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Abstract A standard practice in health economic evalu-

ation is to monetize health effects by assuming a certain

societal willingness-to-pay per unit of health gain.

Although the resulting net monetary benefit (NMB) is easy

to compute, the use of a single willingness-to-pay threshold

assumes expressibility of the health effects on a single non-

monetary scale. To relax this assumption, this article

proves that the NMB framework is a special case of the

more general stochastic multi-criteria acceptability analysis

(SMAA) method. Specifically, as SMAA does not restrict

the number of criteria to two and also does not require the

marginal rates of substitution to be constant, there are

problem instances for which the use of this more general

method may result in a better understanding of the trade-

offs underlying the reimbursement decision-making prob-

lem. This is illustrated by applying both methods in a case

study related to infertility treatment.
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Introduction

In health economic evaluation, two or more alternatives

(e.g., medical devices, drug therapies, or surgical proce-

dures) are evaluated in terms of their costs and health

consequences to assist health policy makers in deciding

which of these alternatives should be reimbursed. Such

analyses can be conducted using different methods and

theoretical perspectives. In particular, a distinction is often

made between cost-benefit analysis, where the objective is

to ascertain the total amount that individuals would be

willing to pay for the health effects resulting from a

treatment (welfarist perspective) and cost-effectiveness

analysis (sometimes referred to as cost-utility analysis

when health effects are quantified in terms of quality-

adjusted life years), where the objective is to maximize

health effects given a budget constraint on the total health-

care expenditure (resource allocation perspective) [4].

Although attempts to ascertain individuals’ valuation of

health effects are sometimes undertaken, the vast majority

of published health economic evaluations are cost-effec-

tiveness analyses [10]. In addition, given that cost-benefit

analysis and cost-effectiveness analysis have fundamen-

tally different philosophical underpinnings that cannot be

reconciled in a meaningful way [7], it seems that the

resource allocation perspective predominates in applied

health economic analysis.

From a resource allocation perspective, the purpose of

the health-care system is to maximize a health-related

objective function subject to a budget constraint set by

policy makers. However, as resource allocation decisions

have to be made across a whole range of disease areas, it is
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practically impossible to simultaneously compare the costs

and effects of all possible treatments within each of these

disease areas. The approach taken in the literature has

therefore been to derive simple rules for reimbursement

decision making from abstract mathematical formulations

of the problem [16]. In particular, it has been shown that

under some simplifying conditions, the optimal solution is

to undertake all interventions whose ratio of costs to effects

is below or equal to the maximum spendable amount per

unit increase in the chosen measure of effectiveness, say c,

whose value depends on the size of the health-care budget

[21]. From this, it follows that when choosing from a set of

alternative treatments, it is optimal to first eliminate all

(extendedly) dominated treatments and to then choose from

the remaining treatments the one with the highest incre-

mental cost-effectiveness ratio not exceeding c [3, 8].

Although decision rules such as the one described in the

previous paragraph can assist health policy makers in

deciding whether a certain treatment should be eligible for

reimbursement, a decision to reimburse this treatment

should still be followed by a reallocation of the remaining

budget as the inclusion of this treatment will result in a

different value of c (e.g., c will increase if the new treat-

ment replaces a more expensive treatment and decrease if

relative to the current treatment the new treatment is both

more effective and more costly). In practice, however, the

dependence between c and the available budget is often

neglected [1]. Instead, it is usually assumed that c is fixed

at a certain value k, which is generally referred to as the

societal willingness-to-pay per unit of health gain. This

reduces a rather complex resource allocation problem to a

relatively straightforward unconstrained optimization

problem, where the optimal alternative is simply the one

that yields the highest net monetary benefit (NMB) [6].

Because of its simplicity, the NMB framework has

become the current standard of practice in applied health

economic evaluation. However, as the willingness-to-pay

threshold is treated as an exogenous parameter, the use of

this framework is no longer congruent with the resource

allocation perspective from which it originated. In this

article, we show that the practical application of the NMB

framework nevertheless still has a theoretical foundation

when the NMB function is interpreted as a value function

as defined in multi-attribute value theory (MAVT). In

particular, using this interpretation of the NMB function,

we prove that the NMB framework can be seen as a special

case of the more general stochastic multi-criteria accept-

ability analysis (SMAA) method, which, in the context of

health policy decision making, has previously been applied

to perform quantitative drug benefit-risk analysis of alter-

native treatments using all available evidence from a

clinical trial [17] or a network of clinical trials [19]. In

addition, as interpreting the NMB function as a value

function implies that the reimbursement decision-making

problem is treated as a multi-criteria decision problem, it is

no longer required to restrict the number of criteria that are

taken into account in a health economic evaluation to two.

