
Log of the inverse of the Distance Transform and
Fast Marching applied to Path Planning

Santiago Garrido, Luis Moreno, Dolores Blanco and Fernando Martin
Robotics Lab.

Carlos III University
Madrid, Spain

Email: {sgarrido, moreno, dblanco and fmartin}@ing.uc3m.es

Abstract— This paper presents a new Path Planning method
based in the inverse of the Logarithm of the Distance Transform
and in the Fast Marching Method. The Distance Transform of
an image gives a grey scale that is darker near the obstacles
and walls and more clear far from them and it is calculated via
Voronoi Diagram. The Logarithm of the inverse of the Distance
Transform imitates the repulsive electric potential from walls
and obstacles. This method is very fast and reliable and the
trajectories are similar to the human trajectories: smooth and
not very close to obstacles and walls.

I. INTRODUCTION
When we want to move a robot from a place to another place

it is necessary a global map to calculate a global trajectory.
Mobile robot path planning approaches can be divided into five
classes [1]. Roadmap methods extract a network representation
of the environment and then apply graph search algorithms
to find a path. Exact cell decomposition methods construct
non-overlapping regions that cover free space and encode cell
connectivity in a graph. Approximate cell decomposition is
similar, but cells are of predefined shape (e.g. rectangles) and
do not exactly cover free space. Potential field methods differ
from the other four in that they consider the robot as a point
evolving under the influence of forces that attract it to the
goal while pushing it from obstacles. Navigation functions are
commonly considered a special case of potential fields.

In order to calculate the trajectory in the global map,
this paper presents a new Path Planning method based in
the Logarithm of the inverse of the Distance Transform and
the Fast Marching Method. The Distance Transform of an
image gives a grey scale that is darker near the obstacles
and walls and more clear far from them and is calculated
via Voronoi Diagram. The Logarithm of the inverse of the
Distance Transform imitates the repulsive electric potential in
2D from walls and obstacles. This potential impels the robot
to follow a trajectory far from obstacles.

The Fast Marching Method has been applied to Path Plan-
ning [2], and their trajectories are of minimal distance, but they
are not very safe because the path is too close to obstacles and
what is more important, the path is not smooth enough.

In order to improve the safety of the trajectories calculated
by the Fast Marching Method, it is possible to give two
solutions:

First possibility, in order to avoid unrealistic trajectories,
produced when the areas are narrower than the robot, the

segments with distances to the obstacles and walls less than
the size of the robot need to be removed from the Voronoi
diagram previous to the Distance Transform.

Second possibility, used in this work, it is to dilate the
objects and walls in a security distance that assure that the
robot doesn’t collide and doesn’t accept passages narrower
than the robot size.

The last step is to calculate the trajectory in the image
generated by the Logarithm of the inverse of the Distance
Transform using the Fast Marching Method. Then, the path
obtained verify the smooth and safety considerations required
for mobile robot path planning.

The advantages of this method are the easy implementation,
the speed of the method and the quality of the trajectories. The
method works in 2D and 3D, and it can be used at a local scale
operating with sensor information instead of using an a priori
map (sensor based planning).

II. INTRODUCTION TO THE DISTANCE TRANSFORM

The distance transform is a useful tool in digital picture
processing. It has found a wide range of uses in image analysis,
pattern recognition, and robotics.

In a binary image, a pixel is referred to as feature (or
background) if its value is one (or zero).

For a given distance metric, the distance transform of an
image produces a distance map of the same size. For each
pixel inside the objects in the binary image, the corresponding
pixel in the distance map has a value equal to the minimum
distance to the background.

Similarly, we can also define a distance map for the back-
ground. Generally, we can define a zero-distance set in the
distance map. The zero-distance set may correspond to the
background or the objects in the binary image depending on
the applications. From now on we’ll say that a distance map is
created in the complement of the zero distance set. Different
metrics have been defined for the discrete plane, for example,
city block distance and chessboard distance. These distances
deviate quite substantially from the Euclidean distance. Even
though they can be used in certain applications, the usual
ideal is Euclidean metric. Octagonal distance is a combination
of the two distances mentioned above. Still, relative errors
between the octagonal distance and the Euclidean distance are
about 10% and large absolute errors occur for large distances.

