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ABSTRACT
Flexible multibody system simulation allows for fast and ad-

equate investigation of the dynamics of mechanical systems. But
in case of a system response with large deformations the time re-
sponse does not uncover the causes, i. e. the resonances of the
system. The identification of the systems eigenfrequencies gives
more insight in resonance phenomena, but in case of periodic
time-variant systems the often used snap-shot-eigenfrequencies
do not reveal the real system dynamics, which has to be de-
scribed by more than only one frequency response function.
Based on the formulation of a flexible multibody system and the
theory of ordinary linear periodic differential equations, partial
frequency response functions, describing the real characteristics
of a periodic system, are calculated and compared to the snap-
shot-frequency response functions.

NOMENCLATURE

A orientation matrix (sec. 2), system matrix (sec. 3)
E youngs modulus
H Hooke matrix (sec. 2), frf matrix (sec. 3-5)
J Jacobian matrix
L differential operator
M,D,K mass, damping, stiffness matrix
N matrix of interpolation functions
R vector of material coordinates
a acceleration vector
f force vector
g gravitational field intensity vector
h external force vector
1

d From: https://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use
k vector of gyroscopic terms

p vector of modal coordinates

q vector of nodal coordinates

r position vector

u displacement vector

v translational velocity vector

x state space vector

y diplacement variable

Ψ modal matrix

Θ matrix of eigenvectors

²,σ stress, strain

λ diagonal matrix of eigenfrequencies

µ squared ratio of lowest weak and stiff eigenfrequency

ν Poisson’s ratio

ρ density

ω angular velocity vector

1 INTRODUCTION

A glance at various fields of technology where Mechan-
ical Engineering plays a central role such as aerospace (air-
and spacecraft), transportation (road and rail vehicles), au-
tomation (robotics and machine tools) reveals very simi-
lar present tendencies: In order to save weight and energy
drastic reduction of material is a major request in all fields,
lightweight constructions have highest priority in all major
design groups. As a consequence, the elastic deformations
and structural vibrations become of focal interest, even in
Copyright c° 2003 by ASME
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situations where formerly a rigid body modelling was more
than appropriate.

Two major options are available to analyse flexible me-
chanical systems: The finite element method (FEM) and
the multibody system (MBS) approach [1]. A simulation
based on finite element models is — despite of the labour
for setting up the model data — straightforward, the corre-
sponding codes are well developed, and include linear and
nonlinear theory of elasticity. But there is a disadvantage:
a dynamic analysis with FEM-codes is very time consum-
ing. In many applications one is confronted with system
models, in which the deformations of the flexible bodies are
small but superimposed on a large reference- or ”rigid-body-
motion”. In multibody system simulation one exploits this
fact to reduce the computational burden for such applica-
tions by linearizing the equations of motion assuming small
deflections. Using relative variables to represent the refer-
ence motion and applying O(N)-formalisms [2], MBS-codes
provide an efficient alternative for system analysis via sim-
ulation [3]. Following such arguments, flexible multibody
formalisms have been used frequently [4, 5].

Geometric stiffening is a well known effect in dynam-
ics and its importance for multibody system simulation has
been pointed out clearly, in [6]. The modelling of flexi-
ble bodies in the MBS-program SIMPACK [7] has been de-
scribed in various places [8, 9] including the problem of how
to compute geometric stiffening terms for beams and ar-
bitrary structures. Recent investigations [10] demonstrate
of how to increase computational efficiency by neglecting
terms not required to represent the body deformations with
the accuracy guaranteed by a linear approximation.

For technical applications the knowledge of the dynamic
behaviour in terms of resonances or instabilities is impor-
tant to ensure proper operation conditions of the above
mentioned systems. The extraction of this information from
the MBS simulation is not straight forward in case of para-
metrically excited systems, e.g. flexible rotor systems, and
needs consideration in more detail [11].

