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An Iterative Approach to Multibody 
Simulation Dynamics Suitable for 
Parallel Implementation 

I. Sharf1 and G. M. T. D'Eleuterio2 

This paper presents a new solution procedure for simulation 
dynamics of multibody systems. The method is applicable to 
open chains with general interbody constraints. It is based on 
obtaining an explicit solution for the joint constraint forces 
by means of iterative techniques. We show that the algorithm 
possesses a parallel structure which matches the topology of 
the system. Numerical results for an anthropomorphic ma
nipulator indicate that the conjugate-gradient Jacobi iteration 
is computationally most efficient. An estimate for the parallel 
efficiency of this scheme is obtained by combining the theo
retical bound for parallel complexity with an approximate 
overhead cost associated with parallel implementation. 

1 Introduction 
The simulation of multibody systems has occupied the at

tention of more than just a few researchers over the past quarter 
century. Myriad formulations and algorithms have been put 
forward (Walker and Orin, 1982; Featherstone, 1983; Hughes, 
1985; Bae and Haug, 1987; Golla, 1987; Rodriguez, 1987; 
D'Eleuterio, 1992), all in an effort to devise yet more efficient 
or more general simulation procedures. Until recently, the 
development and implementation of simulation-dynamics (as 
well as inverse-dynamics) algorithms have been confined to 
serial-architecture computers. 

Recent developments in distributed computing and the ad
vent of parallel computers have given dynamicists cause to 
explore the multibody dynamics problems from a new per
spective. The merits of existing procedures are accordingly 
being re-evaluated in the light of parallelism. Parallel proc
essing has, moreover, given us the opportunity to develop 
algorithms anew with a parallel structure specifically in mind. 

In this paper, we present a novel algorithm for the simulation 
dynamics of open multibody chains that is suitable for parallel 
implementation. The algorithm differs from much of the cur
rent work in the field in two respects. First, it was developed 
with an eye to parallelism from the outset, rather than at-
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tempting to parallelize an existing serial procedure. Second, 
we have sought a high-level, or coarse-grain, parallelism in
stead of low-level, or fine-grain, parallelism. The result is an 
algorithm which possesses a macroparallel structure, as it ex
ploits the inherent structure in the problem. Thus, one proc
essing unit is dedicated to each body in the chain. 

The algorithm is founded on an iterative solution for the 
constraint forces which, indeed, renders the algorithm's ma-
croparallelism possible. Moreover, only nearest-neighbor com
munication is required among processors. The algorithm has 
been validated on a serial computer and the results reveal that 
the computational cost of the algorithm is only marginally 
worse than O(N) in serial implementation. However, the al
gorithm is almost completely macroparallelizable, and hence 
the computational time for an /V-body chain on an appropri
ately architectured TV-processor system would increase only 
slightly with TV. 

2 Previous Work 
A number of investigators have looked into a parallel ap

proach to the inverse-dynamics problem. Most of this work 
has been based on the recursive Newton-Euler equations. The 
recursive procedure, however, has a serial structure and hence 
its potential for high-level parallelism is very limited. With this 
realization, considerable effort has been concentrated on de
veloping various methods to achieve some degree of concur
rency in the inverse dynamics calculation at the low-operation 
level. This approach was followed by Lathrop (1985), Binder 
and Herzog (1986), Lee and Chang (1986), and more recently 
Hashimoto and Kimura (1989). 

There has been relatively little work on the development of 
parallel methods for simulation (forward) dynamics of ma
nipulators. Unlike the case of inverse dynamics, parallelism in 
simulation dynamics has been investigated mainly in the con
text of global methods of solution. 

Kasahara et al. (1987) made the first contribution to parallel 
processing of robot dynamics simulation. They parallelize all 
the computations by subdividing them into tasks. The method 
chosen for evaluation of the dynamics equations is Method 3 
of Walker and Orin (1982) and each equation of this algorithm 
is treated as a task. To solve the linear system for accelerations, 
Kasahara et al. employ the Gauss-Jordan procedure. Here, a 
task involves dividing operations and update operations for 
each row. Finally, the integration of each variable is also treated 
as a task. One of the unique aspects of this work is the ap
plication of two scheduling algorithms, first proposed by Ka
sahara and Narita (1984), for assigning the tasks onto parallel 
processors. Kasahara et al. have also implemented their pro
cedure on an actual multiprocessor system, thus demonstrating 
the efficiency of the simulation. 