Better approximations to the Euclidean metric are proposed by
Borgefors [3], [4], but errors are still proportional to distances.
Euclidean distance transform on the Cartesian discrete plane
was proposed by Danielsson [5] in 1980. This transform
produces a distance map in which each pixel is a vector of two
positive integer components. A four-point sequential Euclidean
distance mapping algorithm and an eight-point sequential
algorithm are described and analysed in detail in [5]. Parallel
Euclidean distance transform algorithms are also discussed [5].
For the eight-point sequential algorithm, errors of less than
0.09 pixel units may occur at a few very rare locations due
to the complex geometry of the objects. For most practical
applications, this algorithm produces an error-free distance
map. A modified version of the ”ordinary” Euclidean distance
transform, namely, the signed Euclidean distance transform
is also briefly mentioned in [5]. A discussion on the signed
Euclidean distance transform and its parallel algorithm can
also be found in [6].

Clearly, the distance transform is closely related to the
Voronoi diagram. The Voronoi diagram concept is involved
in many distance transform approaches either explicitly or
implicitly.

For any topologically discrete set S of points in Euclidean
space and for almost any point x, there is one point of S
to which x is closer than x is to any other point of S. The
word ”almost” is occasioned by the fact that a point x may be
equally close to two or more points of S. If S contains only
two points, a, and b, then the set of all points equidistant from
a and b is a hyperplane, i.e. an affine subspace of codimension
1. That hyperplane is the boundary between the set of all points
closer to a than to b, and the set of all points closer to b than
to a.

In general, the set of all points closer to a point c of S than
to any other point of S is the interior of a (in some cases
unbounded) convex polytope called the Dirichlet domain or
Voronoi cell for c. The set of such polytopes tesselates the
whole space, and is the Voronoi tessellation corresponding to
the set S. If the dimension of the space is only 2, then it is
easy to draw pictures of Voronoi tessellations, and in that case
they are sometimes called Voronoi diagrams.

The Distance Transform computes the Euclidean distance
transform of the binary image. For each pixel in the image,
the distance transform assigns a number that is the distance
between that pixel and the nearest nonzero pixel of the image.
The Distance Transform can have any dimension.

For two-dimensional the Distance Transform uses the sec-
ond algorithm described in the article of Breu [7]. For higher
dimensional Euclidean distance transforms, the distance trans-
form uses a nearest-neighbor search on an optimized kd-tree,
as described by Friedman [8].

The algorithm used in this work is based in the second
algorithm work was done by Breu et al. [7]. In this work, the
special properties of the Euclidean metric are exploited. They
designed two linear-time algorithms based on Voronoi trans-
forms where the second algorithm could have been improved
if they had used the result of the previous row to reduce the

set of possible candidates. It is an O(mn) algorithm, where
the image size is mxn.

III. INTRODUCTION TO THE LEVEL SET METHOD AND
THE FAST MARCHING METHOD

The level set method was devised by Osher and Sethian as
a simple and versatile method for computing and analyzing
the motion of the interface in two or three dimensions. The
goal is to compute and analyze the subsequent motion of the
interface under a velocity field. This velocity can depend on
position, time, the geometry of the interface and the external
physics. The interface is captured for later time as the zero
level set of a smooth (at least Lipschitz continuous) function.
Topological merging and breaking are well defined and easily
performed.

The original level set idea of Osher and Sethian (see Osher
[9]) for tracking the evolution of an initial front γ0 as it
propagates in a direction normal to itself with a given speed
function V . The main idea is to match the one-parameter
family of fronts {γt}t≥0, where γt, is the position of the front
at time t, with a one-parameter family of moving surfaces in
such a way that the zero level set of the surface always yields
the moving front. To determine the front propagation, we then
need to find and solve a partial differential equation for the
motion of the evolving surface. To be more precise, let γ0 be
an initial front in Rd, d ≥ 2 and assume that the so-called
level set function φ : Rd×R+ → R is such that at time t ≥ 0
the zero level set of φ is the front γt. We further assume that
φ(x; 0) = ±d(x); where d(x) is the distance from x to the
curve γ0. We use plus sign if x is inside 0 and minus if x is
outside. Let each level set of φ along its gradient field with
speed V . This speed function should match the desired speed
function for the zero level set of φ. Now consider the motion
of, e.g., the level set{

x ∈ Rd : φ(x; t) = 0
}

. (1)

