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ABSTRACT

Speech patterns are modulated by the emotional and neurophysio-

logical state of the speaker. There exists a growing body of work that

computationally examines this modulation in patients suffering from

depression, autism, and post-traumatic stress disorder. However, the

majority of the work in this area focuses on the analysis of struc-

tured speech collected in controlled environments. Here we expand

on the existing literature by examining bipolar disorder (BP). BP is

characterized by mood transitions, varying from a healthy euthymic

state to states characterized by mania or depression. The speech pat-

terns associated with these mood states provide a unique opportunity

to study the modulations characteristic of mood variation. We de-

scribe methodology to collect unstructured speech continuously and

unobtrusively via the recording of day-to-day cellular phone conver-

sations. Our pilot investigation suggests that manic and depressive

mood states can be recognized from this speech data, providing new

insight into the feasibility of unobtrusive, unstructured, and continu-

ous speech-based wellness monitoring for individuals with BP.

Index Terms— Speech Analysis, Bipolar Disorder, mood mod-

eling

1. INTRODUCTION

Bipolar disorder (BP) is a common and severe psychiatric illness

characterized by pathological swings of mania and depression and is

associated with devastating personal, social, and vocational conse-

quences (suicide occurs in up to 20% of cases [1]). Bipolar disorder

is among the leading causes of disability worldwide [2]. The cost

in the United States alone was estimated at $45 billion annually [3].

These economic and human costs, along with the rapidly increasing

price of health care provide the impetus for a major paradigm shift

in health care service delivery, namely to monitor and prioritize care

with a focus on prevention. In this paper, we present our pilot inves-

tigation into methods to unobtrusively collect and analyze speech

data for longitudinal wellness monitoring to meet this ever-growing

need.

Speech patterns have been effectively used in clinical assess-

ment for both medical and psychiatric disorders [1,4]. Clinicians are

trained to record their observations of speech and language, which

become a critical component of the diagnostic process. Recently,

there have been research efforts exploring computational speech

analysis as a way to assess and monitor the mental state of individ-

uals suffering from a variety of psychological illnesses, specifically
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major depression (MD) [5–8], autism [9–12], and post-traumatic

stress disorder (PTSD) [13–16].

Stress and anxiety have been studied extensively and elements

of speech have been correlated with subjectively reported stress in

PTSD [13–16]. Research efforts have demonstrated the efficacy of

speech-based assessments for autism focusing on diagnosis [12], in

addition to predicting the course and severity of the illness [10, 17,

18]. Variations in speech patterns have also been used for compu-

tational detection and severity assessment in major depressive dis-

order [5–8, 19–21]. However, most work in this area focuses on

the assessment of participants over short periods of time, at most

several weeks, [19] rendering it challenging to measure the natu-

ral fluctuations that accompany the illness trajectories. Addition-

ally, the speech input is often highly-structured and collected in con-

trolled environments [13, 14, 16], precluding an understanding of

how acoustic patterns characteristic of natural speech variation cor-

relate with mood symptomology.

This paper focuses on the estimation of mood state for individu-

als with BP. This disorder is characterized by fluctuating mood state,

including periods of depression (lowered mood state), mania (ele-

vated mood state), and euthymia (neither mania nor depression). The

dynamic nature of the symptoms and temporal course of bipolar dis-

order are well suited to a comparative study of the acoustic patterns

associated with mood and illness states. Furthermore, unlike previ-

ous work that examined individuals over relatively short periods of

time, the population in our study is continuously monitored over the

course of six months to a year using our cell phone-based recording

software that unobtrusively records all outgoing speech.

The work presented in this paper represents a pilot analysis of

our initial collection targeting six individuals with BP. The ground

truth labels of our data are established through weekly structured

interactions between the participant and a trained clinician. We

demonstrate that we can detect the presence of mania and depression

in these calls. We further test the hypothesis that speech collected

in an unstructured setting (outside the clinician interaction) can be

used to assess the underlying mood state. We provide evidence that

mood-related variations recorded both from structured and unstruc-

tured cell phone conversation data are reflective of underlying mood

symptomology and that the acoustic variations indicative of mood

patterns across these conversation types differ. Furthermore, we

highlight the features of the speech that are most correlated with the

clinical assessment of manic and depressive mood states.