Lee and Chang (1988) employed Methods 3 and 4 of Walker 
and Orin (1982) to develop two parallel simulation procedures 
by utilizing a number of parallel algorithms designed for SIMD 
computers. Parallelizing Method 3 involves using the tech
niques of Lathrop (1985) and Lee and Chang (1986) for eval
uating the inertia matrix and the bias (force) vector. To solve 
for accelerations, Lee and Chang have parallelized Cholesky 
factorization for implementation on a VLSI array processor. 
The resultant parallel composite-rigid-body algorithm has a 
time complexity of O(N) with O(TVr) processors. The second 
method consists of parallelizing the computations that have to 
be executed at each step of the conjugate-gradient iterative 
procedure. The theoretical time bound achieved for the re
sulting parallel conjugate-gradient method is O(N) for mul
tiplication operations and 0(TVlog2TV) for addition operations. 

Fijany and Bejczy (1989) have developed several algorithms 
for parallel computation of the inertia matrix. All of these are 
based on the composite rigid-body spatial inertia method which 
is a modification of Walker and Orin's (1982) Method 3. The 
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parallel procedures are derived by application of the recursive 
doubling algorithm to the homogeneous recurrence relations, 
in terms of which the inertia matrix is evaluated. Fijany and 
Bejczy also discuss the mapping of the parallel schemes onto 
suitable processor arrays and evaluate their communication 
costs and efficiency. 

Finally, we acknowledge the work of Hwang et al. (1988) 
for developing a parallel processing algorithm based on their 
own recursive dynamics formulation. For open chains these 
authors present a task graph to generate inertia matrix and 
force vector. The resulting methodology amounts to subdi
viding inherently serial computations in order to achieve some 
degree of concurrency. A very important feature of this work, 
however, is that it can be applied to trees and closed-loop 
configurations. Here, Hwang et al. exploit the natural par
allelism of the physical system by carrying out the computa
tions in parallel along the independent branches of the spanning 
tree-structure. 

3 Theoretical Background 
In this section, we present the underlying theory for our 

simulation procedure. For details of the dynamical formula
tion, readers are directed to Sincarsin and Hughes (1990). 

Equations of Motion. The most natural starting point for 
the development of a dynamical formulation for a chain of 
bodies. ($$i, (B2, . . . , (B/v, is the motion equations for each 
body of the system. These are, in essence, the equations of 
Newton and Euler applied to a rigid body (B,„ which can be 
compactly written as 

Jl t« V „ — 3«+ l,n*«+ 1 I« +tn,ext+y«,J 

Here, 

»n* 

(1) 

(2) 

is the generalized absolute velocity (cf. twist velocity) of <£„ 
at On, v„ is the translational velocity of 0„ and o>„ is the ro
tational velocity of <$>„ with respect to inertial space. Accord
ingly, 9TC„ is the generalized mass matrix, f"+1 is the (generalized) 
force acting on (B„+ [ from <$>„, f„iext denotes the external forces 
not resulting from interbody effects and i„j represents the 
nonlinear inertial effects. The matrix 3„+li„ is a generalized 
transformation matrix from <$>„ to (B„+\ and is dependent upon 
configuration. 

We proceed further by expressing the interbody force i"„~l 

as a combination of the specified control forces f„iC and the 
unknown constraint forces f„]D, acting at joint $„: 

(3) f " ~ ' = - ( P f —fl f 

where <?„ is a projection matrix and Q„ is its orthogonal com
plement. 

Kinematical Constraints. The motion equations must be 
complimented by the appropriate geometrical and kinematical 
constraints. Thus, we express the generalized velocity of (B„ 
in terms of that of its inboard neighbor ($>n-\ and the joint 
velocity as 

vn = 3„,„-ivn_i + (P„v„T (4) 

where vny denotes the free joint rates. We analogously can 
write down the expression relating the accelerations: 

V n = 3«,»- 1 V „_ i + 3„,„_ iV„_ , + (P„ V ny + (P„V„7 (5) 

It will be more convenient, however, to rewrite the kinematical 
constraint Eq. (5) in a form where the independent joint ac
celeration, v ny, has been eliminated. This can be done by using 
the orthogonal complement <$,„ to give 

C(v„-3n ,„_1o„_1) = C(3n ,n - iv„_1 + (P„v„7) (6) 

since Qj<P„ = O. The above kinematical constraints will be 
essential to our derivation. 

