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1. Introduction  

 

1. Introduction 

An essential topic of approximation theory is of monotone approximation, 

initiated by O.Shisha in 1965 (see [14]) .There the problem was: given a positive 

integer r, approximate with rates a given function whose rth derivative is � 0 by 

polynomials having the same property. This initial problem was generalized by 

G.A. Anastassiou and O.Shisha in 1985 (see [2]) by replacing the rth derivative 

with a linear differential operator of order r. The rate of the related �� 

convergence was given through the first modulus of continuity. During the last 

twenty –five years there was has been extensive research on monotone 

polynomial approximation, in particular, improving Shisha's initial result e.g .J.A. 

Roulier [13].Especially G.G. Lorentz and K. Zeller [9], G.G.Lorentz [8], and then 

R. DeVore [4] have obtained Jackson type estimates on the rate of �� 

approximation of monotone functions by monotone polynomials. Furthermore E. 

Passow, L.Raymon, and J.A. Roulier [11, 12] have studied deeply the comono-  

Abstract: Let �  be a two variable continuously differentiable real-valued 

function of certain order on ����1,1
�	 and let  �	 be a linear differential operator 

involving mixed partial derivatives and suppose that		��� � 0	. Then there exists 

a sequence of two dimensional polynomials ��,��, �� with ���,��, �� � 0	, 
so that �is approximated simultaneously and in		�� by  ��,� . This approximation 

is accomplished quantitatively the use of a suitable two dimensional first modulus 

of continuity.  
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tone polynomial approximation of comonotone functions and D. J. Newman [10] 

was able to produce a Jackson type estimate related to comonotone 

approximation. More recently R. DeVore and X. Yu [5] have given a constructive 

proof  of  Timan –Teljackovski  type pointwise  estimates for  monotone 

polynomial  approximation  involving the  second modulus of smoothness 	�� . 

Also D. Leviatan [6] presented pointwise estimates involving 	�� and providing 

convex polynomial approximation, as well as simultaneous monotone and convex 

polynomial approximation. In addition, using a suitable Peetre functional, D. 

Leviatan [7] obtained estimates with respect to 	�� of the Jackson type on the rate 

of the monotone polynomial approximation. Then he applied these results to get 

estimates on the degree of comonotone polynomial approximation. In this paper 

we deal with the following general two-dimensional problem (Theorem 3.2): let � 

be a two variable continuously differentiable real-valued function of given order 

and let  � be a linear differential operator involving mixed partial derivative and 

suppose that 		��� � 0 .Then find a sequence of  bivariate  polynomials 

��,��, ��  with the property ���,�� � 0  so that �  is approximated 

simultaneously in 	��,�		in the �� � �����	����  .This approximation is given 

with rates through  inequalities  involving  the bivariate  first modulus of 

continuity.            

We would like to mention    

�� � �����	������	� �!�	�������	"� ∶ 
	����1,1
� $ %�: �: ��1,1
 ' ��1,1
 → )	, ‖�‖� + ∞-	 
 ��!.	/.�/				‖�‖� $ 0 0 |��2, ���|�2

32
2
32 ��2����45																0 + 	 + 1 

 

Definition 1.1: Let f 	∈ 	 ����1,1	
�, ��1,1
� $ ��1,1
 '	��1,1
	 . The kth 

modulus of smoothness of   f is defined as follows: 

		�7�, 8�� ≔ 	�7�, 8, :��� $ �� |;4|<=4	,|;>|<=>?∆;7�, ��?� 

Where          ∆;7�, �� ≔ ∑ 	B7CD	�1�73C		� E� � 7;
� F �.	G	 , if	 J� ∓ 7;

� J 	+ 17CLM   

	���				8 $ 82, 8��	,				82, 	8� N 0	.		P��	 The Ditzian –Totik kth modulus of 

smoothness is  
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�7Q�, 8��	:=	�7Q�, 8, :���=	�� R;4SR<=4	,R;>SR<=>?∆;Q7 �, ��?� 

Where 		T�� $ √1 � �� . 

