
OUT-OF-CORE CONE BEAM RECONSTRUCTION USING MULTIPLE GPUS

Fumihiko Ino†, Yusuke Okitsu†, Taketo Kishi‡, Syuhei Ohnishi‡, Kenichi Hagihara†

†Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

‡Analytical and Measuring Instruments Division, Simadzu Corporation
1 Nishinokyo-Kuwabara-cho, Nakagyo-ku, Kyoto 604-8511, Japan

ABSTRACT
This paper presents a graphics processing unit (GPU) based
method capable of accelerating cone-beam reconstruction of
large volume data, which cannot be entirely stored in video
memory. Our method accelerates the Feldkamp, Davis and
Kress (FDK) algorithm in a multi-GPU environment. We
present how the entire volume can be efficiently decomposed
into small portions to reduce the usage of video memory on
each graphics card. Experimental results are also presented
to understand the reconstruction throughput on an nVIDIA
Tesla S1070 server. It takes approximately three minutes to
reconstruct a 20483-voxel volume from 720 20482-pixel pro-
jections. The effective bandwidth of video memory reaches
137 GB/s per GPU, demonstrating a higher utilization of tex-
ture caches.

1. INTRODUCTION

Cone beam (CB) reconstruction is an imaging technique for
producing a three-dimensional (3-D) volume from a series
of 2-D projections acquired by a CB computed tomography
(CBCT) scan. This technique plays an important role in var-
ious fields, such as clinical diagnosis and nondestructive in-
spection of engineering products. For many years, CB recon-
struction has been a compute-intensive task to us. However,
the graphics processing unit (GPU) has emerged as a powerful
accelerator that achieves a 30-fold speedup over a CPU-based
method optimized using SSE instructions [1]. For example, a
reconstruction task of a 5123-voxel volume can be completed
within several seconds using the commodity GPU.

However, most GPU-based methods [2–4] assume that the
volume is small enough to store the entire data in video mem-
ory. This assumption restricts the volume size by 5123 voxels
on current commodity GPUs with at most 1 GB of memory.
Though this limitation was not so serious problem, flat panel
detectors in recent CBCT systems now have more than 10242

detector units. Since the data size reaches 4 GB for a 10243-
voxel volume, an out-of-core algorithm is needed to recon-
struct a large volume from high-resolution projections.

This work was partly supported by JSPS Grant-in-Aid for Scientific Re-
search (A)(2)(20240002) and the Global COE Program “in silico medicine”
at Osaka University.

In this paper, we present how out-of-core reconstruction
can be efficiently realized for a large volume, which cannot be
entirely stored in video memory. Our algorithm decomposes
the volume into small portions, which are then processed us-
ing an in-core algorithm [2] in a multi-GPU environment. The
in-core algorithm is based on the Feldkamp, Davis and Kress
(FDK) algorithm [5], which is widely used in many CBCT
systems. Our algorithm parallelizes the filtering stage and
the backprojection stage, which are the time-consuming part
of the FDK algorithm. The algorithm is implemented using
a general-purpose programming framework, called the com-
pute unified device architecture (CUDA) [6].

The outline of this paper is as follows. Section 2 intro-
duces previous work. Section 3 then describes the out-of-core
algorithm. Sections 4 and 5 present results and conclusions.

2. RELATED WORK

Many researchers [2–4] are trying to accelerate CB recon-
struction on the GPU. Okitsu et al. [2] show that texture cache
optimization is the key technique to accelerate the backpro-
jection stage on the CUDA-compatible GPU. Scherl et al. [3]
propose another optimization strategy that minimizes the re-
source usage to exploit higher parallelism on the GPU. In con-
trast to these CUDA-based implementations, Yan et al. [4]
propose a graphics-based method that implements the FDK
reconstruction using the OpenGL library. Their implementa-
tion takes only 5.2 seconds to reconstruct a 5123-voxel vol-
ume from 360 5122-pixel projections. The implementations
mentioned above are based on in-core algorithms that requires
the entire volume to be stored in video memory.