At this point, we have all the equations necessary for a 
complete description of the motion of the chain. Equations 
(1) (combined with (3)) and Eqs. (6) for n = 0, . . . , N are 
sufficient to solve for the unknowns in the problem—the ac
celerations, v „, and the constraint forces, f„jD. 

4 Solution Procedure 
The method proposed here involves obtaining an explicit 

solution for the joint constraint forces. It was originally pre
sented by Baumgarte (1972) for a system of particles, and later 
extended by Roberson (1978) to rotating rigid bodies, in the 
context of the constraint stabilization problem. 

Equations for Constraint Forces. To solve for constraint 
forces, let us rewrite Eqs. (1) combined with (3) in the global 
form: 

where 

9KE V E = 3 E W e + Of u ) + fE,ex. + fE.I 

SHE A diag( 9110,31*1. . . . , 3EA 

(7) 

^Acolf « o . » i . »N\ 

f£,ext^COl(f0 ,ext>fl IW.exti (8) 

and the rest of the quantities are defined accordingly. Also, 
the kinematical constraint Eqs. (6) can be assembled into 

Q.7'3E-1vE = q . r [ -3 E - 1
V E + (PV] (9) 

Substituting for v E from (7) into (9) and rearranging yields a 
global system of linear equations: 

A f D = b (10) 

where 

A = q.73E
13Hs13E

7 'q. (11) 

and 

b=-Qr3s-
19HE-1[3E

7 '(Pfc + fE,ext + fE>I] + Q.7 '[-3E-1
VE + (PV] 

(12) 

The solution of the above system gives the values for the 
unknown constraint forces. 

Special Features of the Method. First, let us distinguish 
the present solution procedure from the two major classes of 
existing algorithms, global and recursive. In the global for
mulation, the motion Eqs. (1) are assembled into the global 
system and the constraint forces are eliminated using a global 
projection matrix (Hughes, 1985). In a recursive procedure 
(Sharf and D'Eleuterio, 1988), the constraint forces are ef
fectively removed by carrying out inward recursion from the 
tip of the chain to the base body. This is followed by outward 
recursion whereby one solves for accelerations v „y for each 
body in succession. The common feature of both classes of 
algorithms is that one never needs to calculate the constraint 
forces. Our methodology on the other hand involves solving 
for the constraint forces explicitly, which makes the present 

' procedure amenable to parallelization. The inherent parallel
ism moreover possesses a macrostructure as shall be shown. 

We first observe that the system matrix A of (11) has a block 
tridiagonal structure where the block partitioning corresponds 
to the body partitioning of the chain. This special form of A 
allows us to write out (10) as: 

-L„f„-l,n+D„f„,n-TJ«f«+l,n=b„ n = Q N (13) 

with the proviso that the constraint forces f_i>D and f/v+i.n 
vanish, since (B0 and <SN are terminal bodies. In the above, 
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- L„, D„, - U„ are the three rowblocks of A and b„ is defined 
in accordance with the "body" partitioning of A so that 

b = col{b0,b,, . . . , bN] (14) 

Note that the tridiagonal structure of the constraint force ma
trix is a reflection of the physical topology of the chain: any 
body (B„ (except for the base and the tip) is connected to only 
two bodies—its outboard and inboard neighbors. 

The matrix A is symmetric positive-definite, which is a very 
attractive property for a system of linear equations. Moreover, 
the tridiagonal structure of A ensures that it has property GL 
and is consistently ordered (in the sense of Hageman and 
Young, 1981). These characteristics of the system (10) make 
it particularly amenable to an iterative solution. In fact, it is 
the application of iterative techniques that allows us to develop 
a macroparallel procedure to solve for the constraint forces. 

The foregoing suggests that in a parallel implementation, a 
computer processor can be dedicated to each body in the chain. 
The tridiagonal structure of the matrix A implies that com
munication of the constraint forces is required between ad
jacent processors only, which makes the interconnection 
network very simple. The calculation of the block matrices L„, 
D„ as well as the vectors b„ can be carried out on each body-
dedicated processor for n = 0, . . . , Nin parallel. In addition, 
the knowledge of the constraint forces allows us to evaluate 
the accelerations v„ concurrently for all bodies of the chain. 