In fact, there are problem instances for which including

more than two criteria results in a better understanding of

the trade-offs underlying the reimbursement decision-

making problem, as will be illustrated in a case study

related to infertility treatment.

Multi-criteria decision analysis

Multi-criteria decision problems consist of a set of

m alternatives that are evaluated in terms of n criteria. The

vector of criteria measurements corresponding to alterna-

tive i is denoted by xi ¼ ðxi
1; . . .; xi

nÞ, where xk
i represents

the performance of alternative i on criterion k.

MAVT

In MAVT, a decision maker’s preference structure is rep-

resented by a value function v(x) such that alternative i is

preferred over alternative j if and only if v(xi) [ v(xj). To

simplify the assessment of v(x), it is generally assumed that

the criteria are preferentially independent [14]. The overall

value function can then be written as a weighted additive

combination of n partial value functions:

vðx;wÞ ¼
Xn

k¼1

wk � vkðxkÞ: ð1Þ

MAVT is based on the premise that a decrease in the

performance on one criterion can be compensated by an

increase in the performance on the other criteria. The

partial value functions, normalized so that the worst pos-

sible level of performance on each criterion is assigned a

value of 0 and the best possible level of performance is

assigned a value of 1, are therefore constructed in such a

way that equal decrements in vk represent the same loss of

value to the decision maker (and can thus be compensated

by the same amount of increase in the performance on the

other criteria). The weights wk, normalized so that they sum

to one, indicate how much more important the swing from

worst to best on one criterion is compared to the swings

from worst to best on the other criteria. For example,

wk [ wl implies that if the decision maker had to choose

between improving either criterion k or criterion l from the

worst to the best value, he or she would improve criterion

k. To emphasize that the weights in MAVT reflect the

relative importance of swings between reference points on

the criteria scales rather than the intrinsic importance of

these criteria, they are sometimes referred to as swing
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weights [2]. All weights considered in this article should be

interpreted as swing weights.

To use the additive value function for decision-support

purposes, the partial value functions need to be defined and the

weights need to be specified. However, given that many

countries that have adopted the NMB framework are not

willing to make explicit statements about their willingness-to-

pay thresholds [9], this problem is also likely to occur for the

weights if MAVT is applied to support reimbursement deci-

sion making. In addition, in MAVT, the values of xk
i are con-

sidered to be deterministic. However, the criteria

measurements used to inform reimbursement decision making

are derived from clinical trials and/or observational studies

(either directly or indirectly as parameter estimates of a

mathematical model), and as such they are inherently uncer-

tain. In such situations, SMAA [15] can be applied to deter-

mine (1) the ‘typical’ values of the weights that would make

each alternative the preferred one and (2) the probability that an

alternative obtains a certain rank given the uncertainty in the

criteria measurements and/or the values of the weights.

SMAA

In SMAA, the weight vector w ¼ ðw1; . . .;wnÞ of the

additive value function is assumed to be uniformly dis-

tributed in the feasible weight space W defined through a

set of linear weight constraints, and the criteria measure-

ments n ¼ ðx1; . . .; xmÞ are assumed to be random variables

with joint density function fNðnÞ. For given realizations

w of W and n of N, the rank of each alternative is defined as

an integer from the best rank (=1) to the worst rank (=m) by

means of the ranking function

rankði; n;wÞ ¼ 1þ
Xm

k¼1

Iðvðxk;wÞ[ vðxi;wÞÞ; ð2Þ

where I() is an indicator function returning the value 1 for

I(true) and the value 0 for I(false). The rank acceptability

index b(i, r), defined as the probability that alternative i is

positioned at rank r, can then be computed as

bði; rÞ ¼
Z

w2W

fWðwÞ
Z

n2N:rankði;n;wÞ¼r

fNðnÞdndw : ð3Þ

In addition, the SMAA methods allow computing the

weights a ‘typical’ decision maker supporting each

alternative might have. These so-called central weight

vectors can be presented to the decision maker to help him

or her understand what kind of weights would favor a certain

alternative, without providing preference information.

