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Finite Element and Finite Difference 
Methods in Engineering 
By means of a simple example, a stretched string under transverse load, finite element 
and finite difference methods which are so widely used in engineering are illustrated. 
The finite element method is shown to be an essentially modified Raleigh-Ritz procedure. 
The finite difference technique is applied directly to the string differential equation; an 
energy related approach is also discussed. The manner in which a combination finite 
element/finite difference solution can be effected for the same physical problem is 
treated. Application of both the finite element and finite difference methods to more 
complex problems as well as selected programs and depositories are mentioned. 

Introduction 
For many years, including to a fair extent at the present time, 

engineering analysts and designers have utilized handbooks and 
design charts as a prime mechanism in making decisions. With 
the advent of easily available computer assistance, analytical 
and numerical methods are being utilized with increased fre­
quency in engineering decision making. Through necessity, some 
fields such as aerospace have been in the conspicuous forefront 
with respect to the early and necessary usage of rather sophisti­
cated analytical methods in an engineering design mode. For ex­
ample, the Boeing 747 aircraft could never have been designed in 
such an efficient and rapid manner relative to its earlier predeces­
sor, the 707, without extensive and imaginative use of numerical 
and analytical techniques. It is interesting to note, however, that 
traditionally less analytic intensive engineering fields such as 
automotive and civil engineering, are also utilizing many rela­
tively sophisticated computerized techniques both for analysis 
and manufacturing. 

In this paper, prime attention is focused on the two most 
widely utilized numerical tools in engineering: finite element 
and finite difference methods. While finite difference techniques 
have been used for almost a century, the finite element method 
has been a serious tool for but a decade. The growth and breadth 
of finite element applications is indeed almost virulent. The 
recent maturity of the field is perhaps best evidenced by the 
rash of books published on the subject during the last three 
years [1-7].1 While the prime initial technical area of applica-
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tion in finite elements was in structural mechanics, current fields 
of application include fluids, heat transfer, and electronics. 

A prime purpose of this paper is to describe the essence of the 
finite element and finite difference methods via relatively simple 
examples. In addition, a description by example will also be 
presented of how these two powerful techniques could be com­
bined. 

In the next four sections, the string under constant tension is 
used as the general prototype of the finite difference or finite 
element problem. Firstly, an exact and a Raleigh-Ritz type solu­
tion is obtained; subsequently, a modification of the Raleigh-
Ritz method is presented to demonstrate the close link with the 
finite element method; solutions to the same stretched string 
problem are then obtained by a direct differential equation and 
an energy approach; finally, the sequence is completed by il­
lustrating for the same problem how the finite element method 
can be combined with the finite difference technique. A general 
discussion follows describing how finite element methodology 
with various elements is used as a solution technique. The more 
recent generalization of finite difference techniques with variable 
mesh arrangements is subsequently treated. Finally, a de­
scription of representative computer programs which might be of 
interest from a design viewpoint are enumerated along with 
possible sources of obtaining the same. The paper closes with 
some conclusions and discussion. 

String Under Tension—Exact 
Solutions 

and Raleigh-Ritz 

The prototype example selected, which will be utilized to 
demonstrate much of the theory discussed is that of a stretched 
string under constant tension T; the tension is presumed large 
enough that it does not change significantly due to the apphoft" 
tion of a transverse loading P, Fig. 1. The transverse load is 
supported by the constant tension T in the string which under-
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Fig. 1 Initially stretched string with transverse load 

Fig. 2 Modified Raleigh-Ritz with two functional: y,, y, 

goes a deformation pattern shown by the dashed line. Enforce­
ment of equilibrium for an elemental section d£ of the string 
results in a simple differential equation shown in equation (1). 
This example is essentially the one-dimensional simple analogue 
of the well-known two-dimensional membrane problem used in 
elasticity theory for torsion [8], 

dp 
P_ 

(1) 

For definiteness, let us select a load function P = Po sin 7r£. 
Inserting this load function into equation (1) and integrating 
twice with respect to £ satisfying the obvious boundary conditions 
that the deflection y vanishes at 0 and 1, we find the exact 
solution of equation (2). 

exact solution y 
PoU 

2 V 
sin 7r£ (2) 

Next, let us review the so-called Raleigh-Ritz procedure which 
has been widely used as an approximate technique to solve prob­
lems in mechanics. With this procedure, one assumes that the 
displacement function y is equal to the product of an undeter­
mined parameter oi and a shape parameter /(£), equation (3a). 
The shape parameter is selected so that it does conform qualita­
tively to what one would expect intuitively, and most impor­
tantly satisfies the geometric boundary conditions of no displace­
ment at either end, equation (36). The amplitude parameter a,\ 
is calculated by determining the total potential energy in the 
system and minimizing this quantity with respect to oi. 