Solution Techniques for Constraint Forces. The kernel of 
the present method is the determination of the joint constraint 
forces, fn.Q, by solving the linear system of Eqs. (10). The 
solution of this system can be achieved by a variety of direct 
and iterative techniques. Although there has been some de
velopment on parallel direct solvers like, for example, parallel 
Gaussian elimination (Nelken and Oxley, 1987), we believe 
that these methods are essentially sequential processes. Hence, 
parallelizing direct algorithms requires very careful scheduling 
of subtasks and synchronization which in turn leads to a con
siderable overhead cost. Also, the performance of parallel 
direct solvers is very much dependent on a computer archi
tecture. The existing algorithms achieve their optimal com
putation time if implemented on a computer with a specific 
architecture and number of processors. Otherwise, the effi
ciency deteriorates quite dramatically. 

In light of the above comments, it appears that iterative 
methods offer more flexibility and are more versatile. We have 
chosen the iterative route because an iterative solution for the 
joint constraint forces fits well into the macroparallel structure 
of the present simulation dynamics algorithm. The following 
section describes five representative iterative schemes that we 
have applied to the solution of the system (10). 

Basic Iterative Methods. We start with the three traditional 
methods: Jacobi, Gauss-Seidel and SOR (successive over-re
laxation). The Jacobi iteration applied to the constraint force 
Eqs. (13) can be written as: 

D ^ l ^ b ^ C M J'!i,D +u„f J1ilB) (15> 

The Gauss-Seidel iteration has the form, 

D„f <!'+ " = b„ + (L„f J'+ft + U„f <!>,, D) (16) 

and SOR the form, 

D„f <:'i1) = o)(b„ + L„f <L+,VD +U„fJS'ii.Q) + (l -o>)D„fi% (17) 

where w is the over-relaxation parameter and 0 < co < 2 for 
convergence. All of these schemes can be written (in global 
form) as the basic iterative method, following Hageman and 
Young (1981), 

f<0
/=') = Gf(j) + k (18) 

where G is the iteration matrix and k is a known vector. The 
rate of convergence of the methods of the form (18) depends 

Table 1 Polynomial acceleration procedures 
Chebyshev semi-iterative method 

D„fi:o1) = P,+ i(b„ + L„f«1 ,D+U„f<'l1 , a) + ( l -p ; + , )D n f i :D
1 ) 

Pi = l > P 2 = ( l - - ^ 2 j ,pi+i= ( l - - M 2 P , j >M = P(B) 

Conjugate gradient Jacobi method 

D„f <;'+ " = p , + , [yi+ ,(b„ + L„f <1,, D + U„f <'i,, n) 

+ ( l - 7 , + i)D„f<!)
D] + ( l -p , + 1)D„f,^1) 

/ 7,-+1 z(/),Dz">) A " ' (z"'',Dz'f)) 
"'->•>-y y, Z " - I ) , D Z < ' - I ) ) P / ;

 , 7 , + i ~ (*»w>) 

D z ^ b - A f ' J * 

on the spectral radius of G, p(G). In particular, the approxi
mate number of iterations, / , required to achieve convergence 
to an accuracy e is given by 

ln(e) 
In [p(G)] 

Since the matrix A is consistently ordered, there exists a definite 
relationship between the convergence rates of Jacobi, Gauss-
Seidel and SOR schemes. To be specific, Gauss-Seidel iteration 
converges twice as fast as the Jacobi, while SOR converges 
2f ~' as fast, with 0 < f < 1 depending on the value of co. 

From expression (15), it is easy to see that Jacobi iteration 
is well suited for parallel processing. This is so because the 
new iterate for the constraint forces, i(

D'+1) (or f^n1', n = 0, 
. . . , N), depends only on the old value, f $• Therefore, the 
updates for f„t0 can be carried out concurrently for all the 
bodies in the chain. By contrast, the Gauss-Seidel and SOR 
methods require using, in part, the current values of f D at each 
iteration. These algorithms are partially sequential and hence 
not suitable for a macroparallel implementation. 

Accelerated Iterative Methods. We now describe two well 
developed polynomial acceleration procedures as applied to 
the Jacobi method: Chebyshev acceleration and conjugate-
gradient acceleration. The advantage of the resulting schemes, 
Chebyshev semi-iterative (J-SI) and conjugate-gradient Jacobi 
(J-CG), is that they retain the parallel structure of the Jacobi 
iteration and have improved rates of convergence. The iterative 
expressions for the constraint forces corresponding to these 
two accelerated procedures are presented in Table 1. We note 
that the conjugate-gradient procedure has been expressed as a 
three-term nonstationary iterative method, rather than in its 
standard form. This is done in order to expose the macro-
parallel structure of the algorithm. 