Let x(t) be trajectory of a particle located at this level set
so that

φ(x(t); t) = 0. (2)

The particle speed dx/dt in the direction n normal to the
level set is given by the speed function V , and hence

dx

dt
· n = V. (3)

where the normal vector n is given by

n = − ∇φ

|∇φ|
. (4)

This is a vector pointing outwards, giving our initialization
of n. By the chain rule

∂φ

∂t
+

dx

dt
· ∇φ = 0. (5)

Therefore φ(x; t) satisfies the partial differential equation
(the level set equation)

∂φ

∂t
− V |∇φ| = 0, (6)

and the initial condition

φ(x; t = 0) = ±d(x). (7)

This is called an Eulerian formulation of the front propaga-
tion problem because it is written in terms of a fixed coordinate
system in the physical domain.

If the speed function V is either always positive or always
negative, we can introduce a new variable (the arrival time
function) T (x) defined by φ(x, T (x)) = 0.

In other words, T (x) is the time when φ(x; t) = 0. If
dx
dt 6= 0, then T will satisfy the stationary Eikonal equation

V |∇T | = 1, (8)

coupled with the boundary condition

T |d(x)=0 = 0. (9)

The advantage of this formulation 8 is that we can solve
it numerically by the fast marching method [2], which is
precisely what we will do in this paper.

�

Fig. 1. Transformation of the front motion into boundary value problem.

Summing up, the central mathematical idea is to view the
moving front γt as the zero level set of the higher-dimensional
level set function φ(x; t). Depending on the form of the speed
function V , the propagation of the level set function φ(x; t)
is described by the initial problem for a nonlinear Hamilton-
Jacobi type partial differential equation 5 of first or second
order.

If V > 0 or V < 0, it is also possible to formulate the
problem in terms of a time function T (x) which solves a
boundary value problem for a stationary Eikonal equation 8.

Fast Marching Methods are designed for problems in which
the speed function never changes sign, so that the front
is always moving forward or backward. This allows us to
convert the problem to a stationary formulation, because the
front crosses each grid point only once. This conversion to a

stationary formulation, plus a whole bunch of numerical tricks,
gives it its tremendous speed

Level Set Methods are designed for problems in which the
speed function can be positive in some places are negative in
others, so that the front can move forwards in some places
and backwards in others. While significantly slower than Fast
Marching Methods, embedding the problem in one higher
dimension gives the method tremendous generality.

Because of the nonlinear nature of the governing partial
differential equation 5 or 8, solutions are not smooth enough
to satisfy this equation in the classical sense (the level set
function and the time function are typically only Lipschitz).
Furthermore, generalized solutions, i.e., Lipschitz continuous
functions satisfying the equations almost everywhere, are not
uniquely determined by their data and additional selection
criteria (entropy conditions) are needed to pick out the (physi-
cally) correct generalized solutions. The correct mathematical
framework in which to treat Hamilton-Jacobi type equations
is provided by the notion of viscosity solutions (see Crandall
[10], [11]).

After its introduction, the level set approach has been
successfully applied to a wide collection of problems that arise
in geometry, mechanics, computer vision, and manufacturing
processes, see Sethian [12] for details. Numerous advances
have been made to the original technique, including the adap-
tive narrow band methodology (see Adalsteinsson and Sethian
[13]) and the fast marching method for solving the static
Eikonal equation (see Sethian [14], [12]). For further details
and summaries of level set and fast marching techniques for
numerical purposes (see Sethian [12]). The complexity of the
Fast Marching Method is O(m×n), where the dimensions of
the image are (m× n) (see Yatziv [15]).

IV. IMPLEMENTATION OF THE METHOD

This method starts with the calculation of the Logarithm of
the inverse of the Distance Transform of the 2D a priori map
of the environment (or the inverse of the Distance Transform
in case of 3D maps). Each white point of the initial image
(which represents free cells in the map) is associated to a
level of grey that is the logarithm of the inverse of the 2D
distance to nearest obstacles (or the inverse of the Distance
Transform in 3D). As a result of this process, it is obtained
a kind of potential proportional to the distance to the nearest
obstacles to each cell. Zero potential indicates that a given cell
is part of an obstacle and maxima potential cells corresponds
to cells located in the Voronoi diagrams (which are the cells
located equidistant to the obstacles).