The novelty of our approach resides both in the longitudinal,

ecological, and continuous collection of unstructured speech in di-

verse environments and in the acoustic analysis of the BP partici-

pant population, which exhibits mood-states at two extremes of the

mood-state spectrum, depression and mania. Our results suggest that

this style of data collection can be effectively used, highlighting the

potential for autonomous ecologically valid monitoring for mental



health assessment.

2. UM PRECHTER ACOUSTIC DATABASE (UM-PAD)

Description: The University ofMichigan Prechter Acoustic Database

(UM-PAD) consists of longitudinally collected speech from individ-

uals diagnosed with bipolar disorder participating on the Prechter

BP Longitudinal Study [22], a multi-year study that takes a multidi-

mensional, biological, clinical, and environmental, approach to the

study of BP.

Enrollment: UM-PAD contains speech data collected from six

participants, four women and two men (average age 41 ± 11.2)
diagnosed with bipolar disorder type I and with a history of rapid

cycling, characterized by 4 or more episodes per year of mania, hy-

pomania, or depression. Participants are recruited from the Prechter

Longitudinal study and enrolled for 6 months to a year.

Protocol: Each participant is provided with a “smart phone” and

an unlimited call/data plan for personal use and is encouraged to

use the phone as their primary mode of contact. The phone is

pre-loaded with an application that records only the participant’s

outgoing speech (i.e. no incoming speech is captured or recorded),

at 8KHz, whenever they make or receive a phone call. All col-

lected speech is encrypted and transferred securely for analysis.

The application, data transfer, and handling follow strict security

and encryption guidelines approved by the internal review board

(IRB HUM00052163) to ensure that the integrity and privacy of the

collected data is not compromised.

Weekly Mood-State Labels: Ground truth measures of a partic-

ipant’s mood-state are obtained using weekly phone-based inter-

actions with a clinician associated with this project. The clini-

cian administers a twenty-minute recorded assessment that mea-

sures the mood-state of the participant over the past week. The

assessments include the 17 item Hamilton Rating Scale for De-

pression (HAMD) [23] as well as the Young Mania Rating Scale

(YMRS) [24] to assess the level of depression and mania, respec-

tively. In the current stage of our collection, no participant has

exhibited symptom severity associated with a manic episode. As a

result, our objective is to detect hypomania (elevated mood state not

reaching the severity of mania).

We categorize the mood assessments using thresholds set by the

clinical team. The final labels are as follows: Hypomanic: YMRS≥
10 and HAMD < 10. Depressed: HAMD≥ 10 and YMRS < 10.
Euthymic: YMRS< 10 and HAMD< 10. Mixed: YMRS≥ 10
and HAMD≥ 10. However, mixed mood-state is not included in

this paper due to its rarity in the collected data.

The weekly clinical assessments (“evaluation call”) provide a

measure both of the participant’s mood-state over the past week

and of the clinician’s perception of the participant’s current (dur-

ing evaluation call) mood-state. We hypothesize that the labels ob-

tained during an evaluation call will be most strongly associated with

the participant’s mood during that evaluation call and thus with the

mood-related modulations of the speech recorded during the call.

We further hypothesize that the set of calls disjoint from the evalu-

ation calls, calls recorded outside of a clinical interaction, will pos-

sess a more subtle expression of mood symptomology, may involve

masking of symptomology, and will correlate less strongly with the

clinically assessed labels. It is important to note that the only data

with labels are the evaluation calls.

Statistics on Recorded Calls: A total of 221.2 hours was recorded

from 3, 588 phone calls. On average participants made 4.9 ± 4.3
calls per day, with an average duration of 222.0 ± 480.7 seconds

and a median of 67.4 seconds.