The rate of convergence of the Chebyshev semi-iterative 
procedure is generally comparable to that achieved by Gauss-
Seidel iteration. Unlike the basic iterative methods and the J-
Sl scheme, the rate of convergence of the conjugate-gradient 
acceleration procedure depends not only on the spectral radius 
of G, but also on the number and the particular distribution 
of the eigenvalues in the spectrum. In the absence of rounding 
errors, the classical conjugate-gradient method is guaranteed 
to converge to the exact solution of the system in a finite 
number of iterations, that being bounded by the order of the 
system. However, considerably faster convergence rates have 
been achieved with the conjugate-gradient acceleration pro
cedure in the solution of sparse linear systems (Axelsson, 1985). 

5 Computer Simulation 
We have presented a number of techniques for obtaining a 
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solution to the joint constraint forces, which in itself is part 
of the algorithm to determine the accelerations. Our main 
objective, however, is to simulate the motion of a multibody 
chain as it evolves in time. Thus, the accelerations, v „, ob
tained according to the motion equations must be integrated 
to give velocities v„ and, from those, the joint velocities vnj 
can be integrated for the joint coordinates. We observe that 
the integration of v „ and v„y can be carried out in parallel for 
n = 0, . . . , N using any one of the explicit integration 
formulas. However, for our immediate purpose—that of nu
merically validating the proposed algorithm on a serial com
puter—we have chosen to use a commercially available package 
LSODE. Some special issues had to be addressed in developing 
the computer implementation of the formulation and to these 
we devote the following comments. 

Convergence Criterion. Any iterative scheme that is carried 
out in finite precision must be terminated according to some 
convergence criterion. The convergence test that we have im
plemented in our simulation is of the form: If 

P ( / > 1 • C'-Dll 

llf'o' On -<e 

then set f D = f ̂  and stop the iteration; otherwise, calculate 
the next iterate, f(n'

+1>. We have used the overbar in fD to 
differentiate the solution obtained by using an iterative pro
cedure from the true solution of the system, f n. 

The error e admissible in the value of the constraint forces 
must be specified in accordance with the accuracy of the in
tegration. When integrating with a package like LSODE, the 
user is required to prescribe a value TOL which is used by the 
routine for error control and step-size selection. Since e intro
duces a perturbation of the same order in the values of ac
celerations v n, it seems only reasonable to have e < TO L (it 
makes no sense to require the result of integration of v „ to 
be more accurate than its value.) Also, the choice e < TOL 
will ensure that the accelerations v „ have a time history profile 
that is "continuous" to within TOL. Otherwise, the noise 
introduced by the error perturbation will cause the integration 
procedure to become extremely inefficient. Based on extensive 
numerical testing, we have found that e « TOL/10 usually 
yields the best overall performance of the simulation. 

Initial Guess for the Constraint Forces. The iterative 
scheme to solve for f D, must be started with some initial guess. 
Since the constraint forces must be determined at every time 
step in the simulation, it is natural to employ the constraint 
forces calculated at previous time steps for making an initial 
guess to start the iteration at a current time step. The most 
straightforward implementation of this idea is to set 

f(
D

0)(4)=fo Uk-i) (19) 
i.e., the initial guess for f D at time tk is equal to the value at 
the previous time 4-1- This notion can be extended to produce 
more sophisticated initial guesses by using the values of f n at 
any number of previous time steps, combined with an appro
priate extrapolation scheme. In our computer simulation, we 
have implemented a cubic polynomial extrapolation. This seems 
to be a reasonable trade-off between the improvement in the 
initial guess and the additional computational cost incurred 
by the extrapolation procedure. 

6 Numerical Results and Discussion 
In this section, we discuss the performance of our procedure 

when applied to the simulation of a rigid-link manipulator. 
The numerical experiments reported here demonstrate: (i) the 
relative performance of different iterative schemes; and (ii) 
computational efficiency as a function of the number of bodies 
in the system. 