2 BASIC EQUATIONS FOR AN ELASTIC MULTIBODY

SYSTEM

The starting point for the development of the O(N)-
formalism in SIMPACK is a set of equations of motion of the
flexible bodies. The flexible body data required to generate
the MBS-equations are those, which are needed to compute
the elements of the mass matrix, the gyroscopic terms and
the stiffness terms. To compute such data preprocessors
have been developed. After reading the flexible body data
and the remainder of the system data, SIMPACK can sim-
ulate the MBS-motion. The coordinate systems shown in
Fig. 1 will be used to describe the body’s motion. They are
2
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Figure 1. REPRESENTATION OF MOTION.

the inertial frame {OI , e
¯
I} and the body reference frame

{O1, e
¯
1} located at one end of the body in the reference

configuration. In general all vectors will be resolved in the
reference frame {O1, e

¯
1}, e.g. r = e

¯
1T r. The motion of

a representative material point P with respect to inertial
space is described as:

rP (R, t) = r(t) +R+ u(R, t). (1)

In this representation the body motion is given in terms
of the reference or rigid body motion as described by the
position vector r(t) and the orientation matrix A(t) and in
terms of small displacements u, i.e.

u = ū(Ru,y(Ry, t)), R =

·
Ru

Ry

¸
. (2)

The displacements are expressed in terms of deformation
variables y [12], e.g. for beams the motion of the axis. This
representation of body motion is suitable for incorporating
the assumption of small deformations. The coordinates of
the absolute velocity and acceleration of mass element dm
at point P with respect to reference frame are derived from
Eqn. (1)

vP = v + ω̃(R+ u) + u̇, v = ṙ+ ω̃r, (3)

aP = a+ ω̃ω̃(R+ u) + ˙̃ω(R+ u) + 2ω̃u̇+ ü, (4)

a = v̇ + ω̃v,

where v and a are the reference point velocity and accel-
eration, ω and ω̇ are the angular velocity and acceleration
Copyright c° 2003 by ASME
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of the reference frame respectively. The tilde operator rep-
resents the cross product of vectors. Differentiation of dis-
placements u with respect to time yields

u̇ = J(y)ẏ, (5)

with the Jacobian

J = [Jαi] =

·
∂uα
∂yi

¸
(6)

containing the derivatives of u w.r.t. y. Deformations are
measured by the symmetric Green-Lagrange strain ten-
sor. A common matrix form is

² = [ε11, ε22, ε33, 2ε12, 2ε23, 2ε31]
T =

·
L0 +

1

2
L1(u)

¸
u,
(7)

where operator matrix L0, which is well known from the
linear theory of elasticity [13], contains partial derivatives
with respect to the material coordinates ∂α = ∂( )/∂Rα.
Products of ∂α and uα,β , so-called bilinear terms, are col-
lected in L1. They result from the nonlinear terms of the
strain-displacement relation, Eqn. (7). Stresses are repre-
sented here by the symmetric second Piola-Kirchhoff
stress tensor. For a linear material law, the stresses are
related to the strains by

σ = [σ11,σ22,σ33,σ12,σ23,σ31]
T =H², (8)

with the 6× 6 Hookean matrix H. Its elements are given
in terms of two independent elasticity constants Young’s
modulus E and Poisson’s ratio ν of the isotropic material.

2.1 Approximation Methods for Elastic Deformations

A Ritz-approximation of the deformation variables y

y(Ry, t) = N(Ry)q(t) (9)

is used with the nq unknown nodal coordinates q(t) and
finite elements as interpolation functions N. Introducing
Eqn. (9) into Hamilton’s principle and using the fundamen-
tal theorem of variational calculus one finds the equations
of motion

M(q)

 aω̇
q̈

+ k(ω,q, q̇) +
 0

0
K(q)q

− h(r,A,q, . . . ) = 0.
(10)
3
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Matrix M contains inertia terms, k gyroscopic terms, K
stiffness terms and h the applied forces.