More formally, the central weight vector of alternative

i, denoted by wc
i , is defined as the expected center of gravity

of all possible weight vectors that position this alternative

at rank 1:

wi
c ¼

1

bði; 1Þ

Z

w2W

fWðwÞw
Z

n2N:rankði;n;wÞ¼1

fNðnÞdndw : ð4Þ

Finally, for a given weight vector w, the confidence factor

p(i, w), defined as the probability that alternative i to

positioned at rank 1 when w is used to represent the

decision maker’s preferences, can be computed as

pði;wÞ ¼
Z

n2N:rankði;n;wÞ¼1

fNðnÞdn: ð5Þ

When computed for the central weight vectors, the confi-

dence factors pði;w1
cÞ; . . .; pði;wm

c Þ indicate whether the

criteria measurements are sufficiently accurate to discern

the efficient alternatives (i.e., all alternatives with a non-

zero first rank acceptability index). Central weight vectors

with low confidence factors (\0.50) should be interpreted

with care: even if a decision maker finds a central weight

vector to correspond to his or her preferences, there might

be another alternative that achieves a higher first rank

acceptability with the given weights.

The NMB framework

Consider m alternatives that are evaluated in terms of their

cost ci and effectiveness ei. The NMB of alternative i is

defined as

NMBðci; ei; kÞ ¼ kei � ci; ð6Þ

where k denotes the willingness-to-pay per unit increase in

the chosen measure of effectiveness. The best alternative is

the one that yields the highest NMB.

To take into account uncertainty in the criteria mea-

surements, it is usually assumed that n ¼ ððc1; e1Þ; . . .;
ðcm; emÞÞ is a random vector with joint density function

fNðnÞ. The probability P(i, k) that alternative i has the

highest NMB can then be computed as

Pði; kÞ ¼
Z

n2N:RANKði;n;kÞ¼1

fNðnÞdn; ð7Þ

where RANK(i, n, k) = 1 ?
P

k=1
m I [NMB(ck, ek, k) [

NMB(ci, ei, k)]. As the exact value of k is generally

unknown, decision support is typically provided by plotting

P(i, k) against k, resulting in the alternative’s cost-effec-

tiveness acceptability curve (CEAC) [20].

The NMB framework as a special case of SMAA

For a given value of k, the NMB function uniquely spec-

ifies the decision maker’s preference structure. In the
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nomenclature of MAVT, the NMB function therefore is a

value function. However, this representation of the deci-

sion maker’s preference structure is not unique: any strictly

monotone transformation of the NMB function results in

the same preferential ordering of any set of points in the

cost-effectiveness space and therefore represents the same

preference structure [14]. For example, the functions

NMB(ci, ei, k), log(NMB ci, ei, k)), and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NMBðci; ei; kÞ

p

all result in the same ranking of the decision alternatives

and must therefore represent the same preference structure.

To prove that the NMB framework can be seen as a

special case of the more general SMAA method, we need

to show that (1) there exists a weighted additive function

that represents the same preference structure as the NMB

function and (2) that when using this function the infor-

mation presented in a CEAC can be derived from the

SMAA descriptive indices. Both the NMB function and a

weighted additive combination of two linear partial value

functions exhibit constant marginal rates of substitution

(i.e., the amount that the decision maker is willing to pay

for a unit increase in health effects depends on neither c nor

e). Intuitively, it must therefore be possible to construct a

weighted additive combination of two linear partial value

functions that represents the same preference structure as

the NMB function. To prove this formally, consider the

linear partial value functions v1ðeÞ ¼ e�e

e�e
and v2ðcÞ ¼ c�c

c�c
,

where c and c denote the worst and best possible value of

the cost criterion, and e and e denote the worst and best

possible value of the effectiveness criterion. Then, it fol-

lows that the NMB function can be expressed as

NMBðc; e; kÞ ¼ ðke� keþ c� cÞðw1v1ðeÞ þ w2v2ðcÞÞ
þ ke� c; ð8Þ

with w1 and w2 defined as

w1 ¼
ðke� keÞ

ke� keþ c� c
; ð9Þ

w2 ¼
c� c

ke� keþ c� c
: ð10Þ

Hence, the NMB function can be written as a positive

affine transformation of the weighted additive function

v((c, e), w) = w1v1(c) ? w2v2(e), thereby implying that

these two functions represent the same preference struc-

ture. The details of this derivation are provided in the

‘‘Appendix’’. In addition, by substituting (9) and (10) in

(5), it follows that P(i, k) is simply the confidence factor

p(i, w) corresponding to the weight vector w ¼

ð ðke�keÞ
ke�keþc�c

;
c�c

ke�keþc�c
Þ of the additive value function

v((c, e), w). CEACs can therefore be seen as graphical

presentations of the SMAA confidence factors for the two-

criteria problem.