For all of the following results, the manipulator depicted in 

u 
iSv" zx: 

"H*5-
ir 

Fig. 1 Manipulator system 

-=»fs-!rH 

Table 2 Simulation statistics for T = 10 s, TOL = 10 
e = 10~7 

Algorithm 

PA-Jacobi 
PA-J-SI 
PA-J-CG 

Gauss-Seidel 
SOR 

Manueuver I/Maneuver II 

°7o accuracy 
at T 

0.05/0.02 
0.03/0.08 
0.05/0.05 

0.03/0.04 
0.03/0.05 

average # of 
iterations 

26/1483 
16/694 
7/12 

14/197 
10/150 

CPU 
(s) 

12.2/470 
10.0/164 
8.8/8.8 

9.0/63 
8.6/39 

Fig. 1 was used. It is a 3-link anthropomorphic manipulator 
with a total of five degrees of freedom. Its geometric and 
inertial properties can be found in Sharf and D'Eleuterio (1988). 
Simulation results are presented for two maneuvers—planar 
(Maneuver I) and three-dimensional (Maneuver II) also de
scribed in the aforementioned reference. The numerical inte
gration was performed at TOL = 10~6 and, consistent with 
the comments of Section 5, the convergence tolerance for the 
iterative procedures was set to 10"7. 

Table 2 contains simulation statistics for five iterative so
lutions discussed in Section 4, three of these denoted by PA 
represent —100% parallelizable methods. For completeness, 
we have also included the results for Gauss-Seidel and SOR 
methods, the latter being implemented with a nearly optimal 
value for w. The CPU statistics in Table 2 were obtained by 
running the simulations on a serial computer, the SUN 3/60 
workstation and hence, do not represent the optimal run time 
for the parallel algorithms. Nevertheless, the runs on a single 
processor allow us to make a relative comparison of different 
iterative techniques. 

As can be seen from Table 2, there is little variation in the 
speeds of the iterative algorithms for the first maneuver. The 
situation is radically different for Maneuver II where the con
jugate-gradient procedure is clearly the most efficient. Such a 
variation between the J-CG and the other techniques arises 
because the spectral radius of the Jacobi iteration matrix B, 
and as a consequence that of J-SI, Gauss-Seidel and SOR is 
very close to unity for this particular trajectory. The perform
ance of these methods deteriorates accordingly as a large num
ber of iterations is required to achieve convergence. Based on 
a series of numerical experiments conducted with different 
configurations and trajectories, we conclude that the J-CG 
method yields consistently the most efficient results. We also 
note that all iterative schemes provide similar accuracy in the 
solution. 

In the context of multibody dynamics problem, the general 
performance of a solution algorithm should be assessed by 
determining its dependence on the number of links in the chain. 
Here, we investigate this relationship numerically for the best 
among the iterative techniques considered, the J-CG method. 
For the purpose of comparison with another class of solution 
procedures, an analogous set of results was obtained with the 
recursive (R) method. 

The numerical data for chains made up of rigid bodies with 
one-degree-of-freedom joints are depicted in Figs. 2(a) and 
2(b). In the former, we have plotted the CPU times averaged 
over 1000 solutions against the number of bodies in the chain 
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Fig. 2(a) Sun 3/60 CPU time versus N 
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Fig. 2(b) Number of iterations for J-CG versus N 

for the two aforementioned procedures. Figure 2(b) shows 
the number of iterations for the J-CG method. Here, the solid 
line represents the average value obtained from our simulation, 
while the dashed line is the theoretical limit which is equal to 
the dimension of the matrix A. It is evident that the practical 
implementation of the J-CG iteration in the simulation is con
siderably more efficient. This improvement results from the 
use of good initial guesses and a judiciously chosen value for 
the iteration convergence tolerance e. 

From Fig. 2(a), the CPU time of J-CG procedure can be 
approximated by an O (Na) function with a = 1.12. One might 
be tempted to describe this computational complexity as being 

1 2 3 4 5 6 7 8 9 10 
Number of bodies, N 

Fig. 3 Computational speeds of J-CG and recursive algorithms 

paralinear (meaning ' 'beyond linear'') in the number of bodies. 
Similar results were obtained for systems of rigid bodies with 
two degrees of freedom per joint. The corresponding value of 
a for the solution algorithm based on the J-CG iteration is 
1.17. These results are consistent with the findings of Axelsson 
(1985) who reports that, for sparse matrices, a conjugate-gra
dient procedure possesses a computational complexity of 
0(Ne), where (3 ranges from about 1.17 to 1.25 depending on 
the system. We also observe that Fig. 2 (a) displays the familiar 
O(N) performance of the recursive procedure. 