The number of coordinates is reduced by modal trans-
formation. The eigenmodes are computed by FE-analysis
of the flexible body in an inertial reference frame i. e.

a ≡ ω̇ ≡ v ≡ ω ≡ 0. (11)

Then Eqn. (10) is linearized w.r.t. q for the undeformed
configuration q0 ≡ 0 to obtain the linear homogenous equa-
tions of motion in terms of the node coordinates

Me0q̈+K0q = 0, (12)

with the positive definite mass matrix

Me0 =

ZZZ
V

NTJ0TJ0NρdV, where J0 = J(q0),
(13)

and the positive semi definite stiffness matrix

K0 =

ZZZ
V

NTJ0TL0THL0J0NdV, where L0 = L(q0).
(14)

Solving Eqn. (12) one obtains nq eigenfrequencies λ =
diag(λ1, . . . ,λnq) and the associated real eigenvectors [Θj ]i.
Now the node coordinates q are approximated by

q = Θp, (15)

with np properly chosen modes

Θ = [Θij ] , i = 1, . . . , nq, j = 1, . . . , np,
(16)

and with the associated modal coordinates p. To summa-
rize: the deformation variables y are represented in view of
Eqn. (9) and (15) as

y(Ry, t) = Ψ(Ry)p(t), (17)

with

Ψ := N(Ry)Θ. (18)
Copyright c° 2003 by ASME
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Now the eigenvectors are normalized such that the modal
mass matrix is the identity matrix

M̄e0 = ΘTMe0Θ = 1. (19)

The modal stiffness matrix then is a diagonal matrix whose
nonzero elements are squares of the eigenfrequencies λi, i.e.

K̄0 = ΘTK0Θ = diag(λ21, . . . ,λ
2
np). (20)

We arrange the elements of K̄0 in ascending order. The
modal-coordinates are partitioned in non stiff ”weak”
modes (index w) and in stiff modes (index s)

p =
£
pwT ,psT

¤T
. (21)

For linearization the equations of motion, Eqn. (10), are
rewritten in dimensionless form. This allows to compare the
order of magnitudes. A time scale is 1/λw1 with the lowest
eigenfrequency λw1 and a distance scale is the characteristic
length l. In the equations of motion one can identify the
small parameter

µ =

µ
λw1
λs1

¶2
¿ 1, (22)

which is the squared ratio of the lowest eigenfrequency in
non stiff direction λw1 and the lowest eigenfrequency in stiff
direction λs1. The stiffness matrix is now arranged as

K̂ =

lλ̂wi k2 O

O 1
µ dλ∗si c2

+ K̂N (p, 1/µ) , (23)

with the small parameter µ in the constant term. This is
important during linearization while looking at the order
of magnitude of the terms. Now we assume that the de-
formation coordinates p remain small: pk ¿ 1. Using a
perturbation technique, one expands the deformation coor-
dinates into a series with the small parameter µ

p = p0 + µp1 + µ
2p2 + µ

3p3 + . . . , p0 = 0.
(24)

By introducing Eqn. (24) in the dimensionless nonlinear
equations of motion and expanding nonlinear functions into
4
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Taylor-series in terms of µ results in the so called reduced
equations of motion. Comparison of terms of order O(µ0)
leads to an algebraic equation for the deformation coordi-
nates in stiff directions (written here with dimensions)

ps = (λs)−1
¡
hs0 −Mtsa−Mrsω̇ − ks0(ω)¢ .

(25)

Herein the matrices contain constant volume integrals

Mts = C1s, ks =
£
ωTC4skω

¤
, (26)

Mrs = C2s, hs =
nfX
i=1

¡
ΨsTJ0T

¢¯̄
R=Ri

fei +C1
sTg,

which are defined in (31). The rigid body motion and the
deformation in non stiff directions results in an ordinary dif-
ferential equation including terms of order O(µ0) and O(µ1)

Mtt Mtr Mtw

Mrr Mrw

sym. Mww

 a
ω̇
p̈w

+
 ktkr
kw

+
 0

0
λwpw +Kσ(a, ω̇,ω,hs)pw

−
 hthr
hw

 = 0.
(27)

Equation (27) contains the so called geometric stiffness
terms Kσ and the following submatrices

Mtt = m1, Mrr = I+C4kpk −C4Tk pk,
Mtr = fC0, Mrw = C2 +C5kpk +C8kpk, (28)