This function introduces a potential similar to a repulsive
electric potential (in 2D), that can be expressed by

φ = c1 log(r) + c2. (10)

If n > 2, the potential is

φ =
c3

rn−2
+ c4. (11)

More precisely, the equation of the electric potential φ in a
region Ω free of charge with border ∂Ω and constant potential

Fig. 2. Potential of the Logarithm of the inverse Distance Transform.

Fig. 3. Potential of Poisson’s equation.

at obstacles (Dirichlet conditions) is the Laplace equation:

∇2φ = 0. (12)

The solutions of this equation are called Harmonic Func-
tions. In case of spherical symmetry, the solution depends only
on r(distance from the origin). The general expression of the
Laplace’s equation in polar coordinates can be written as

∇2φ = φrr +
n− 1

r
φr + angular terms, (13)

where φrr is the second partial derivative of φ with respect to
r and φr is the first partial derivative with respect to r. Since
φ = φ(r), the angular terms become zero. Then the Laplace
equation becomes

φrr +
n− 1

r
φr = 0; (14)

or
φrr

φr
+

n− 1
r

= 0. (15)

Integrating once, we obtain

φr =
c1

rn−1
(16)

For n=2, the solution is

φ = c1 log(r) + c2 = c′1 log(1/r) + c′2 (17)

If n > 2, the solution is

φ =
c3

rn−2
+ c4 (18)

This result connect the potential defined previously (with
the logarithm of the inverse of the Distance Transform) to the
Harmonic Functions, which are the solutions of the Laplace’s
equation. The difference with other Harmonic Functions based
methods is that, in those methods, the resolution of Laplace’s
equation requires a repulsive potential (done by the Dirichlet,
Neumann or Robin contour conditions) of walls and obstacles,
and an attractive potential done by the objective (which is
another contour condition). In the case of Dirichlet conditions,
with constant high level potential for obstacles and walls and
constant low level for the objective, the trajectories obtained
are the shortest trajectories along potential surface (which is
the minimal area surface that connect high level potential
points and low level potential points). This surface is an
Harmonic Function. These shortest trajectories are not the
shortest trajectories on 2D environment map.

Fig. 4. Trajectory calculated with Fast Marching without the Logarithm
Distance Transform.

As can be seen in equation 17, the Log of the inverse of the
Distance Transform can be calculated as φ = c1 log(r) + c2,
where c1 is a negative constant.

In a second step, the technique proposed here uses Level Set
Method (Fast Marching) to calculate the shortest trajectories in
the potential surface defined by logarithm of the inverse of the
Distance Transform. The calculated trajectory is the geodesic
in the potential surface, i.e. with a viscous distance. This
viscosity is done by the grey level. If the Level Set Method
were used directly on the environment map, we would obtain
the shortest geometrical trajectory (fig. 4), but the trajectory
is not safe nor smooth.

This method is connected with the Poisson’s equation,

∇2φ = f(x) (19)

Fig. 5. Potential of the Logarithm of the inverse of Distance Transform.

Fig. 6. Trajectory calculated with Fast Marching with the Logarithm Distance
Transform.

that corresponds to the electric field due to a charge density
f(x) (in this case uniform) located in the free areas, or the
auto-deformation due to its own weight of an elastic surface
(latex type) with material density f(x), fixed to obstacles and
walls, as it can be seen in the figure 3.

The trajectories obtained tend to go by the Voronoi dia-
gram but properly smoothed. In case of using the inverse of
the Distance Transform, the trajectories calculated by Fast
Marching are quite close to the Voronoi diagram. By using
the Logarithm of the inverse of the Distance Transform, the
trajectory is smoother but still close to the Voronoi diagram.

The potential created has local minima as shown in fig.
2 and 5, but the trajectories are not stuck in these points
because the Fast Marching Method gives the trajectories that
correspond to the propagation of a wave front faster in clearer
regions and slower in the darker ones. The method proposed,
can also be used for sensor based planning, working directly
on a raw sensor image of the environment, as shown in figures
7 and 8.

Fig. 7. Laser data read by the robot.

Fig. 8. Trajectory calculated with Fast Marching using the laser data (Local
map).