To complete this section, we would like to estimate the 
parallel efficiency of the algorithm developed in this paper. 
To this end, we first determine the theoretical lower bound 
for the parallel complexity which represents the ideal perform
ance of the algorithm. It is calculated with: 

T V 1 CPU 1 seriaU . ^ /^>n\ 

P,i = ~ r 1 serial \"J) 

where TCpu is the CPU time for one solution for the accel
erations, Tseriai denotes the time taken by the part of the al
gorithm which is not macroparallelizable, and the subscript 
(•)Pii stands for "parallel, ideal." The quantity (Tcpu-Tseriai) 
measures the CPU for the macroparallel part of the procedure 
and, accordingly, has been divided by the number of processors 
N. This presumes that each processor contributes equally to 
the algorithm's macroparallel part which will largely be true 
if each joint has the same number of degrees of freedom. In 
any case, TPii does serve as a lower bound. 

Next, we improve on the estimate of (20) by accounting for 
the overhead costs that are incurred when a parallel algorithm 
is implemented on a real parallel processing system. For this 
purpose, we use the results of Kasahara et al., (1987) and 
allocate approximately 30% of the parallel processing time to 
the associated overhead. With this additional cost, we suggest 
a more realistic estimate for the parallel speed of our solution 
procedures. It is: 

T i -3 . , v * CPU 1 serial/ . rp. /o 1 \ 

P , r - l - j X — r- 1 serial y£\.) 

where the parallel execution time has been multiplied by a 
factor of 1.3. 

Figure 3 shows the plots of TPi[ and TPr calculated using 

0.8 

0.4 

734 / Vol. 115, DECEMBER 1993 Transactions of the ASME 

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



the CPU data for the J-CG algorithm, previously shown in 
Fig. 2(a). From Fig. 3, one can observe that the predicted 
realistic speed of the J-CG method increases only marginally 
with the number of bodies (and processors). The shallow growth 
in run time due to the slightly nonlinear nature of TCpu and 
the linear, though small, component 

Tseriai- In the same plot, 
we include the CPU time for the recursive algorithm, TR. 
Comparison of TP|F and TR demonstrates the potential speed
up that can be achieved by exploiting macroparallelism in the 
simulation dynamics problem. We emphasize, however, that 
the parallel efficiency presented for the J-CG solution is only 
a preliminary estimate. A definitive statement on the perform
ance of all the algorithms introduced in this paper awaits im
plementation on a suitably-designed parallel-processing system. 

7 Concluding Remarks 
In this paper, we have developed a new solution procedure 

for the simulation dynamics of open chain manipulator sys
tems. The procedure as described here applies to rigid-link 
manipulators. However, its extension to flexible-body chains 
as well as tree configurations can be accommodated. The ad
vantage of the proposed method lies in its suitability for parallel 
implementation as the solution for the constraint forces can 
be obtained using parallel iterative techniques and the accel
erations of the bodies can also be evaluated concurrently. 
Moreover, knowledge of the system constraint forces in itself 
proves essential for certain applications such as manipulator 
design. 

The proposed algorithm has been implemented and validated 
in a serial-computer simulation. We have also applied a number 
of iterative schemes to solve for the constraint forces and 
conclude that the conjugate-gradient acceleration of the Jacobi 
method, J-CG, gives the best results. Numerical tests on a 
serial computer indicate that the execution time of the solution 
algorithm with the conjugate-gradient Jacobi iteration varies 
paralinearly with the number of links. An estimate for the 
parallel efficiency of this procedure demonstrates the potential 
for achieving more efficient dynamics simulation of multibody 
systems by exploiting the high-level parallelism available in the 
problem. 

Acknowledgments 
The development of the computer simulation has been con

ducted at McGill Research Center for Intelligent Machines. 
This research has been funded by the Natural Sciences and 
Engineering Research Council of Canada, the Institute for 
Space and Terrestrial Science and the Institute for Robotics 
and Intelligent Systems. 

References 
Axelsson, O., 1985, " A Survey of Preconditioned Iterative Methods for Linear 

Systems of Algebraic Equations," BIT, Vol. 25, pp. 166-187. 
Bae, D. S., and Haug, E. J., "A Recursive Formulation for Constrained 

Mechanical System, Part I—Open Loop," Mechanics of Structures and Ma
chines, Vol. 15, No. 3, 1987. 

Baumgarte, J., 1972, "Stabilization of Constraints and Integrals of Motion 
in Dynamical Systems," Computer Methods in Applied Mechanics and Engi
neering, Vol. 1, pp. 1-16. 

Binder, E. E., and Herzog, J. H., 1986, "Distributed Computer Architecture 
and Fast Parallel Algorithms in Real-Time Robot Control," IEEE Transactions 
on Systems, Man, and Cybernetics, Vol. SMC-16, No. 4, pp. 543-549. 