Raleigh-Ritz procedure y = ai/(£) (3a) 

B.C.'s satisfied /(0) = / ( l ) = 0 (36) 

The total potential energy of the string is defined with respect 
to its original straight undeformed configuration. It consists of 
two terms expressed mathematically by equation (4); the 
physical interpretation of the first term is the strain energy as­
sociated with the stretching of the elastic string, and the second 
is related to the potential energy of the external load (the work 
it can do in going from the deformed position back to the original 
configuration). 

potential energy V = — J J/'zd£ — I 
2 Jo Jo 

Pydi. (4) 

To illustrate this process, let us select for the deflection func­
tion of (3a) a parabola as illustrated by equation (5). The bound­
ary conditions are clearly satisfied and a, the amplitude param­
eter, represents the maximum deformation at the center (£ 
- Vi). 

= o[4£(l - £)] (5) 

If we substitute equation (5) into the total potential energy ex­
pression of equation (4) and minimize with respect to the ampli­
tude parameter a (dV/da = 0) we find that a = 0.955 (Po/IV2). 
When compared with the exact solution of equation (2), this ap­
proximate solution is only in error by 4 J/a percent. 

As originally conceived, the Raleigh-Ritz approach could be 
applied with a series of terms of the type shown in equation (3a), 
namely a series of products of amplitude parameters by func­
tional each of which satisfy the boundary conditions. The func­
tional should differ from each other and the amplitude param­
eters also have different designations (say, ai, a2, . . . a„). By 
substituting all these expressions in the energy equation (4) and 
minimizing, in turn, with respect to each amplitude parameter, a 
series of simultaneous equations will be obtained for the n 
parameters which could be solved. 

The difficulty in applying the Raleigh-Ritz method in this 
traditional form is that for complex realistic situations, it is not 
readily feasible to select single functionals which satisfy the 
boundary conditions. 

Modified Raleigh-Ritz Approach (Finite Element 
Method) 

A simple but powerful modification of the Raleigh-Ritz pro­
cedure can be effected which overcomes the previously mentioned 
difficulty of selecting functions which simultaneously satisfy all 
boundary conditions. This procedure is illustrated by Fig. 2 
which pertains to the same stretched string problem discussed 
in the previous section. For this case, however, two functionals, i/i 
and i/2, are selected such that the boundary conditions associated 
with each are satisfied and they meet at a common point (and 
slope) in the center. As before, the amplitude parameter a re­
mains open and obtainable by an energy minimization process. 

To illustrate, let us select yi as a parabola and y% as a segment 
of a sine curve as described mathematically by equations (6) 

2/i(S) = o[4«l - Q] 0 < { < V, 

2/2(£) = «(sin «"£) 

(6a) 

V> < $ < 1 (66) 

For the same sinusoidal loading described in the previous sec­
tion, the functionals given by equations (6) are substituted into 
the energy expression of equation (4) (which must be partitioned 
into two regions commensurate with those described in equation 
(6)). We may then minimize the total potential energy with 
respect to the open amplitude parameter a and solve thereby 
for this value: a — 0.976 (Po/2V2). The error resulting relative 
to the exact solution of equation (2) is 2.4 percent. That this 
error is less than that of the previous solution associated with the 
complete parabolic functional of equation (5) is not surprising 
because in the second half of the current solution a sinusoidal 
function was assumed which is the shape of the exact solution of 
equation (2). 

The methodology described by Fig. 2 is capable of extension 
in a convenient and methodical manner as exemplified by Fig. 
3. Obviously, the n + 1 functionals (yi through y„+i) could be 
used to describe the deflection profile in a piecewise fashion. The 
end functionals should satisfy appropriate boundary conditions; 
in addition, continuity between adjacent functionals should also 
be a requirement. For this generalized case, we would minimize 
the total potential energy (obtained by substituting in an appro­
priate piecewise fashion the n functionals into equation (4)) with 
respect to, in turn, a,\ through a„. The resulting set of equations 
are readily solvable for all the open amplitude parameters Oi, a2, 
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Fig. 3 Modified Raleigh-Ritz with n+X functionals 
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Fig. 5 String response described by finite number of parameters 
a\ to at 

Fig. 4 Illustration of finite difference approximations to derivatives 

parameter, a3, is 2.3 percent more than the exact solution of 
equation (2). 