V. RESULTS

To illustrate the method possibilities, it has been used for
planning a trajectory in a typical offices’s indoor environment
as shown in figures 9 and 10. The dimensions of the environ-
ment are 116x14 meters (the cell resolution is 12 cm). For this
environment the first step (Log of inverse Distance Transform)
takes 0.06 seconds in a Pentium 4 at 2.2Ghz, and the second
step (Fast Marching) takes 0.20 seconds for a long trajectory.

The proposed method is highly efficient from a computa-
tional point of view because of the method operates directly
over a 2D image map (without extracting adjacency maps), and
due to the fact that Fast Marching complexity is O(m × n)
and the Distance Transform is also of complexity O(m× n),
where m× n is the number of cells in the environment map.

The method provides smooth trajectories that can be used at
low control levels without any additional smooth interpolation

Fig. 9. Log of the Distance transform applied of the environment map of the Robotics Lab.

Fig. 10. Trajectory calculated to avoid obstacles in a cluttered environment with Fast Marching and the Logarithm Distance Transform (Global map).

process. The results are shown in fig 9 (Log of the inverse
Distance Transform of the environment map of the Robotics
Lab.) and fig 10 (the path obtained after applying the Fast
Marching method to the previous potential image).

VI. CONCLUSION

The results obtained show that the Logarithm of inverse
of the Distance Transform can be used to improve the results
obtained with Fast Marching method applied to Path Planning,
to obtain smooth and safe trajectories.

The algorithm complexity is O(m×n), where m×n is the
number of cells in the environment map, which let us use the
algorithm on line. Besides, the algorithm can be used directly
with raw sensor data to implement a sensor based local path
planning.

REFERENCES

[1] J.-C. Latombe, Robot motion planning. Dordrecht, Netherlands: Kluwer
Academic Publishers, 1991.

[2] J. A. Sethian, “A fast marching level set method for monotonically
advancing fronts,” Proc. Nat. Acad Sci. U.S.A., vol. 93, no. 4, pp. 1591–
1595, 1996.

[3] G. Borgefors, “Distance transformations in arbitrary dimensions,” Com-
puter Vision, Graphics and Image Processing, no. 27, pp. 321–345,
1984.

[4] G.Borgefors, “Distance transformations in digital images,” CVGIP,
vol. 34, no. 3, pp. 344–371, 1986.

[5] P. E. Danielsson, “Euclidean distance mapping,” Computer Graphics
and Image Processing, no. 14, pp. 227–248, 1980.

[6] H. Yamada, “Complete euclidean distance tranformation by parallel
operation,” Proc. of 7th Int. Conf. on Pattern Recognition, pp. 69–71,
1984.

[7] K. D. W. M. Breu H., Gil J., “Linear time euclidean distance trans-
form algorithms,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 17, no. 5, pp. 529–533, 1995.

[8] F. R. Friedman J. H., Bentley J.L., “An algorithm for finding best
matches in logarithmic expected time,” ACM Transactions on Mathe-
matics Software, vol. 3, no. 3, pp. 209–226, September 1997.

[9] S. Osher and J. A. Sethian, “Fronts propagating with curvature-
dependent speed: Algorithms based on hamilton-jacobi formulations,”
Journal of Computational Physics, no. 79, pp. 12–49, 1988.

[10] P. L. L. M. G. Crandall, H. Ishii, “User’s guide to viscosity solutions
of second order partial differential equations,” Bull. Amer. Math. Soc.,
vol. 27, no. 1, pp. 1–67, 1992.

[11] P. L. L. M. G. Crandall, “Viscosity solutions of hamilton jacobi
equations,” Trans. Amer. Math. Soc., vol. 277, pp. 1–42, 1983.

[12] J. A. Sethian, “Theory, algorithms, and aplications of level set methods
for propagating interfaces,” Acta numerica, pp. 309–395, 1996, cam-
bridge Univ. Press.

[13] D. Adalsteinsson and J. Sethian, “A fast level set method for propagating
interfaces,” J. Comput. Phys., vol. 118, no. 2, pp. 269–277, 1995.

[14] J. Sethian, Level set methods. Cambridge University Press, 1996.
[15] G. S. L Yatziv, A Bartesaghi, “O (n) implementation of the fast marching

algorithm,” Journal of Computational Physics, 2005.