Mtw = C1 +C7kpk Mww = C3,

kt = ω̃ω̃C0 + ω̃ω̃C1p+ 2ω̃C1ṗ,

kr = ω̃Iω − ω̃C4kωpk + ω̃C4Tkωpk + 2C4kṗkω, (29)

kw =
£
ωTC4kω

¤
+
£
ωTC9lkωpl

¤
+£

ωTC6lkωpl
¤
+ 2C5Tkωṗl,
Copyright c° 2003 by ASME
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ht =
nfX
i=1

fei +mg,

hr =
nfX
i=1

R̃if
e
i +

fC0
m
g+

nfX
i=1

¡
J0[Ψα]k

¢∼ ¯̄
R=Ri

fei pk + gC1kgpk, (30)

hw =
nfX
i=1

¡
J0Ψ

¢T ¯̄̄
R=Ri

fei +C1
Tg+

nfX
i=1

npX
k=1

ΨT
∂J(p)

∂pk

¯̄̄̄
p=0

¯̄̄̄
¯
R=Ri

fei pk +C3gpk,

with the constant volume integrals

m1 =

ZZZ
V

1ρdV, C1 =

ZZZ
V

J0ΨρdV,

C0 =

ZZZ
V

RρdV, C2 =

ZZZ
V

R̃J
0
ΨρdV,

I =

ZZZ
V

R̃R̃ρdV, C3 =

ZZZ
V

ΨTJ0TJ0ΨρdV,

C4k =

ZZZ
V

R̃
¡
J0[Ψα]k

¢∼
ρdV,

C5k =

ZZZ
V

¡
J0[Ψα]k

¢∼
J0ΨρdV,

C6lk =

ZZZ
V

¡
J0[Ψα]l

¢∼ ¡
J0[ψa]k

¢∼
ρdV, (31)

λ =

ZZZ
V

ΨTJ0TL0THL0J0ΨρdV,

C7k =

ZZZ
V

∂J(p)

∂pk

¯̄̄̄
p=0

ΨρdV,

C8k =

ZZZ
V

R̃
∂J(p)

∂pk

¯̄̄̄
p=0

ΨρdV,

C9lk =

ZZZ
V

Ã
∂J(p)

∂pl

¯̄̄̄
p=0

[Ψα]k

!∼
R̃T ρdV.

Where fe are the external forces acting on the body surface
and g is the vector of the gravitational field intensity. The
density of the flexible body is ρ. In the reduced equations
of motion we have to solve the time independent volume
integrals, Eqn. (31). This is done with the preprocessor
FEMBS.
5
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3 DYNAMICS OF A PERIODICAL-PARAMETRICALLY EX-

CITED SYSTEM

3.1 Equation of Motion of a Flexible Rotorsystem

Mechanical systems which are described by a math-
ematical model with time-variant coefficient matrices are
called parametrically excited systems. Structures consist-
ing of an elastic rotor which is attached to an elastic base
structure, e.g. windturbines or helicopters, are examples for
this kind of systems. Such a structure can be represented

Ωp

F(t)

Figure 2. MBS MODEL OF A FLEXIBLE ROTORSYSTEM.

by a multibody system with flexible bodies. The system
Copyright c° 2003 by ASME
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shown in Fig. 2 consists of a cantilever, a cylindrical rigid
hub with a revolution joint and two elastic blades. The can-
tilever (index C) with a fixed base can be expressed in an
inertial frame of reference using nodal degrees of freedom
according to Eqn. (12)

Me0
C q̈C +K

0
CqC = hC , (32)

with the vector of forces and moments hC = [h
T
C\K ,−hTK ]T

where the forces and moments of the coupling point hK (in-
dex K) are denoted separately from the loads hC\K applied
to the other degrees of freedom of the cantilever without
the coupling point (index C\K). A modal representation
qC = ΘCpC , see Eqn. (15), with the separated degrees of
freedom of the coupling point qK

qC =

·
qC\K
qK

¸
=

·
ΘC\K
ΘK

¸
| {z }
ΘC

pC , (33)

is given by

MCp̈C +KCpC = Θ
T
ChC . (34)

The equations of motion of the rotor (index R) with two
elastic blades including the interia and gyroscopic terms of
the rotating rigid hub have the form of Eqn. (27)·
MKK MKR

sym. MRR

¸ ·
q̈K
p̈R

¸
+

·
kK
kR

¸
+·

0
λwRpR +K

σ(aK , ω̇K ,ωK ,h
s)pR

¸
−
·
hK
hR

¸
= 0.
(35)