In essence, what is conducted via this finite difference procedure 
is to replace a continuous differential equation which is valid at 
all points along the string by a finite number of approximate 
finite difference equilibrium equations at each of the five nodal 
points. 

An alternative approach which has been used with some success 
in recent years is an energy finite difference method. One can 
visualize utilizing the finite difference mesh of Fig. 5 and sub­
stituting for the derivatives in accordance with the expressions 
of Fig. 4 into the energy expression of equation (4). By mini­
mizing the total potential energy successively with respect to 
Oi, a2, and a3 (because of symmetry), one would obtain three equa­
tions in three unknowns, from which the values of ai through os 

could be calculated. 

The previous discussion illustrated by Figs. 2 and 3 constitutes 
the essence of the finite element procedure. The problem be­
comes largely a bookkeeping one when applied to one physical 
situation or another. The finite element method has been in­
terestingly characterized as a type of patchquilt Raleigh-Ritz 
method and it is hoped that this illustration has amply portrayed 
that notion. 

Finite Difference Technique—Direct Differential 
Equation and Energy Methods 

The essence of the finite difference approach is to replace de­
rivatives by algebraic quantities; subsequently, when we work 
with either the differential equations or an energy approach, we 
logically solve an evolving system of algebraic equations in an 
orderly manner. 

An illustration of how we approximate the derivatives of a 
functional by algebraic quantities is shown in Fig. 4. In the limit, 
when the quantity h (the spacing between adjacent points) be­
comes vanishingly small, the finite difference approximations be­
tween the first and second derivatives shown adjacent to the 
curve are indeed rigorously the exact derivative of the function 
at the point xc. The reader unfamiliar with finite difference ap­
proximations is encouraged to select specific functionals for f(x) 
and prove to himself that the derivative approximations for 
some small but finite values of h do indeed work quite well. 

Let us again turn to the stretched string of Fig. 1 and the as­
sociated differential equation of equation (1) to illustrate the 
first form of a finite difference solution. 

The deformation domain could be characterized by the de­
formation functional y for the string as a five-parameter model, 
Fig. 5. If we could determine what ai through a6 were, we would 
be able to determine to good approximation what is the actual 
deflectional function. 

Firstly, from a symmetry viewpoint it is clear that Ox = as, 
and ai — at. Hence, there are only three independent unknown 
quantities. By substituting for the finite difference equivalence 
of the derivative (see Fig. 4) into the differential equation of 
equation (1) at points associated with ah a2, and a3, three equa­
tions in algebraic form are obtained to solve the three quantities 
«i through a3. The mesh spacing h associated with this exercise 
is one-sixth the total string length. 

The resulting solution shows that the maximum amplitude 

Combination Finite Element/Finite Difference 
Solutions 

One of the principle features of the finite element method is 
its ability to treat complex domains; on the other hand, the finite 
difference method, where applicable, is frequently very efficient 
with respect to computer time. The virtues of both techniques 
could be combined if an energy approach were utilized. A com­
bination finite element/finite difference approach will be illus­
trated here by again selecting the stretched string problem of 
Fig. 1. 

Again because of symmetry only three amplitude parameters 
ai through a3 are to be determined, Fig. 6. As shown in Fig. 6, a 
finite element solution is applied to the first quarter of the string, 
and a finite difference approach is utilized for the second quarter 
(a symmetric situation exists in the right half of the string). As 
further illustrated in the figure, linear functionals are presumed 
in the finite element portion. In the finite difference portion, de­
rivatives of the function are calculated at the nodal point by 
again using the finite difference approximations described in 
Fig. 4. 

The total potential energy of equation (4) can be calculated 
for both the finite element and finite difference regimes as a func­
tion of the amplitude parameters ai, ai, and aa. By again mini­
mizing the total potential energy with respect to these three 
amplitude parameters, three equations arise which can be solved 
for oi, 02, and a3. Accuracy of the solution is expected to be 
roughly comparable to the finite difference energy approach. 

Finite Finite 
Element j Difference 
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Fig. 6 Combination finite difference/finite element (FE) solution 
with linear functionals in FE part 
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Fig. 7 Representative finite elements 

If instead of three amplitude parameters there were n such 
parameters, then n minimization conditions are set up resulting 
in a determinate n X n system of equations. The illustration 
of Fig. 6 also demonstrates the most useful application of a com­
bined finite difference/finite element approach in that the finite 
element technique is applied in the vicinity of the boundary 
where the likelihood of irregiilarities or complex shapes would 
cause difficulty for an exclusive finite difference approach. 