The number of weeks of data available varies by participant:

participant 1 has 31 weeks of data, while participant 5 has 6 weeks

of data. Each participant’s data includes euthymic weeks and at

least one hypomanic and/or depressive week. Table 1 provides an

overview of the collected data for each participant, showing the num-

ber of weeks of collected data with categorized assessment labels of

euthymic, hypomanic, and depressive.

Table 1. Summary of collected data. #E, #H,#D are the number

of weeks in Euthymic, Hypomanic, and Depressive states.

Part. # 1 2 3 4 5 6

#(E:H:D) 22:2:7 9:0:4 21:1:3 10:9:1 2:4:0 3:0:4

3. ANALYSIS SETUP

Our research objective is to use speech data collected in an unob-

trusive and unstructured environment to: (1) estimate the clinical

assessment made during the participant-clinician weekly evaluation

call; (2) determine the feasibility of detecting the mood state as-

sessed during the evaluation call using unstructured personal cell

phone recordings from the same day as the evaluation call; and (3)

apply this detection to cell phone recordings from days preceding

or following the evaluation call. We also conduct feature analyses

to identify the speech features that are most informative for mood

classification.

This estimation task is a very challenging due to the sparse na-

ture of the data labeling (weekly assessments), the acoustic variabil-

ity associated with human communication and natural mood fluctu-

ations, and the variability due to uncontrollable environmental fac-

tors. A successful result will suggest that speech data collected in

uncontrolled and unstructured environments exhibit similar acoustic

variations to speech data collected in a structured clinical interac-

tion, which will support both the feasibility of longitudinal wellness

monitoring and the feasibility of using clinical data to seed models

for deployment in unstructured monitoring.

Datasets: The UM-PAD dataset is partitioned to address the re-

search questions presented above. The partitions are based on prox-

imity to evaluation call. Recall that the evaluation calls are the only

recordings that are labeled. Further, the temporal consistency of ma-

nia and depression are variable and person dependent. Therefore, it

is expected that the labels of the evaluation call are more strongly as-

sociated with calls recorded on the day of the evaluation as opposed

to the day(s) before or after it.

The data are partitioned into the following disjoint datasets. Ta-

ble 2 describes the per-participant summary of the number of calls

assigned each of the three labels. The datasets include:

• Evaluation calls: Speech collected during evaluation calls labeled

as hypomanic/depressed/euthymic based on the clinical assessment.

• Day-of calls: Speech collected from all calls recorded on the day

of the clinical assessment, excluding the evaluation call.

• Day before/after (B/A) calls: Speech collected from all calls made

or received only on the adjacent day (before or after).

Training Methodology: The classification algorithms are trained

using participant-independent modeling, capturing the variations as-

sociated with populations of individuals, rather than specific indi-

viduals. As the size of the UM-PAD database continues to grow

we anticipate leveraging participant-dependent modeling strategies.

The goal of participant independentmodeling is to understand how

speech is modulated as a function of mood state while mitigating the



effects of individual variability. We test our models using the leave-

one-participant-out cross-validation framework, where each partici-

pant is held out for testing and the remaining participants are used

for training. The validation set is obtained using leave-one-training-

participant out cross-validation within the training set. We train our

models using all data from the categories of euthymia, hypomania,

and depression. We evaluate the performance of our depression and

hypomania classifiers only for participants with at least two weeks

of evaluation calls labeled as either depressed or hypomanic.

Table 2. Number of calls assigned each of the categorical labels:

Part. # 1 2 3 4 5 6

E
v
a
l Euthymic 18 8 21 6 1 2

Hypomanic 2 0 1 3 3 0

Depressed 6 4 3 1 0 3

D
a
y
-O

f Euthymic 52 227 127 11 10 17

Hypomanic 13 0 5 14 11 0

Depressed 22 114 21 1 0 22

D
a
y
-B

/A Euthymic 77 202 271 25 5 60

Hypomanic 7 0 11 22 12 0

Depressed 29 100 47 2 0 41

4. FEATURES AND CLASSIFIER

It is crucial that we protect the privacy of the participants given the

sensitive nature of speech collected from personal phone calls. This

is done through the use of statistics extracted from low-level audio

features, rather than the features themselves. The statistics are cal-

culated over windows of at least three seconds in length. This win-

dowing obscures the lexical content of the original speech, rendering

it extremely challenging to reconstruct the individual words.