D'Eleuterio, G. M. T., 1992, "Dynamics of Elastic Multibody Chains: Part 
C—Recursive Dynamics," Int. J. Dynamics and Stability of Systems, Vol. 7, 
No. 2, pp. 61-89. 

Featherstone, R., 1983, "The Calculation of Robot Dynamics Using Artic
ulated-Body Inertias," Int. J. Robotics Research, Vol. 2, 1, pp. 13-30. 

Fijany, A., and Bejczy, A. K., 1989, "A Class of Parallel Algorithms for 
Computation of the Manipulator Inertia Matrix," Proc. IEEE International 
Conference on Robotics and Automation, Scottsdale, AZ, pp. 1818-1826. 

Golla, D. F., 1987, "MDSF Theoretical Model Report: A New Recursive 
Solution of the Motion Equations for a Chain of Elastic Bodies," Spar-SS-
TM.116. 

Hageman, L. A., and Young, D. M., 1981, Applied Iterative Methods, Ac
ademic Press, New York. 

Hashimoto, K., and Kimura, H. K., 1989, "A New Parallel Algorithm for 
Inverse Dynamics," Int. J. Robotics Research, Vol. 8, No. 1, pp. 63-76. 

Hughes, P. C , 1985, "Multibody Dynamics for Space Station Manipulators: 
Dynamics of a Chain of Elastic Bodies," Dynacon Report SS-2. 

Hwang, R. S., Bae, D. S., and Haug, E. J., 1988, "Parallel Processing for 
Real-Time Dynamic System Simulation," Advances in Design Automation, Kis-
simmee, FL, pp. 509-517. 

Kasahara, H., and Narita, S., 1984, "Practical Multiprocessor Scheduling 
Algorithms for Efficient Parallel Processing," IEEE Trans. Comput., Vol. C-
33, No. 11, pp. 1023-1029. 

Kasahara, H., Fujii, H., and Iwata, M., 1987, "Parallel Processing of Robot 
Motion Simulation," Proc. IFAC 10th World Congress, Pergamon Press. 

Lathrop, L. H., 1985, "Parallelism in Manipulator Dynamics," Int. J. Ro
botics Res., Vol. 4, No. 2, pp. 80-102. 

Lee, C. S. G., and Chang, P. R., 1986, "Efficient Parallel Algorithm for 
Robot Inverse Dynamics Computations," IEEE Transactions on Systems, Man, 
and Cybernetics, Vol. SMC-16, No. 4, pp. 532-542. 

Lee, C. S. G., and Chang, P. R., 1988, "Efficient Parallel Algorithm for 
Robot Forward Dynamics Computation," IEEE Transactions on Systems, Man, 
and Cybernetics, Vol. 18, No. 2, pp. 238-251. 

Nelken, I., and Oxley, D., 1987, "Parallel Gaussian Elimination on an Op
tically Interconnected Data Flow Computer," Mathematics and Computers in 
Simulation, Vol. 29, pp. 515-529. 

Roberson, R. E., 1978, "Constraint Stabilization for Rigid Bodies: an Ex
tension of Baumgarte's Method," IUTAM Symposium on Dynamics of Mul
tibody Systems, Munich, 1977, Berlin-Heidelberg-New York, Springer, pp. 274-
289. 

Rodriguez, G., 1987, "Kalman Filtering, Smoothing and Recursive Robot 
Arm Forward and Inverse Dynamics," IEEE J. Robotics and Automation, Vol. 
RA-3, No. 6, pp. 624-639. 

Sharf, I., and D'Eleuterio, G. M. T., 1988, "Computer Simulation of Elastic 
Chains Using a Recursive Formulation," Proc. IEEE International Conference 
on Robotics and Automation, Philadelphia, PA, pp. 1539-1547. 

Sincarsin, G. B., and Hughes, P. C , 1990, "Dynamics of Elastic Multibody 
Chains: Part A—Body Motion Equations," Int. J. Dynamics and Stability of 
Systems, Vol. 4, No. 3, pp. 209-226. 

Walker, M. W., and Orin, D. E., 1982, "Efficient Dynamic Computer Sim
ulation of Robot Mechanisms," ASME JOURNAL OF DYNAMIC SYSTEMS, MEAS
UREMENT, AND CONTROL, Vol. 104, pp. 205-211. 

Journal of Dynamic Systems, Measurement, and Control DECEMBER 1993, Vol. 115 / 735 
Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