To conclude, both the NMB framework and SMAA are

based on the assumption that the decision maker’s prefer-

ence structure can be represented by an additive value

function. However, unlike the NMB framework, SMAA

does not restrict the number of criteria to two, and,

although assumed in the case study presented in the next

section, it does not require the partial value functions to be

linear. In addition, as both methods combine an additive

value function with stochastic simulation to derive similar

descriptive indices supporting the decision problem, the

NMB framework can be seen as a special case of the more

general SMAA method.

Application to infertility treatment selection

To illustrate the practical usefulness of SMAA for health

economic evaluation, we employed a previously published

mathematical model for infertility treatment [12]. The

objective of the original study was to compare the cost-

effectiveness of seven in-vitro fertilization (IVF) strategies

based on a maximum of three consecutive IVF cycles and

different combinations of the following embryo transfer

policies per cycle: elective single embryo transfer (eSET),

double embryo transfer (DET), and standard treatment

practice (STP), consisting of eSET in patients\38 years of

age and DET in the remainder of patients. For this purpose,

an elaborate Markov cycle tree was developed, taking into

account canceled cycles, availability of only one embryo

(resulting in a so-called compulsory single embryo trans-

fer), declining pregnancy rates in subsequent cycles, the

possibility of having frozen embryo transfers when a

patient did not achieve a pregnancy after fresh embryo

transfer or had a miscarriage/stillborn child, and treatment

dropouts due to cycle cancellation or fertilization failure.

The cycle time used in the model was defined as one IVF

cycle, and the time horizon was defined as a maximum of

three cycles in all strategies. For full details of the model

structure, the seven IVF strategies, and the probability

distributions of the model parameters, the reader is referred

to the original publication [12].

Criteria

The different IVF strategies were evaluated on three cri-

teria: cost, treatment success, and adverse consequences.

Treatment success was quantified in terms of the mean live

birth probability for a couple starting IVF treatment,

whereas the adverse consequences were expressed in terms
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of the risk of a twin pregnancy. Costs were analyzed from a

societal perspective and included the cost of the IVF

treatment, the cost of a singleton and twin pregnancy, the

cost of delivery, and the cost of the period from birth until

6 weeks after birth.

Joint probability distribution of the criteria

measurements

The joint probability distribution of the criteria measure-

ments was approximated numerically by repeatedly simu-

lating from the Markov cycle tree for different values of the

model parameters. Table 1 summarizes the results of

10,000 Monte Carlo iterations (in each iteration, 5,000 runs

of the Markov cycle tree were performed to obtain stable

estimates for the current realizations of the model param-

eters). The same seed values for generating these param-

eters were applied to each treatment strategy, resulting in a

non-zero correlation among the criteria measurements of

the seven IVF strategies.

NMB analysis

We performed an NMB analysis with the probability of a

live birth as the selected measure of effectiveness and the

value of k assumed to be unknown but contained within the

interval [0, 80k]. Irrespective of the value of k, the four

hybrid IVF strategies always had very low (\0.15) prob-

abilities of yielding the highest NMB. It therefore seems

reasonable to eliminate these four strategies from our

inquiry. The CEACs of the three remaining strategies are

provided in Fig. 1. These curves show that the optimal

strategy strongly depends on the value of k, with 39 eSET

being optimal for low values of k, 39 STP being optimal

for intermediate values of k, and 39 DET being optimal

for high values of k. Without any additional information on

the value of k, it is therefore impossible to further reduce

the set of acceptable IVF strategies. Hence, by applying the

NMB framework, we were able to eliminate four IVF

strategies, but it remains difficult to choose among the

three remaining strategies.

SMAA analysis

We performed an SMAA analysis with the criteria mea-

surements linearly rescaled to the interval [0, 1] using the

worst and best possible values as provided in Table 2 and

the weight vector w assumed to be uniformly distributed

over the two-simplex w 2 R3 :
P3

k¼1 wk ¼ 1; w� 0
n o

.

