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Abstract: Let f be a two variable continuously differentiable real-valued
function of certain order on L, [—1,1]? and let L be a linear differential operator
involving mixed partial derivatives and suppose that L(f) = 0. Then there exists
a sequence of two dimensional polynomials @, (x,y) with L(Qyn(x,¥) =0,
so that fis approximated simultaneously and in L, by @, . This approximation
is accomplished quantitatively the use of a suitable two dimensional first modulus
of continuity.

1. Introduction

An essential topic of approximation theory is of monotone approximation,
initiated by O.Shisha in 1965 (see [14]) .There the problem was: given a positive
integer r, approximate with rates a given function whose rth derivative is = 0 by
polynomials having the same property. This initial problem was generalized by
G.A. Anastassiou and O.Shisha in 1985 (see [2]) by replacing the rth derivative
with a linear differential operator of order r. The rate of the related L,
convergence was given through the first modulus of continuity. During the last
twenty —five years there was has been extensive research on monotone
polynomial approximation, in particular, improving Shisha's initial result e.g .J.A.
Roulier [13].Especially G.G. Lorentz and K. Zeller [9], G.G.Lorentz [8], and then
R. DeVore [4] have obtained Jackson type estimates on the rate of L,
approximation of monotone functions by monotone polynomials. Furthermore E.
Passow, L.Raymon, and J.A. Roulier [11, 12] have studied deeply the comono-
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tone polynomial approximation of comonotone functions and D. J. Newman [10]
was able to produce a Jackson type estimate related to comonotone
approximation. More recently R. DeVore and X. Yu [5] have given a constructive
proof of Timan -Teljackovski type pointwise estimates for monotone
polynomial approximation involving the second modulus of smoothness w, .
Also D. Leviatan [6] presented pointwise estimates involving w, and providing
convex polynomial approximation, as well as simultaneous monotone and convex
polynomial approximation. In addition, using a suitable Peetre functional, D.
Leviatan [7] obtained estimates with respect to w, of the Jackson type on the rate
of the monotone polynomial approximation. Then he applied these results to get
estimates on the degree of comonotone polynomial approximation. In this paper
we deal with the following general two-dimensional problem (Theorem 3.2): let f
be a two variable continuously differentiable real-valued function of given order
and let L be a linear differential operator involving mixed partial derivative and
suppose that L(f) =0 .Then find a sequence of bivariate polynomials
Qmn(x,y) with the property L(Qmn) =0 so that f is approximated
simultaneously in Q,, in the L, — quasi norm .This approximation is given
with rates through inequalities involving the bivariate first modulus of
continuity.

We would like to mention

L, — quasi normed space defined by :
Lp[-1,1]% = {f: f:[-1,1] x [-1,1] > R, [Ifl,, < o0}

1
such that |If|l, = (f_11 f_lllf(xl,xz)lp dx,dx,)? 0<p<1

Definition 1.1: Let f € Ly[-1,11%[-1,1]%> = [-1,1] x [-1,1] . The kth

modulus of smoothness of fis defined as follows:

wi (f, 5)p = wi(f, 5:12);9 = SUP|hl|sal,|h2|saz||Af’§(f:x)||p

i kh | . . — kh
Where AR(f,x) =3k, ('L‘) (—1)k f(x -5+ lh) ,if |x +?| <1
and & = (64,6,), &y, 6, > 0. And The Ditzian —Totik kth modulus of

smoothness is
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wy (f,8)p = il (f,8,12)= SUP|nypl<8y, Ihz<p|<82||Ah<p(f x)||
Where ¢(x) =vV1—x2.