Low-level Features: We extract 23 low-level features (LLF) using

the openSMILE toolkit [25]. For each recorded call, the speech is

windowed into 25ms frames overlapping by 15ms, with the follow-
ing features extracted per frame:

• Pitch, computed using the autocorrelation/cepstrum method [25],

which yields the pitch over voiced windows. For unvoiced windows

the pitch is set to 0. Whether a window is voiced is determined by a

voicing probability measure, which we also include in the LLF.

• RMS energy, zero-crossing rate, and the maximum and minimum

value of the amplitude of the speech waveform.

• Three voiced activity detection (VAD) measures: fuzzy, smoothed,

binary. The fuzzy measure is computed using line-spectral frequen-

cies, Mel spectra, and energy. The smoothed measure is the result of

smoothing the fuzzy measure using a 10 point moving average. The

binary measure, is a 1/0 feature, by thresholding the fuzzy measure

to assess presence of speech.

• The magnitude of Mel spectrum over 14 bands ranging from 50Hz
to 4KHz.

Segment Level Features: The VADmeasures and voicing probabil-

ity provide an estimate of the location of speech and silence regions

of the input speech waveform. We use these measures to group the

speech into contiguous segments of participant speech ranging from

3 seconds to at most 30 seconds. We divide the call into segments

by finding non-overlapping regions of at least 3 seconds. We first

identify 3 consecutive frames whose energy, voicing probability, and

fuzzy VAD are all above the 40th percentile of their values over the

whole call. We end a segment when 30 consecutive frames have

energy, voicing probability, and fuzzy VAD measures that fall below

the 40th percentile of their values over the whole call. If the segment

length exceeds 30-seconds before reaching the stopping criteria then
the segment is ended and a new one is started; this occurs for less

than 3.5% of the segments. Each call has on average 24.3 ± 46.6
segments with a median of 8.

We represent each segment by a 51-dimensional feature vector

obtained from the statistics of the LLFs over the segment. This in-

cludes 46 mean and standard deviation values of each LLF com-

puted over the segment (for the pitch, these are computed only for

frames with voiced speech), the segment length, and 4 segment-level

features: relative and absolute jitter and shimmer measures. Each

recorded call Ci, is represented by Ni feature vectors, where Ni is

the number of segments for call i.

Classifier: The classifier used in the analysis is a support vector ma-

chine (SVM) [26] with linear and radial-basis-function (RBF) ker-

nels, implemented using LIBLINEAR [27] and LIBSVM [28], re-

spectively. The RBF kernel parameter were tuned over the range γ ∈
{0.0001, 0.001, 0.01, 0.1, 1} on the participant-independent valida-

tion set. The regularization values were tuned for both the linear and

RBF implementations over the set C ∈ {100, 10, 1, 0.1, 0.01}. The
classifiers are trained on the segment-level 51-dimensional features.

For each test call (Ci), we independently classify each of its Ni

segments si,j (j = 1, ...Ni). For each segment, we calculate its

signed distance to the hyperplane, di,j . We aggregate each distance

into a vector Di. The score for each call is associated with the pth

percentile of Di. The percentile was chosen using the validation set

over the range p ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90}.

5. RESULTS AND DISCUSSION

In this section we demonstrate the efficacy of differentiating be-

tween hypomanic and euthymic as well as depressed and euthymic

speech using a participant-independent training, testing, and valida-

tion methodology. Performance is evaluated using the call-level area

under the receiver operating characteristic curve (AUC).