The rank acceptability indices resulting from this analysis

are depicted in Fig. 2, and the central weights and corre-

sponding confidence factors are provided in Table 3. The

hybrid IVF strategies both have low (\0.10) first rank

acceptabilities and central weight vectors with low (\0.20)

confidence factors. In line with the analysis based on the

NMB framework, it is therefore still unlikely that switching

between embryo transfer policies in consecutive IVF

cycles is optimal. For the three remaining strategies, the

rank acceptability indices reveal that the optimality of

39 eSET and 39 DET strongly depends on the decision

maker’s preferences (i.e., both strategies still have rela-

tively low acceptabilities for the best rank but rather high

acceptabilities for the worst rank). By looking at the central

weights, we can learn more about the preferences that

would favor these alternatives. In particular, it follows that

39 eSET is likely to be optimal when controlling cost and

reducing the risk of a twin pregnancy is considered to be

Table 1 Median (interquartile range) of the criteria measurements

Strategy Live birth Twin

pregnancy

Cost

39 eSET 0.37 (0.06) 0.008 (0.005) 14,294 (2,868)

eSET ? 29 STP 0.46 (0.05) 0.015 (0.005) 15,290 (2,922)

eSET ? STP ? DET 0.47 (0.04) 0.031 (0.010) 15,764 (2,974)

eSET ? 29 DET 0.49 (0.04) 0.063 (0.021) 16,569 (3,138)

39 STP 0.52 (0.06) 0.021 (0.006) 15,631 (2,961)

STP ? 29 DET 0.55 (0.04) 0.063 (0.022) 16,749 (3,092)

39 DET 0.58 (0.05) 0.115 (0.039) 17,837 (3,462)
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Fig. 1 Results of the NMB analysis

Table 2 Scale ranges of the partial value functions

Criterion Preference direction Worst value Best value

Live birth " 0.21 0.71

Twin pregnancy # 0.249 0.001

Cost # 32,944 8,245
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far more important than improving the probability of

treatment success, whereas 39 DET could be a viable

strategy when the probability of a live birth is by far the

most important criterion. In contrast, 39 STP is a com-

promise strategy that performs well in virtually all other

settings. In the absence of preference information from the

decision maker, this strategy therefore seems most suitable

to adopt in daily clinical practice.

Discussion

In this article, we have proven that the NMB framework is

a special case of the more general SMAA method, which

does not restrict the number of criteria to two and does not

require the partial value functions to be linear. Although

the NMB framework is easy to understand and implement,

it also forces analysts to select a single effectiveness cri-

terion. For preventive and curative interventions (e.g.,

prevention of diabetes, cancer treatment), this can usually

be effectively dealt with by aggregating all relevant health

effects into an overall measure of effectiveness, such as

(quality-adjusted) life years. However, as we have seen in

our case study, the health consequences of interventions

that are not directly targeted at prolonging a subject’s life

years are often much harder to capture in terms of a single

measure of effectiveness. Applying the NMB framework to

evaluate these latter interventions may lead to sub-optimal

reimbursement decisions as the need to arbitrarily select

one of the available outcome measures as the effectiveness

criterion implies that only part of the health effects are

accounted for in the decision-making process. In addition,

the cost criterion is generally composed of several attri-

butes, such as resource use within the health sector, out-of-

pocket expenses by patients and their families, and pro-

ductivity losses [8]. Because each of these costs are borne

by different stakeholders, health policy makers may want

to value them differently from each other. However, as the

NMB framework is based on a single willingness-to-pay

threshold, this is not possible. SMAA, in contrast, can be

applied with an arbitrary number of criteria, meaning that

the above problems no longer apply when this approach is

selected to support reimbursement decision making. The

price that has to be paid for applying this more general

method is that the weights no longer have the intuitive

meaning of willingness-to-pay thresholds but should rather

be interpreted as scaling factors that make unit increases in

the partial value functions commensurate [5]. This implies

that some education of the policy makers may be required

before SMAA can successfully be applied to real-life

reimbursement decision-making problems.

Within the NMB framework, CEACs offer a useful way

of representing the decision uncertainty when there are two

alternatives, say an intervention and a control. In such

situations, the CEAC for the control is simply the com-

plement of the CEAC for the intervention, meaning that

only the CEAC for the intervention has to be provided.

When more than two alternatives are considered, multiple

CEACs have to be presented (i.e., one for each alternative).