In the finite element regime of Fig. 6, a quadratic rather than 
a linear functional would probably produce a slightly improved 
result. In finite element parlance these functionals are known as 
shape functions. I t is critical that no matter what the shape func­
tion selected, at a nodal point the functional must pass through 
the local amplitude parameter value. For example, in the domain 
from 0 to h in Fig. 6, the linear functional selected must pass 
through the points y = 0 and y — <ii. 

Generalizations of the Finite Element and Finite 
Difference Method 

While a relatively simple notion of the finite element has been 
introduced in relation to the string problem, it should now be 
apparent the same concept is applicable toward much more 
complex elements such as those illustrated in Fig. 7. Two- and 
three-dimensional continua, as well as bending-type problems, can 
be readily solved with this approach. A shape function is assumed 
for whatever the element happens to be; the deflections or rota­
tions at the nodal point must again be associated with discrete 
amplitude parameters whose deformations are compatible with 
those of adjacent element in the field. The problem becomes 
largely a bookkeeping one rather than a conceptionally difficult 
one. Total potential energy is utlimately expressed in terms of all 
the amplitude parameters. Minimization with respect to each 
of these quantities produces a determinate set of equations. 

The finite difference technique can be used in the one-dimen­
sional example of the string treated in previous sections, as well 
as in two- or three-dimensional meshes which are normally uni­
formly mapped out in some domain pertinent to the physical 
problem. As mentioned earlier, one of the difficulties with finite 
difference techniques is the inability to treat complex domains 
with variable rather than regular finite difference meshes. This 
problem could be alleviated greatly. Unlike the illustration of 
Fig. 4, finite difference approximations to derivatives can be ex­
pressed in a much more general form should the surrounding 
points to a given central point be randomly selected. A number of 
solutions to linear and nonlinear problems have been obtained 
utilizing variable mesh finite difference techniques with a direct 
differential equation approach [9], as well as with an energy 
technique [10]. 

Useful Programs and Sources 
Utilizing finite difference and finite element methods, general 

and special-purpose computer programs are available in struc­

tures, fluid mechanics, and heat transfer. Many programs have 
pre- and post-processors as well as graphics output routines at­
tached to them, making them particularly convenient for the 
user. Representative examples in the structures field include 
SAP IV [11] and GIFTS [12]. With these codes the user can em­
ploy a variety of finite element types and assemble them for 
various load cases in a very efficient manner. These two com­
puter programs have, in fact, been widely utilized nationally by 
the mechanical engineering community. 

A number of depositories of computer information are avail­
able such as the National Information Service in Earthquake 
Engineering (NISEE) , the NASA-sponsored COSMIC at the 
University of Georgia, and the Air Force-sponsored ASIAC 
located in California. Most computer software depositories are 
poorly funded relative to the mission they are chartered to per­
form. As a result, many users have difficulty in obtaining com­
puter programs via this route. Regrettably, there is no large in­
stitutionalized computer software sharing scheme operating on a 
national basis which is adequately funded. 

From symposia proceedings or other special events, compila­
tions of software are occasionally obtained [13], In addition 
special ASME publications relating to programs sponsored by, 
some Technical Divisions do have discussions or treatments on 
computer programs [14]. Another novel at tempt to communicate 
information on computer software is the forthcoming Structural 
Mechanics Software Series [15]. These volumes will have survey 
information on selected segments of structural mechanics as well 
as documentation-type information on actual programs which can 
be accessed directly on national computer network systems. 

Conclusions and Comments 
Finite element and finite difference methods have been il­

lustrated via a number of simplified examples. I t has also been 
shown how a combined approach to both these techniques is 
possible. The application of finite elements with more advanced 
elements is discussed, and finite difference techniques with gen­
eralized grids are briefly treated. Information on computer 
programs, as well as sources of the same, are cited. 

The analytical methodology outlined here represents the cur­
rent rather advanced state of the art available in a relatively con­
venient form to engineers from many disciplines. Pre-processor 
and graphic capabilities, along with interactive techniques, enable 
many computer programs to be readily useable by the engineer 
and designer. In view of the serious growth of product liability 
litigation [16], it behooves engineers to avail themselves of, and 
become acquainted with, these new analysis and design techniques 
so as to effect the safest possible design of a given product. 
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