The  first  modulus  of  continuity  of  f  is  defined  as  follows : 

					�2�, 8�� ≔ 	�2�, 8, :��� $ �� |;4|<=4	,|;>|<=> V� W�2, ��� F E;4� , ;>� GX �
																																																																	� W�2, ��� � E;4� , ;>� GXV�		  
Y.���			8 $ 82, 8��	,				82, 	8� N 0	.	 and  

The first modulus of continuity of  f  when 	 $ ∞	  is  defined  as follows: 

					�2�, 8�Z ≔ 	�2�, 8, :��Z $ �� |;4|<=4	,|;>|<=> V� W�2, ��� F		E;4� , ;>� GX �
																																																																							� W�2, ��� � E;4� , ;>� GXVZ		   
Definition 1.2 

Let f be a real –valued   function defined on ����1,1
� and m, n be two Positive 

integers .let 	[�,� be the Bernstein (polynomial) operator of order (m, n)  given by  

[�,�	�; �, �� $ ∑ ∑ � C��]LM�CLM , ]�	�	B�C D E�]G	�C1 � ���3C 	�]1 � ���3]  
Definition 1.3 

Let	� ∈ ����1,1
�. The local modulus of smoothness of  f is defined as follows: 

�2�, �, 8� $ sup|;4|<=4		,|;>|<=>aJ� W�2, ��� F E;4� , ;>� GX � � W�2, ��� �
	� E;4� , ;>� GXJ   

�2 ∓	;4� ∈ b�2 � =4
� , �2 F =4

� c	 , 		�� ∓ ;>
� ∈ b�� � =>

� , �� F =>
� c } 

Y.��� 	� $ �2, ���				,	 8 $ 82, 8��		 And 				82, 8� N0 

Note that             �2�, 8�Z ≡ �2�, �, 8, � 
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Definition 1.4		
e�/	� ∈ ����1,1
�  and			82, 8� N 0	. The f �modulus of smoothness of f is  

defined as follows:         							f2�, 8�� 	 ∶$ 	f2�, 8, :��� $ ‖�2�, , �, 8�‖� 

 

2. Auxiliary results   

In this article we introduce the results that we need in our main theorem.  

Lemma 2.1  

 e�/	aĝ	C: $ gC, gC�, �1 $: gM + g2 + ⋯g�j2: $ 1k			be a  partition  of  the square  

:�  into n+1 subintervals .using the notation 		:C� $ gC32	, gC��			 , 		8C� $ gCj2 �
gC32��,		 	� $ 1,2, …�           

                             ∑ �2�CL2 �, ĝC, .n�� 	8C� o p �	f2�, .n�� 

Y.���	ĝC $ gC , gC�	,			.n $ ., .� 
qrsst: 
																		∑ �2�CL2 �, ĝC , .n�� 	8C� o p �∑ ∬ �2�, g, .n��vw

�CL2 	�g�g			 	 
															∑ �2�CL2 �, ĝC , .n�� 	8C�   o p � 0 0 �2�, g, .n�� �g�g	

2
32

2
32   

Where			g	 $ 	 g2, g��																						 
															∑ �2�CL2 �, ĝC , .n�� 	8C�   o   	p f2�, .n��              ∎ 

 

We prove our main result with the help of a bivariate simultaneous 

approximation theorem 

Lemma 1.2.2 [3]   it holds that 

		?�7,y� � [�,���7,y�?Z o /z, e�. �2 W�7,y�; 1
√� � z ,

1
√� � eXZ		 
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	F		���			a7732�� ,
yy32�

� k	. ?�7,y�?Z  

Where � N z � 0, � N e � 0 are integers, f is a real –valued function on �0,1
�  

such that 		�7,y�  is continuous, and t is a positive real-valued function on  {�, N= 

{0, 1, 2…}, Here ‖. ‖Z is the supremum norm 

 i.e.‖�‖Z $ �� |4,|>	∈	�32,2
	|��2, ���| 
 

3 .The main results 

In this section we introduce our main theorem. 

Theorem 3.1  

?�7,y� � [�,���7,y�?� o pz, e,  �. �2 W�7,y�; E 2
√�37 , 2

√�3yGX�  

																																																																										F	���				a7732�� , yy32�� k . ?�7,y�?� 

Where  � N z � 0, � N e � 0  are integers, f is a real – valued function on 

��1,1
�   such that  �7,y�  is continuous, and C is a positive constant depending 

on  k ,  l and  p, ( 0<p<1).  