The standard way of visualizing these CEACs is by plot-

ting them in the same figure, so that the curves sum to a

probability of one vertically [11]. While such a represen-

tation depicts the probability of making the correct decision

when a certain alternative is selected (e.g., for reimburse-

ment of implementation), it provides no information on the

alternative’s probability distribution over the other ranks

when making a wrong decision. This may make it difficult

to identify good compromise solutions as it causes extreme

alternatives (i.e., alternatives with large probabilities of

being ranked at either the first or the last place and small

probabilities of being ranked at any of the intermediate

places) to look similar to those with large probabilities for

Table 3 Central weights and corresponding confidence factors (CF)

Strategy CF Live birth Twin

pregnancy

Cost

39 eSET 0.801 0.066 0.527 0.407

eSET ? 29 STP 0.115 0.224 0.274 0.502

eSET ? STP ? DET 0.005 0.399 0.245 0.356

eSET ? 29 DET 0.002 0.580 0.151 0.269

39 STP 0.870 0.342 0.304 0.354

STP ? 29 DET 0.189 0.574 0.249 0.177

39 DET 0.474 0.687 0.216 0.097

3 x eSET eSET + 2 x STP eSET + STP + DET eSET + 2 x DET 3 x STP STP + 2 x DET 3 x DET

Rank 1
Rank 2
Rank 3
Rank 4
Rank 5
Rank 6
Rank 7
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0.
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Fig. 2 Rank acceptability indices
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the best ranks only. One way to avoid this problem would

be to plot not only the probability that an alternative is

ranked best but also the probabilities that this alternative is

ranked worst or ranked at any position between best and

worst. Hence, even for problem instances for which the use

of the NMB framework is considered to be appropriate, the

SMAA rank acceptability indices could still be of value in

summarizing the decision uncertainty (e.g., by computing

these indices conditional on specific values of the will-

ingness-to-pay threshold).

The application of multi-criteria decision analysis to

reimbursement decision making has been proposed previ-

ously [13, 18], but not, as we aimed for in this article, with

the objective to generalize the way in which health eco-

nomic evaluations are currently conducted. Instead, these

papers focused on augmenting the results of a cost-effec-

tiveness analysis with other factors that may influence

reimbursement decision making but are generally not

included in a formal health economic evaluation, such as

patient compliance, quality of evidence, and budget

impact. We acknowledge that epidemiological, social, and

ethical factors may play an important role in the decision-

making process and that it therefore makes sense to con-

sider them in a decision analysis. However, we would also

like to point out that not all of these factors are equally

suitable to be included as criteria in a supporting multi-

criteria model. For example, although factors related to the

relevance and quality of the data impact the precision with

which the criteria are measured, they are not features of

treatments among which trade-offs can be established.

Such factors should therefore not be included as criteria in

a supporting multi-criteria model but should rather be used

to guide the selection of the input parameters for which a

subsequent sensitivity analysis is worthwhile to conduct.

Also, budget impact is obviously an important factor in the

reimbursement decision-making process. However, rather

than including it as a criterion in a supporting multi-criteria

model, it may be more fruitful to consider budget impact

when establishing the relative importance of the included

cost and effectiveness criteria since it seems likely that

decision makers are willing to pay less for a certain average

increase in health effects as the budget impact increases.

Acknowledgments This research was conducted within the frame-

work of the Center for Translational Molecular Medicine, project

PREDICCt (grant 01C-104) and supported by the Dutch Heart

Foundation, Dutch Diabetes Research Foundation, and Dutch Kidney

Foundation.

Appendix

Define V1(e) = k e and V2(c) = - c, and consider the

NMB function

NMBðci; ei; kÞ ¼ kei � ci ¼ V1ðeiÞ þ V2ðciÞ: ð11Þ

Let c and c denote the worst and best possible value of the

cost criterion, and let e and e denote the worst and best

possible value of the effectiveness criterion. This allows us

to express V1(e) and V2(c) as the following positive affine

transformations of the linear partial value functions

v1ðeÞ ¼ e�e

e�e
and v2ðcÞ ¼ c�c

c�c
:

V1ðeÞ ¼
ke� ke

ke� ke
ðke� keÞ þ ke ¼ ðke� keÞv1ðeÞ þ ke;

ð12Þ

V2ðcÞ ¼
c� c

c� c
ðc� cÞ � c ¼ ðc� cÞv2ðcÞ � c: ð13Þ

Now, by substituting (12) and (13) in (11), it follows after

rewriting that

NMBðc; e; kÞ ¼ ðke� keÞv1ðeÞ þ ðc� cÞv2ðcÞ þ ke� c:

ð14Þ

Finally, by normalizing the scaling factors, we obtain the

following expression for the NMB function:

NMBðc; e; kÞ ¼ ðke� keþ c� cÞðw1v1ðeÞ þ w2v2ðcÞÞ
þ ke� c;

ð15Þ

with w1 and w2 defined as

w1 ¼
ðke� keÞ

ke� keþ c� c
; ð16Þ

w2 ¼
c� c

ke� keþ c� c
: ð17Þ
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