The first modulus of continuity of f is defined as follows :

01(f,8)p = w1(f,8,1%)p = SUpinyiss, Insiss, f((xl'xz) +(3 hzz)> N
f((x1:x2) (hl ))”

where & = (61,6;), 6y, 6, >0. and

The first modulus of continuity of f when p = oo is defined as follows:

hy h
0)1(f. 6)00 = wl(fl 61 12)00 = Su’p|h1|561,|h2|S62 f ((xlle) + (f:f)) -

a2,

Definition 1.2

Let f be a real —valued  function defined on L,, [—1,1]% and m, n be two Positive

integers .let By, , be the Bernstein (polynomial) operator of order (m, n) given by
B (F32,9) = S0 B £(=,2) (M) (1) 2/ (@ =)™ty (1 = y)™

Definition 1.3

Letf € Ly, [—1,1]2. The local modulus of smoothness of fis defined as follows:

oy +(22)) - £ (0nr) -

&%)

w1 (f,%,0) = SUP|n,|<6, ,h,yl<6,{

], y2¢%e[x2 % x2+52]}

— )
y1+—E[x1 x1+1 2

2
where x = (x1,%x,) , 6§ =(6,,8,) And 6,68, >0

Note that w1 (f,0)e = w,(f,x,8,)
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Definition 1.4

let f € L, [-1,1]2 and &,,8, > 0. The T —modulus of smoothness of f is

defined as follows: 1(f,8)p = 1:(f,6,1%), = llw: (f,, x,8)l,

2. Auxiliary results
In this article we introduce the results that we need in our main theorem.
Lemma 2.1

let {Z;:=(2z;,2z;),—1 =125 < 7y <+ Zyyq: = 1} be a partition of the square

12 into n+1 subintervals .using the notation I? = (zi_1,21)? , 8 = (Zi31 —

zi_1)? i=12,..n
w1 (f, 25 )P 87 < C(0) Ty(f, )y
where 2; = (z;,z;), h = (h,h)
Proof:
Yoy (f, 2, )P 87 < C(p) Xiea JI;, o1(fo2, h)? dzdz
Sty (2B 87 < C@p) [, 1, (o a P’ dadz

Where z = (z4,2;)

Yrow (f.8,R)P 62 < Crty(f,h),

We prove our main result with the help of a bivariate simultaneous

approximation theorem

Lemma 1.2.2 [3] it holds that

1 1
kD _ (B ®&D|l < t(k, D). w ( (kD). ) )
1752 = Gnn 0N = e Dren P2 = o),
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+ max {k(:zl),l(lrzl)} _ ”f(k,z)”OO

Where m > k = 0, n > | > 0 are integers, fis a real —valued function on [0,1]?
such that f®Y is continuous, and t is a positive real-valued function on N?, N=
{0, 1, 2...}, Here ||. ||« is the supremum norm

Le|lflleo = SUDy x5 € [-1,1] |f C1, x2)

3 .The main results

In this section we introduce our main theorem.

Theorem 3.1
40 = B2, = € 2o (£ (7))

+ max {—k(’:n 2 My 1) ||f(kl)||

Where m >k = 0,n> 12> 0 are integers, f is a real — valued function on
[—1,1)% such that f®Y is continuous, and C is a positive constant depending
on k, land p, (O<p<lI).

Proof: Using lemma 1.2.2, we have

70 = Gnan®0ll, = € Cetip) [Il5 40 = B, |, <

k(k=1) 1(1-1)
o (10 (), s F2 o |

C(k,1,p) |

Let

IF 50 = Braf) 0 < €l Lp) W + €k, L p) max (K2, K2 || o)

e e ()|
p

By definition of w;(f, ). and definition of w, (f, x, §) we get
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v= ([ |o

().
(f (J_J_> | dxdx)?
w1(f(kl) (\/—\/— I2 | dxdx)p

1

~\(P
<C@) (X ff, lor(F®0, 2 h0)] dedx)”

v = (Zn, 1,

where X; = (x;, x;) ,in = (h;, hy)

Then using lemma 1.2.1 we get

1

V= (Zln=1 hf |y (f %9, %; ,fli)|p dxdx);