In contrast to these in-core algorithms, out-of-core algo-
rithms can deal with larger data. Nesterets et al. [7] proposes
an efficient algorithm that uses as little video memory for the
reconstruction of each axial slice of the object as possible.
Their algorithm carries out reconstruction in a slice-by-slice
manner. It takes about 81 minutes on a GeForce GTX 260
card to reconstruct a 20483-voxel volume from 1440 20482-
pixel projections. A similar work is also done by Nöel et
al. [8]. Their implementation runs on a GeForce 8800 GT
card and takes 61.3 seconds to reconstruct a 10243-voxel vol-
ume from 106 10243-pixel projections. Zhao et al. [9] im-

792978-1-4244-4126-6/10/$25.00 ©2010 IEEE ISBI 2010

plement an out-of-core algorithm using the OpenGL library.
It takes about 101.9 seconds on a Quadro FX 4600 card to
reconstruct a 10243-voxel volume from 720 10242-pixel pro-
jections. In contrast to these out-of-core algorithms, we show
that our algorithm runs more efficiently with reaching the the-
oretical performance bound.

3. METHODS

Consider a reconstruction task that produces an N3-voxel vol-
ume V from a series of K M2-pixel projections using C
GPUs. The FDK algorithm [5] solves this problem by pro-
cessing the filtering stage and the backprojection stage. We
currently use the Shepp-Logan filter [10] at the filtering stage.

3.1. Parallelization

The data dependence at the filtering stage and at the backpro-
jection stage can be summarized as follows.

Filtering stage: Different pixels on the same projection can
be simultaneously filtered at this stage, because there is
no data dependence between them. Furthermore, dif-
ferent projections can also be processed at the same
time, because they do not have data dependence.

Backprojection stage: The backprojection stage must be
processed after the filtering stage. However, different
voxels can be simultaneously processed at the backpro-
jection stage. In addition, the backprojection operator
has an associativity property, so that projections can be
processed in an arbitrary order. All projections must be
backprojected into every voxel in the volume.

According to the analysis mentioned above, we have de-
cided to decompose the volume data V into multiple subvol-
umes V1, V2, · · · , VB , where B (> 1), because the volume
size usually limits the maximum reconstruction size. We de-
termine the value of B such that (1) every subvolume is small
enough to store in video memory and (2) every GPU has at
least one assigned subvolume (B ≥ C). After this decompo-
sition, the in-core algorithm [2] can be applied to each sub-
volume of N3/B voxels.

Figure 1 shows an overview of the proposed method,
which exploits data parallelism in each stage. As shown in
this figure, each of C GPUs is responsible for K/C pro-
jections at the filtering stage and for B/C subvolumes at
the backprojection stage. Both stages are processed by the
in-core algorithm [2], which performs the filtering of I pro-
jections at a time and performs the backprojection of I filtered
projections into a subvolume at a time, where 1 ≤ I ≤ K.
Therefore, the algorithm iteratively invokes the GPU program
to process all projections and subvolumes. The value of I is
experimentally determined as I = 5.

Notice here that all filtered projections are sent back to
main memory before the backprojection stage. This intends
to gather projections and broadcast all of them to GPUs. The

Concatenated

volume

GPU #1

K filtered

projections

GPU #1

K/C projections

GPU #C

K filtered

projections

GPU #C

K/C projections

B/C

subvolumes

…

B/C

subvolumes

…

Filtering stage Backprojection stage

Main

memory

… …
X

Y
Z

Fig. 1. Overview of proposed out-of-core algorithm.