Applying the relations of kinematic compatibility and the
equilibrium of reaction forces and moments at the coupling
point to Eqn. (34) and (35) yields the equations of motion
for the whole structure.
Operation conditions with the rotor rotating at a con-
stant angular frequency Ωp = 2π/Tp yield Tp-periodic time-
variant system matrices. In case of small elastic deforma-
tions, which are expressed in moving frames of reference at-
tached to each flexible body, the equations of motion may
be linearized w.r.t these small deformations even if there
are large rigid body motions. Then a linear periodic time-
variant system of differential equations of order np is ob-
tained in terms of modal coordinates p = [pTC ,p

T
R]
T

M(t)p̈(t) +D(t)ṗ(t) +K(t)p(t) = ΘTh(t),
(36)
6
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with M(t + Tp) = M(t) the symmetric mass matrix, with
D(t+Tp) = D(t) as an abbreviation for the sum of damping
and gyroscopic matrices, with K(t + Tp) = K(t) denoting
the sum of stiffness and centrifugal matrices and with the
transfomation matrix Θ between modal and nodal degrees
of freedom of the flexible rotor system·

qC
qR

¸
| {z }
q(t)

=

·
ΘC O
O ΘR

¸
| {z }

Θ

·
pC
pR

¸
| {z }
p(t)

. (37)

3.2 Solution of Linear Periodic Time Variant Systems

Equation (36) can be rewritten in state space

ẋ(t)−A(t)x(t) = A−11 (t)h̄(t), (38)

with the state vector x(t) = [pT (t), ṗT (t)]T , the excitation
vector h̄(t) = [(ΘTh(t))T ,0T ]T and the Tp-periodic system
matrices

A(t) =

·
0 I

−M−1(t)K(t)−M−1(t)D(t)
¸
, (39)

A−11 (t) =

·
0 M−1(t)

M−1(t)−M−1(t)D(t)M−1(t)
¸
.

(40)

3.2.1 Free Vibrations. The solution of the periodic ho-
mogenous system of differential equations related to Eqn.
(38) is found by an approximation method according to
Hill [14, 15, 16]. The Floquet set up x(t) = ξ(t)eλt, with
a Tp-periodic eigenvector ξ(t+ Tp) = ξ(t), and a Fourier-
series expansion of the eigenvector ξF (t) =

P
ξve

jvΩpt and
the Tp-periodic system matrix AF (t) =

P
Awe

jwΩpt allows
applying harmonic balance to the resulting equationÃ ∞X

v=−∞
(jvΩp + λ) ξve

jvΩpt

!

−
Ã ∞X
w=−∞

Awe
jwΩpt

!Ã ∞X
v=−∞

ξve
jvΩpt

!
= 0,
(41)

which yields an infinite set of coupled matrix equations.
If the Fourier-series are truncated, the matrix equations
can be rearranged in a finite hypermatrix scheme denoting
a hyper-eigenvalueproblem from which the eigenvalues λk
and eigenvectors ξk,F (t) are calculated. Because of a re-
dundance in the hypermatrix scheme only 2np linearly in-
dependent fundamental solutions xk(t) exist although the
dimension of the hypermatrix is greater than 2np.
Copyright c° 2003 by ASME
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3.2.2 Forced Vibrations. Applying a coordinate trans-
formation x(t) = Ξ(t)q̄(t) with the modal matrix Ξ(t) =
[ξ1,F (t), ..., ξ2np,F (t)] to Eqn. (38) yields a system of linear
differential equations with constant coefficients according to
the Ljapunov reducibility theorem [17], which is decoupled
in case of 2np linearly independent eigenvectors,

˙̄qk(t)− λk,0q̄k(t) =
Lξ

T
k,F (t) h̄(t)

ak
, k = 1, ..., 2np,

(42)

with the generalized modal masses ak and the left hand
eigenvectors Lξ

T
k,F (t), which are calculated from L Ξ

T (t) =

dakcΞ−1(t)A−11 (t). Solving Eqn. (42) in the frequency do-
main of the Fourier-transformation finally yields the sys-
tem response X (Ω) due to forced vibrations in state space