Proof:  Using lemma 1.2.2, we have  

?�7,y� � [�,���7,y�?� o p	z, e,  � V?�7,y� � [�,���7,y�?ZV� 	o	 

	pz, e,  � 	}�2 W�7,y�; E 2
√�37 , 2

√�3yGXZ Fmax �7732�� , yy32�� � ?�7,y�?Z}�     

Let    

?�7,y� � [�,���7,y�?� o pz, e,  �	Ψ F pz, e,  �max �7732�� , yy32�� �	 . ?�7,y�?�   

Where                        Ψ $	}�2 W�7,y�; E 2
√�37 , 2

√�3yGXZ}�  

 

By definition of  �2�, 8�Z and definition of �2�, �, 8� we get  
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Ψ $	 0 0 ��2 W�7,y�; E 2
√�37 , 2

√�3yGXZ�
2
32

2
32

� �����45  

															Ψ $ W∑ ∬ ��2 E�7,y�; E 2
√�37 , 2

√�3yG , :C�GZ�vw
�CL2

� ����X
4
5
  			 

		o p �	E∑ ∬ R�2B�7,y�, ��C 	, .nCDRvw
�CL2

� ����G
4
5
  

Y.���		��C $ �C, �C�			, .nC $ .C , .C�  
Then using lemma 1.2.1 we get 

  Ψ o E∑ .C�R�2	B�7,y�, ��C 	, .nCDR�CL2
� 	����G

4
5
 

                     						o 	p��	f2 W�7,y�; E 2
√�37 , 2

√�3yGX� 																						∎ 

Theorem 3.2 

Let 	.2, .�	�2, ��, �,  	be integers � � �2 � .2 � 0,  � �� � .� � 0and let 	� ∈
����1,1
�	.	let		�C]�, ��	, � $ .2	, .2 F 1, …�2, � $ .�, .�+1,… �� be real- valued 

functions defined and bounded in ����1,1
� and assume �;4�>  is either  � � N 0 

��	 o � + 0. Throughout ����1,1
� . Consider the operator  

� $ ∑ ∑ �C]�, ���Cj]�>]L;>
�4CL;4 /��C��]  

And assume that throughout	����1,1
�	 ,       �	�� � 0															3.2.1� 
Then for integers 	�, �	with �	 N �, � N   there exists a polynomial  ��,��, �� 
of degree (m, n) such that � E��,��, ��G � 0 throughout ����1,1
�	 and  

V�7,y� � ��,�7,y�V� o
��,��,��

;437�!;>3y�!F��,�7,y���      (3.2.2) 

�ee	0,0� o z, e� o .2, .�� . Furthermore we get  
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?�7,y� � [�,���7,y�?� o 	��,�7,y���                       (3.2.3) 

���	�ee	.2 F 1, .� F 1� o z, e� o �,  �. �e��	3.2.3�	��		/���	Y.������ 

		0 o z o .2	���		.� F 1 o e o  		��		.2 F 1 o z o �		���		0 o e o .�.	  Here  

 		��,�7,y� 			≡ 	��,�7,y��� ≡ pz, e,  �. �2 W�7,y�; E 2
√�37 , 2

√�3yGX� 

 																																																				Fmax	a7732�� , yy32�� k . ?�7,y�?�  

 						��,� ≡ ��,��, �� ≡ ∑ ∑ �C]	.		��,�C,]��>]L;>
�4CL;4  

Where C is a positive constant depending on z	, e	and	 , 0 +  + 1.  

        �C]	≡ E0 0 J�32;4�> . �C]�, ��J
� ����2

32
2
32 G

4
5 + ∞ 

Proof:    let	�, �	be	integers	such	that	� N �	, � N   

Case (i): Assume that throughout 		��1,1
� ,  �;4�> � � N 0	 
From Theorem 1.3.1 we have 

V� F ��,�. |�4;4! . ¡
�>
;>!�7,y� � ��,��, ���7,y�V� o ��,�7,y�									(3.2.4) 

�ee	0 o z o �	, 0 o e o  , where	 
																												��,��, �� ≡ [�,��; �, �� F ��,�. �

;4
.2! .

