesting substitution of more negatively charged substituents at this position 
will significantly improve biological activity.  

 
(a) (b) 

Figure 5. CoMFA steric standard deviation (S.D.* coefficient) contour maps illustrating 
steric (a) and electrostatic (b) features in combination with molecule 1. Green contours show 
favourable bulky group substitution at that point while yellow regions show disfavourable 
bulky group substitution for activity. Red contours indicate negative charge favouring 
activity, whereas blue contours indicate positive charge favouring activity 

 Figure 6(a-e) shows the contour maps derived from the CoMSIA PLS model. The most 
potent analogue, molecule 1, was embedded in the maps to demonstrate its affinity for the 
steric, electrostatic, hydrophobic, hydrogen bond donor and acceptor regions of inhibitors. 
The steric map is similar to the CoMFA steric map showing favoured and disfavoured 
regions. In steric contour embedded by molecule 1 the benzyl group is penetrating into the 
green region for bulky favoured substitution and the entire molecule is away from the 
disfavoured yellow region. The electrostatic contour map shows a red contour over the 
carbonyl of benzamide ring in molecule 1 indicating a negative electrostatic potential. The 
blue regions over the –NH of amide, CH2 attached to benzene ring indicates regions with 
positive electrostatic potentials in molecule 1. The hydrophobic contours shows, meta and 
para positions of benzene ring incorporated into the favoured yellow region suggests 
substituting sterically bulky, hydrophobic groups further increases biological activity. A 
white contour is observed around the alkyl linker region suggesting hydrophilic substitution 
on the linker region will increase activity. The donor contour map show benzamide group 
incorporated into disfavoured purple regions in molecule 1. The acceptor contour maps 
shows favoured magenta region near to the carbonyl group, disfavoured red region is 
observed on to the nitrogen of amide and para position of benzene ring suggesting 
substitution with acceptor groups will increase the potency.  
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(a) (b) 

 
(c) (d) 

 
(e) 

Figure 6. CoMSIA SD* coefficient contour maps in combination with molecule 1 illustrating 
features (a) Steric: Green contours represent favourable bulky group substitution at that point 
while yellow regions are disfavorable for activity; (b) Electrostatic: Red contours indicate 
negative charge favouring activity, whereas blue contours indicate positive charge favouring 
activity; (c) Hydrophobic: Yellow contour represent hydrophobic favoured region, white 
indicates the hydrophilic favoured regions; (d) Donor: The purple contour represents H-bond 
donor disfavoured regions while cyan indicates H-bond donor favoured and (e) Acceptor: 
Magenta and red contour represent H-bond acceptor disfavoured and favoured regions. 

 Detailed contour map analysis of both CoMFA and CoMSIA models empowered us to 
identify structural requirements for observed inhibitory activity (Figure 8). The molecules 
were modified to further improve the inhibition activity towards PaTMK. Molecule 1 was 
chosen as a reference structure to design molecules (Table 3) with increased potency. New 
molecules designed were docked into the protein active site and they showed similar 
interactions with comparable dock scores and dock poses were used to predict the activity by 
applying the 3D-QSAR model. The new molecules showed better predicted activity with 
respect to the most active molecule. Sterically bulky & hydrophobic groups (ethyl, t-butyl, 
n-butyl, benzyl) substituted on CH2 of alkyl linker region attached to benzene ring and also 
hydrophilic groups (OH, COOH, SCH3) substituted on meta position of benzene ring 
attached to the amide group increased the activity. 
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(a) (b) 

Figure 7. Docked pose of (a) molecule 1 and (b) molecule N5 in the protein active site 
showing similar hydrogen bond interactions with Arg 74, Thr 101, Gln 105, and Thr 104 
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Figure 8. Structural requirements for PaTMK inhibitors obtained from CoMFA (CF) and 
CoMSIA (CMS) contour map analysis 

Table 3. Structure, predicted pIC50 and dock score of designed molecules 
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N
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CH3

O

R6
R5

R1

R2

R4

R3

M
ol
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R1 R2 R3 R4 R5 R6 
Pred     
pIC50 

CoMFA

Pred 
pIC50 

CoMSIA 

DockScore 
kcal/mol 

N1 H H H ethyl(R) H H 7.208 6.438 -10.546 
N2 H t-butyl H H H H 6.521 6.965 -10.576 
N3 Cl H H H -S(CH3) H 7.139 5.815 -10.825 
N4 OH H H H -S(CH3) H 7.377 5.951 -10.911 
N5 H H H H H OH 7.113 6.673 -10.989 
N6 H H H H H COOH 6.903 7.090 -10.645 
N7 H H -CH2Ph -CH2Ph H H 6.736 7.119 -11.476 
N8 H H H H H -O(pr) 7.567 6.645 -10.455 
N9 n-butyl H H ethyl(R) H -S(CH3) 6.967 6.535 -9.365 
N10 -CHCl2 H H H -S(CH3) H 7.102 5.629 -10.851 
N11 H H H H -S(CH3) H 7.311 5.783 -10.695 
N12 F H H H -S(CH3) H 7.275 5.795 -11.183 
N13 H H H n-butyl(R) H OH 7.452 6.799 -10.851 
N14 ethyl H H Ethyl(R) H OH 7.062 6.727 -10.395 

Sterically bulky favoured and  
Hydrophobic region 

Electronegative charge favoured region,  
sterically bulky disfavoured region 

Hydrophilic, electronegative charge 
 favoured region



Chem Sci Trans., 2014, 3(2), 498-509                  508            

Conclusion 
Molecular docking based 3D-QSAR studies are widely used tools for understanding binding 
modes of the molecule to the protein receptors and rationalize structural requirements for the 
inhibitory activity of the molecules. CoMFA & CoMSIA methodologies were used to build 
models for PaTMK inhibitory activity of imidazopyridinone derivatives. The generated 
models have statistical reliability that is evident from high r2 and q2 values for all the 
models. Based on detailed contour map analysis improvement in PaTMK binding affinity 
can be achieved through conformationally restricted substitution on CH2 of alkyl linker 
region attached to benzene ring and meta position of benzene ring attached to the amide 
group. The designed molecules based on these parameters showed better predictive activity 
than reference molecule, this indicates QSAR models generated have good predictive ability 
to design potent inhibitors. These molecules can be synthesized to generate a greater number 
of molecules with required pharmacokinetics for further clinical studies. 
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