X (Ω) =
2npX
k=1

VX
v=−V

UX
u=−U

H̄k,vuH(Ω− (u+ v)Ωp),
(43)

with the Fourier-transforms X andH of the response func-
tion x(t) and the excitation function h̄(t), respectively, and
with the frequency response matrices

H̄k,vu(Ω,Ωp) =
ξk,vLξ

T
k,u

ak [j (Ω− vΩp)− λk]
. (44)

If the solution according to the modal coordinates p(t) is ex-
tracted from Eqn. (43) and the modal transformation, Eqn.
(37), is taken into account the system response in nodal
coordinates is obtained

Qi(Ω)=
2npX
k=1

VX
v=−V

UX
u=−U

(ηk,v)i(Lη
T
k,u)j

ak[j (Ω−vΩp)−λk]| {z }
Hij,k,vu(Ω,Ωp)

Hj(Ω−(u+ v)Ωp),
(45)

with the response coordinate (i) and the excitation
coordinate (j), with the frequency response functions
Hij,k,vu(Ω,Ωp), with the modeshape-vectors ηk,F (t) =P
ηk,ve

jvΩpt, ηk,v = [Θ,O]ξk,v and the Fourier-
transform H of the excitation function h(t). As can be
seen from Eqn. (45) a harmonic excitation with Ωexc yields
effective responses with several angular frequencies Ωres =
Ωexc + (u+ v)Ωp.
7
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4 IDENTIFICATION OF THE FREQUENCY RESPONSE

BEHAVIOUR

4.1 MBS program

The time-step integration of the nonlinear equations of
motion allows to calculate the time response under any op-
erating conditions. Applying the according forces to the
system large deformations may be observed, but the time re-
sponse does not uncover the reasons for inadmissible vibra-
tions. The calculation of eigenfequencies and modeshapes
gives more insight in the system behaviour. But in case of
time-variant systems a linearisation at a fixed time is re-
quired to solve the eigenvalueproblem as it is usually done.
This means to calculate the dynamic behaviour of the sys-
tem in a fixed position but taking into account the effects
of centrifugal, gyroscopic and maybe aerodynamic forces.
These so called snap-shot eigenfrequencies cannot reveal the
multiple resonance frequencies of the true modes ηk,F (t),
because they are obtained without taking into account the
extensive transfer behaviour of periodic time-variant sys-
tems.

4.2 Partial Frequency Response Functions

The threefold sum in Eqn. (45) cannot be carried out
independently of the excitation term. For a unique descrip-
tion of the systems transfer behaviour the terms on the right
hand side have to be rearranged in groups with u+ v = z

Qi(Ω)=
V+UX

z=−(V+U)

2npX
k=1

X
v,u|v+u=z

Hij,k,vu| {z }
Hij,z(Ω,Ωp)

Hj(Ω− zΩp),
(46)

with the partial fequency response functions Hij,z(Ω,Ωp).
In case of a non-contact step-sine excitation the necessary
signal amplitudes for accumulating the partial fequency re-
sponse functions can be taken directly from the Fourier-
spectra of the time data

Hij,z(Ω+ zΩp,Ωp) =
Qi(Ω+ zΩp)
Hj(Ω) . (47)

If there is a feedback due to a coupled excitation device or if
a broadband excitation is applied, then Eqn. (47) cannot be
used any longer because the system response with angular
frequency Ωres is caused by excitations not only with Ωexc =
Ωres but with Ωexc = Ωres − (u + v)Ωp, i. e. more than
one partial frequency response function contributes to the
system response. In this case a least squares estimation of
Copyright c° 2003 by ASME
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the partial frequency response functions Hij,z(Ω,Ωp) has to
be carried out [11, 18].

5 APPLICATION TO A FLEXIBLE ROTOR SYSTEM

In order to demonstrate the differences which might oc-
cur if the effects of a periodical-parametrically excited sys-
tem are neglected by a reduction to a time-invariant snap-
shot system, the flexible rotor system, Fig. 2, is investigated.
The driving point function at the upper end of the cantilever
is chosen as a representative of the system dynamics.