Evaluation of Datasets: Table 3 presents the results across the three

datasets discussed in Section 3. The results demonstrate that we are

able to detect the mood state of individuals for calls recorded during

the clinical interactions. We obtain an average AUC of 0.81 ± 0.17
for hypomania and an average AUC of 0.67 ± 0.18 for depression

across all participants.

It is expected that the performance of the classification system

will decrease, moving from the evaluation call dataset to the day-of

and day before/after datasets. The calls recorded on the day-of and

the day before/after do not have human assessed labels due to privacy

restrictions. We anticipate that calls recorded on the same day as the

evaluation call will be well described by the label assigned during

the evaluation call. However, it is important to note that clinical in-

teractions are designed or structured to uncover underlying mood

state, while non-clinical interactions are not in general. It is antic-

ipated that the acoustic expressions in non-clinical or unstructured

calls will exhibit mood-modulations more subtle than the clinical

calls and that the recognition performance will decrease.

We use two training scenarios for the calls recorded on the day

of the evaluation and the days before/after the evaluation (the un-

structured datasets): (1) classifier training using only the evaluation

call dataset, testing on both unstructured datasets and (2) classifier

training over each unstructured dataset individually and testing with

held out parts of the same dataset (e.g., training and testing on the

day-of assessment calls). Method one asserts that the acoustic mod-

ulations that are indicative of mood state in the evaluation call will

also be present in the unstructured calls, even if they are more subtle.

Method two asserts that even if the symptomology is present in the

unstructured calls, the modulations may be different from those ex-

hibited in the evaluation call. Therefore, in order to detect the mood



state, the acoustic patterns in the unstructured data must be mod-

eled directly. If the performance between methods one and two are

similar, there is evidence for modulation consistency. If method two

outperforms method one, there is evidence for modulation variabil-

ity.

The results in Table 3 demonstrate that both method one and

method two can be used to detect hypomania during the unstructured

calls recorded on the day of the evaluation with an AUC of 0.61 ±
0.09 and 0.65±0.14, respectively. The AUC for depression is 0.49±
0.08 and 0.59 ± 0.13, for methods one and two respectively. The

results suggest that most individuals express mania and depression

differently in clinical interactions compared to their personal life.

Table 3. Call-level AUC of binary mood-state classification.

Train:Test indicates which dataset (Evaluation (Eval), Day-of (DOf),

Day-B/A (DB/A)), was used for training and which for testing:

Part. # 1 2 3 4 5 6 µ ± σ

Train:Test Hypomanic vs Euthymic

Eval:Eval .78 – – .67 1.0 – .81±.17

Eval:DOf .69 – – .63 .51 – .61±.09

DOf:DOf .66 – – .50 .79 – .65±.14

Eval:DB/A .48 – – .52 .43 – .47±.05

DB/A:DB/A .41 – – .62 .57 – .53±.11

Depressed vs Euthymic

Eval:Eval .42 .82 .78 – – .67 .67±.18

Eval:DOf .49 .60 .43 – – .43 .49±.08

DOf:DOf .68 .68 .40 – – .60 .59±.13

Eval:DB/A .5 .47 .42 – – .61 .52±.09

DB/A:DB/A .50 .52 .53 – – .34 .52±.13

Most Informative Features: We examine the features that are most

informative for classification using feature selection to further our

understanding for how speech is affected by hypomanic and de-

pressed mood states. To increase the robustness of the feature selec-

tion, we combine the two best performing datasets: evaluation calls

and day-of calls, into a single set that contains all calls recorded on

the day of the assessment. We perform feature selection using the

leave-one-subject-out cross-validation paradigm using greedy for-

ward feature selection for each of the hypomanic vs. euthymic and

the depressed vs. euthymic classification problems. The selection

only includes features that improve the average and minimum train-

ing participant segment-level AUCs and terminates when a further

addition no longer yields improvement. The selected features are

then used to train a classifier which is evaluated on the held out test

participant.