Input: Projections P1, P2, . . . , PK , number B of subvolumes,
Output: Volume V
Algorithm Cone Beam Reconstruction()
1: Load P1, P2, . . . , PK from storage device;
2: for k = 1 to K do in parallel
3: Download Pk from main memory to video memory;
4: Qk ← Filtering(Pk); // Qk: k-th filtered projection
5: Readback Qk to main memory;
6: endfor
7: for b = 1 to B do in parallel
8: Initialize subvolume Vb in video memory;
9: for k = 1 to K do

10: Download Qk from main memory to video memory;
11: Bind Qk as texture;
12: Vb ← Backprojection(Qk, k, b);
13: endfor
14: Readback subvolume Vb to main memory;
15: endfor

Fig. 2. Pseudocode of proposed algorithm. The actual code
is optimized to process the filtering and backprojection of I
projections at a time.

reason why we gather filtered projections is that all K filtered
projections are needed at the backprojection stage on every
GPU, though each GPU is responsible for a part of the vol-
ume. Thus, our algorithm requires data transfer but prevents
us from filtering all of K projections on every GPU. After this
parallel backprojection, B subvolumes are then concatenated
into the final volume.

Figure 2 shows a pseudocode of the proposed algorithm.
In this code, “download” represents the data transfer from
main memory to video memory. Similarly, “readback” rep-
resents the transfer in the opposite direction. Lines 2–6 and
7–15 correspond to the filtering stage and the backprojection
stage, respectively. In the backprojection stage, filtered pro-
jections are stored in textures [6] to use texture units for inter-
polation of pixels on projections. Since texture units are sep-
arated from processing elements in the GPU, using textures is
necessary to maximize the entire performance by offloading
workloads from processing elements to texture units.

Note here that the code is optimized using an asyn-
chronous execution technique [6]. This technique is applied

793

Table 1. Analytical results of time complexity and space
complexity. Parameter I represents the number of projections
processed at a time. We currently use I = 5.
Item Original [2] Proposed

Download O(KM2) O(BKM2/C)
Filtering O(KM2) O(KM2/C)
Readback (projection) — O(KN3/C)
Backprojection O(KN3) O(KN3/C)
Readback (volume) O(N3) O(N3/C)
Concatenation — O(B)
Video memory usage O(N3 + IM2) O(N3/B + IM2)
Main memory usage O(N3 + KM2) O(N3 + KM2)

to the filtering stage to overlap data transfer (lines 3 and 5)
with GPU computation (line 4). In contrast, we cannot apply
this technique to the backprojection stage because textures
currently have to be sent in synchronous mode.

Finally, we explain how our algorithm decomposes the
volume. As shown in Fig. 1, our algorithm uses a 2-D
block decomposition scheme that separates the volume space
with respect to the (x, y) coordinate. In other words, this
scheme does not divide the Z (axial) space, so that any
voxel V (x, y, z) located on the same (x, y) coordinate will be
assigned to the same GPU. This allows us to maximize the ef-
fect of a data reuse technique [2], which reduces the amount
of computation between different axial slices. Thus, data
decomposition depends on the data reuse technique because
data cannot be reused between different GPUs.

3.2. Analytical Analysis

Table 1 shows an analytical analysis of the proposed algo-
rithm and the original in-core algorithm [2] in terms of time
complexity and space complexity. As shown in this table,
data decomposition allows us to reduce the space complexity
so that out-of-core reconstruction can be realized by selecting
the appropriate value for B.

With respect to the time complexity, our algorithm basi-
cally reduces the original complexity by a factor of 1/C be-
cause it fully exploits data parallelism using C GPUs. How-
ever, the time complexity of data download is the exception.
This can be explained by the pseudocode in Fig. 2, which has
a nested loop at line 9. The loop implies that the same pro-
jections can be iteratively sent to video memory for different
subvolumes. Though this redundancy increases the complex-
ity by a factor of B, it saves the usage of video memory to
deal with large volume data.