5.1 Non-rotating System

The non-rotating system is described by constant co-
efficient matrices and may be treated as usually. A finite
element model of the whole system is used to determine
the number of modes for the flexible bodies such that the
dynamic behaviour of the non-rotating system is reliably
modelled in a frequency range up to 400 Hz [11], Fig. 3.
The notation ”YY” indicates the direction along the axis of
rotation while ”ZZ” indicates the direction perpendicular
to it. The according mode shapes are described in the table
below.

Modes of Non-Rotating System
Frequency [Hz] Description
FEM MBS Cantilever Blades

1 24.2 24.2 1. bend. z -
2 33.4 33.5 1. bend. y -
3 100.8 101.8 1. torsion 1. bend. z

in phase
4 113.4 113.4 - 1. bending z
5 181.3 185.7 2. bend. z 1. bending z
6 200.7 205.6 1. torsion 1. bend. z

out of phase
7 332.4 338.4 2. bend. y / 1. bending z

1. torsion
8 437.1 492.6 3. bend. z 1. bend. y

5.2 Rotating System

The rotational speed of the rotor was set to Ωp =
100 s−1 ≈ 15.9 Hz.

5.2.1 Snap-Shot-Frequency Response Function.

The snap-shot frequency response functions were calculated
from the linear equations of motion of the MBS model for
three different angular positions of the rotor, Fig. 4. As
compared to the non-rotating system, Fig. 3, there are only
slight differences in frequency and amplitude of the reso-
nances for the horizontally oriented rotor. For the differ-
ent angular positions of the rotor there are evident differ-
8
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Figure 3. FREQUENCY RESPONSE FUNCTION OF THE NON-

ROTATING SYSTEM AT THE END OF THE CANTILEVER.

ences concerning the torsional modes of the cantilever (in
the vincinity of 100 Hz and 200 Hz).

5.2.2 Partial Frequency Response Functions. The par-
tial frequency response functions, Eqn. (47), are calculated
from the resulting time data of a multibody system simu-
lation with step-sine excitation at the end of the cantilever
perpendicular to the axis of rotation, Fig. 2. The step-
sine excitation was applied in the range from 0−450 Hz in
steps of 0.6 Hz. The dominating partial frequency response
functions are depicted in Fig. 5. Besides the ”0”-partial frf
the ”±2Ωp”-partial frfs contribute significantly to the sys-
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Figure 4. SNAP-SHOT FREQUENCY RESPONSE FUNCTIONS ZZ FOR

DIFFERENT ANGULAR POSITIONS OF THE ROTOR.

tem response due to the change of the rotors mass geom-
etry twice per revolution. In order to illustrate the use of
the partial frequency response functions a harmonic excita-
tion with a frequency of 200 Hz is plotted in Fig. 5 as an
upward-arrow. The system responds with the excitation fre-
quency and additional sidebands. In each partial frequency
response function HZZ,z the according harmonic response
with a frequency of [200 + zΩp/(2π)] Hz is indicated by a
downward-arrow.

5.2.3 Discussion of Results. In order to compare the
results of the snap-shot and the partial frequency response
functions, the latter are added up, which yields the fre-
quency response of the periodic system due to an impuls
excitation. There are significant differences according to
the torsional modes of the cantilever, Fig. 6. The snap-shot
frequency response functions, even those for other angular
positions, Fig. 4, are not able to detect the real resonances
of the periodic system.

6 CONCLUSION

The simulation of flexible multibody systems is an im-
portant numerical tool for dynamic studies of many struc-
tures. There is no difficulty in simulating parametrically ex-
cited systems even in a non-linear formulation by time-step
integration. But if the focus is on the frequency response
behaviour of such parametrically excited systems, one has
to be aware of the consequences of neglecting the paramet-
rical excitation. The consideration of snap-shot eigenfre-
9
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quencies does not reveal all resonances of a parametrically
excited system, which may lead to momentous misinterpre-
tation of the system dynamics, as was shown for a periodic
time-variant system.
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