�;>
.�!  

when			0,0� o z, e� o .2, .��, 3.2.4�		becomes 
¥�7,y��, �� F	��,�. �;437

.2 � z�! .
�;>3y

.� � e�! � ��,�7,y��, ��¥
�
o ��,�7,y�

 

Hence by the triangle inequality property of ‖. ‖�			and			�, �� ∈ ��1,1
�  

We have the validity (3.2.2). Furthermore, if	�, �� ∈ ��1,1
�, then  

�32;4�>�, ��. � E��,��, ��G � 	��,� � ∑ ∑ �C]	.		��,�C,]��>]L;>
�4CL;4 $ 0      [1] 
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The last is true inequality (3.2.4). Therefore 	� E��,��, ��G � 0	. 
Case (ii):  Assume that throughout ��1,1
�, �;4�> o � + 0	. 
From Theorem 1.3.1 we have	 

V� � ��,�. |�4;4! . ¡
�>
;>!�7,y� � ��,��, ���7,y�V� o ��,�7,y�							 (3.2.5) 

�ee	0 o z o �	, 0 o e o  ,		Where              

��,��, �� ≡ [�,��; �, �� � ��,�. �
;4
.2! .

�;>
.�!  

When 0,0� o z, e� o .2, .��, 3.2.5�		becomes 

¥�7,y��, �� �	��,�. �;437
.2 � z�! .

�;>3y
.� � e�! � ��,�7,y��, ��¥

�
o ��,�7,y�

 

Hence by the triangle inequality property of 	‖. ‖� and  �, �� ∈ ��1,1
�	 
 we have		the validity (3.2.2).   Furthermore,   if			�, �� ∈ ��1,1
�, then 

�32;4�>�, ��. � E��,��, ��G o �	��,� F ∑ ∑ �C]	.		��,�C,]��>]L;>
�4CL;4 $ 0			[1] 

The last is true inequality (3.2.5). Therefore again � E��,��, ��G 	� 0.	  
In	the	cases	of		either		 
.2 F 1, .� F 1� o z, e� o 		 �,  �		or		0 o z o .2, .� F 1 o e o  �	��	 
.2 F 1 o z o �, 0 o e o 	.�	�,      
 We have  

E� © ��,�. |�4;4! . ¡
�>
;>!G

7,y� $ �7,y�	.                ∎ 

References 

[1] G. A. Anastassiou, Bivariate monotone approximation, American 

Mathematical Society , 112(1991), 959-964 . 



 

 

Simultaneous monotone multiapproximation                                                  1177 

 

[2] G.A. Anastassiou and O.Shisha, Monotone approximation with linear 

differential operator, J. Approx. Theory  44 (1985), 391-393.  

[3] I. Badea and C. Badea, On the order of simultaneous approximation of 

bivariate functions by Bernstein operators, Anal. Numer . Theor .Approx. 16 

(1987), 11-17. 

[4] R.A. DeVore, Monotone approximation by polynomials, SIAM J. Math.  Anal. 

8 (1977), 906-921.  

[5] R.A. DeVore and X. M. Yu, Pointwise estimates for monotone polynomial 

approximation, Constr. Approx. 1 (1985), 323-331. 

[6] D. Leviatan, Pointwise estimates for convex polynomial approximation, Proc. 

Amer. Math. Soc. 98 (1986), 471-474. 

[7] D. Leviatan, Monotone and comonotone polynomial approximation revisited, 

J. Approx. Theory 53 (1988), 1-6. 

[8] G.G. Lorentz, Monotone approximation, Inequalities III (O. Shisha, ed.), 

Academic Press, New York, 1972, pp. 201-215. 

[9] G.G. Lorentz and K. Zeller, Degree of approximation by monotone 

polynomials. I, J. Approx. Theory 1 (1968), 501-504. 

[10] D. J. Newman, Efficient co-monotone approximation, J. Approx. Theory 25 

(1979), 189-192. 

[11] E.Passow and L.Raymon, Monotone and comonotone approximation, Proc. 

Amer. Math. Soc. 42 (1974), 340-349. 

[12] E. Passow, L. Raymon, and   J. A Roulier, Comonotone polynomial 

approximation, J. Approx.  Theory 11(1974), 221-224.  

[13] J.A. Roulier, Monotone approximation of certain classes of functions, J. 

Approx. Theory 1 (1968), 319-324. 

[14] O. Shisha, Monotone approximation, Pacific J. Math. 15 (1965), 667-671. 

 

Received: April 5, 2014 