The feature selection process yields different sets of features for

each held out participant. Overall, the hypomanic vs. euthymic se-

lection yields an average of 8.3 ± 5.7 features and depressed vs.

euthymic 5.2 ± 4.0 features. Of the selected features, the segment-

average of the binary VAD was common to all cross-validation folds

for both hypomanic and depressed vs. euthymic. An additional three

features were common to 3 out of 4 folds of hypomanic classifica-

tion: standard deviation of the pitch, segment-average of the zero-

crossing rate and of the smoothed VAD. While there were two ad-

ditional features common to 3 of the 5 folds in the depressed clas-

sification: absolute jitter and the segment-average of the magnitude

of Mel spectrum over the first band. Table 4 presents the resulting

call-level AUCs for classifiers trained with only the selected features

as well as those trained with all 51 features.

The results demonstrate that with robust feature selection it is

possible to separate euthymic speech from hypomanic and depressed

using on average approximately 5−8 features. Feature selection im-

proves our ability to detect depression, while reducing the variance

across participants in the detection of hypomania.

The feature selection results highlight the importance of the

average binary VAD for the detection of hypomanic and depressed

moods. The mean binary VAD is correlated with the vocaliza-

tion/pause ratio measure, which has been shown in [19] to be lower

for depressed speech. Our examination of this measure showed a

similar pattern for depressed speech, and also that it tends to be

higher for hypomanic speech: we do this by first removing all in-

stances of the feature≥ 90% since a majority of the segments tend to

be significantly voiced regardless of the label, and find that the fea-

ture is lowest for depressed (median(M) = .51 µ±σ = .46±.32),
higher for euthymic (M = .63 µ ± σ = .52 ± .33), and the highest
for hypomanic (M = .76 µ ± σ = .69 ± .21).

Table 4. Call-level AUC of binary mood-state classification using

all features or only selected features:

Part. # 1 2 3 4 5 6 µ ± σ

Hypomanic vs Euthymic

All Feats .61 – – .37 .84 – .61±.24

Sel. Feats .63 – – .59 .67 – .63±.04

Depressed vs Euthymic

All Feats .62 .65 .42 – – .65 .59±.11

Sel. Feats .63 .82 .43 – – .67 .64±.16

6. CONCLUSION

This paper presents a new framework for the ecological long-term

monitoring of mood states for individuals with BP. We describe our

data collection paradigm and our labeling methodology. Our results

demonstrate that hypomania and depression can be differentiated

from euthymia using speech-based classifiers trained on both struc-

tured (the weekly clinical interactions) and unstructured (all other

calls) cell phone recordings. The only labels within our data are

those associated with structured interactions due to the privacy con-

siderations associated with the continuous recording of cell phone

conversational data. We find that our system is most accurate when

modeling these structured data. We hypothesize that the relative ac-

curacy of the structured modeling results both from the fact that these

calls are the only data directly labeled and the skill with which clini-

cians evoke underlying mood in their patient interactions. We further

demonstrate that the system can detect the presence of hypomania in

the unstructured data collected on the same day as the structured

interaction. This suggests that the labels assessed during the clini-

cal interactions fit the data recorded during the non-clinical personal

interactions in hypomania. We find that our system currently has

difficulty detecting the presence of depression outside of the clinical

interactions. This may suggest that the acoustic features of depres-

sion we studied are associated with the context of questions (asking

about depressed moods) compared to hypomanic symptoms.

With the expansion of the UM-PAD, we will gather acoustic data

from participants over periods of time up to one year. This will allow

us to associate these data with clinical and biological characteristics

of the individual and their illness. This additional data will allow us

to determine the stability of the observed trends. The ultimate goal

is to identify acoustic features that predict impending mood changes

with the purpose of providing intervention strategies to prevent mood

episodes. Initial results presented in this paper highlight the potential

for and the challenges of modeling mood variation in unstructured

data collected outside of clinical interactions. The refinement and

further development of this technology has the potential to change

the manner in which we consider the deployment of health care, par-

ticularly in under-resourced communities.
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