< cP)r (f(k” (\/_ \/1_)> n

Theorem 3.2

Let hy, hy v1,v,,7,p be integers r 2 v, =2 h; =2 0,p =2 v, = h, = 0and let f €
Ly[=1,1]%.let a;;(x,y),i = hy,hy +1,..v1,j = hy, hy+1,... v; be real- valued
functions defined and bounded in Ly, [—1,1]? and assume ay, 1ty is either =2 a >0

or < B < 0. Throughout L,[—1,1]? . Consider the operator
L=y hlZ] Zh, a;;(x, )™ Jox' oy’
And assume that throughout L,[-1,11> , L (f) =0 (3.2.1)
Then for integers m,n withm > r,n > p there exists a polynomial Q. ,(x,y)

of degree (m, n) such that L (Qm_n (x, y)) > 0 throughout L,[—1,1]* and

kKl (kl) Pmn(L.f) (kl)
[reo - ||, = Gy + e () 622

all (0,0) < (k,1) < (hy, hy) . Furthermore we get
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10 = Bra)®Pll, < M) () (323

forall (hy +1,h, +1) < (k, 1) < (r,p).also (3.2.3) is true whenever

0<k<hand h +1<I<por hy +1<k<r and 0 <1< h,. Here
1 1
M,(,f’,? = Mr(rf,'r? (f)=cCk,p). w; (f(k’l); (Jﬁ’ﬁ))
14

#max{E K0 00

B n = mn(L f)—zl hlz] hz MT(IHI)

Where C is a positive constant depending on k ,landp,0 < p < 1.

1

1 01| _ p P
LijE(f_lf_1|a 1h1h2.aij(x,y)| dxdy) )
Proof: letm,n be integers suchthatm >r,n>p
Case (i): Assume that throughout [-1,1]*, ap,, >a >0

From Theorem 1.3.1 we have

xhl

¢ + B 2 229D — (@ G,y O sm e

all0 <k <r,0<1[<p,where

xhl th

Qm,n(x'y) = Bm,n(f; x;}’) + Pm'nh_llh_2|

when (0,0) < (k, 1) < (hy, hy),(3.2.4) becomes

Hence by the triangle inequality property of ||. ||, and (x,y) € [-1,1]?

hi-k hy-l
1 yZ

()
. <M
(b =) (h, = D! o

p

Q%D (x,y)

f(k'l)(xIY) + Pm,n-

We have the validity (3.2.2). Furthermore, if (x,y) € [—1,1]2, then

a—lhlhz(x,y).L(Qm,n(x,y)) > Ppyn— Zl hlz] 2, L Mr(ryl) =0 [1]
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The last is true inequality (3.2.4). Therefore L (Qm,n (x, y)) >0.
Case (ii): Assume that throughout [—1,1]?, An,,, < B <0.
From Theorem 1.3.1 we have

xhl y 2

| - Pmnh|-h|)(k'l)_(Qm,n(x,y))(k'l)” <MD (325)
14

all0 <k <r,0<1[<p, Where

xhl th
an(x y)_ mn(fxy) mn h ' hz
When (0,0) < (k,1) < (hy, hy), (3.2.5) becomes
hi-k hy-1
(k1) Yy (k l) < (kD)

Hence by the triangle inequality property of ||. ||, and (x,y) € [-1,1]?

we have the validity (3.2.2). Furthermore, if (x,y) € [—1,1]2, then
i, L (Qmn(6,9)) € = Py + 502, T2, Ly Ml =0 [1]

a h1h2 X, ¥). mn X,y mn i=hy &j= h2

The last is true inequality (3.2.5). Therefore again L (Qm,n (x, y)) >0

In the cases of either

(hiy+1Lh,+1)< (k)< (r,p) or 0<k<h,h,+1<[1<p)or
(hf+1<k<r,0<1< hy),

We have

xh1 yh2 (k1) ki
(fipm’nh_l'h_z') —f(’). |
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