Note here that Table 1 shows results for per GPU. There-
fore, the measured results can differ from them. For example,
we currently cannot send data to multiple GPUs at the same
time. This is due to the graphics driver, which sequentially
sends the data in a first-in, first-out (FIFO) manner. Further-
more, our algorithm is optimized using stream, which over-
laps data transfer with program execution on the GPU.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0

5

10

15

20

25

30

35

40

45

C=1 C=2 C=4

S
p

ee
d

u
p

T
h

ro
u

g
h

p
u

t
(p

p
s)

Throughput

Speedup

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C=1 C=2 C=4

S
p

ee
d

u
p

T
h

ro
u

g
h

p
u

t
(p

p
s)

Throughput

Speedup

(b)

Fig. 3. Throughput and speedup ratio (a) for N = M = 1024
and (b) for N = M = 2048. The throughput is presented in
terms of the number of projections per second (pps).

Table 2. Breakdown of execution time T in seconds.

Breakdown
N = M = 1024 N = M = 2048

C = 1 C = 2 C = 4 C = 1 C = 2 C = 4
Initialization 1.3 2.7 5.4 6.1 5.5 7.5

Download 4.4 2.4 1.3 255.8 190.7 103.6

Filtering 5.2 2.6 1.3 20.8 10.4 5.2

Readback (prj.) 1.1 0.6 0.3 3.8 3.5 1.6

Backprojection 39.7 19.9 10.0 235.3 117.5 59.3

Readback (vol.) 1.3 0.9 0.6 10.2 6.3 3.6

T (no stream) 53.0 29.1 18.9 532.0 333.9 180.8

T (stream) 51.5 28.4 18.0 523.8 328.3 178.4

4. RESULTS

We now show experimental results to evaluate the per-
formance of the proposed method. A reconstruction of
10243/20483-voxel volume from 720 10242/20482-pixel pro-
jections is carried out on an nVIDIA Tesla S1070 server
(K = 720). The 10243-voxel data and 20483-voxel data
are decomposed into 4 portions (B = 4) and 64 portions
(B = 64), respectively. The server is connected to a PC that
has a Xeon E5450 CPU and 16-GB main memory. It runs on
CentOS 5.3 with CUDA 2.2 [6] and driver version 185.18.08.

Figure 3 shows the reconstruction throughput in terms of
the number of projections per second (pps). The through-
put reaches 4 pps when using all four GPUs for N = 2048
(C = 4). On a single GPU, the throughput for 10243-voxel
data and that for 20483-voxel data are 14 pps and 1.4 pps, re-
spectively. The speedup over a single GPU version is around
a factor of 3, which is slightly lower than the optimal speedup.
This inefficiency can be explained by Table 2, which shows
the breakdown of execution time T for each execution config-
uration. Although the filtering stage and the backprojection
stage are linearly accelerated using multiple GPUs, the GPU
initialization and data transfer emerge as performance bottle-

794

0

50

100

150

200

250

300

350

400

450

0

0.2

0.4

0.6

0.8

1

1.2

C=1 C=2 C=4

E
ff

ec
ti

v
e

M
em

o
ry

 b
a
n

d
w

id
th

 (
G

B
/s

)

E
ff

ec
ti

v
e

a
ri

th
m

et
ic

 p
er

fo
rm

a
n

ce
 (

T
fl

o
p

s)

Arithmetic

Bandwidth

(a)

0

100

200

300

400

500

600

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

C=1 C=2 C=4

E
ff

ec
ti

v
e

m
em

o
ry

 b
a
n

d
w

id
th

 (
G

B
/s

)

E
ff

ec
ti

v
e

a
ri

th
m

et
ic

 p
er

fo
rm

a
n

ce
 (

T
fl

o
p

s)

Arithmetic

Bandwidth

(b)

Fig. 4. Effective arithmetic performance and memory band-
width of backprojection measured (a) for N = M = 1024
and (b) for N = M = 2048.

neck as we increase the number of GPUs. This might be due
to the limitation of current graphics drivers, which are not
fully multithreaded yet. Thus, GPUs are serially initialized
in our implementation. Similarly, graphics drivers currently
cannot simultaneously exchange data with multiple GPUs.

Figure 4 shows the effective arithmetic performance and
memory bandwidth at the backprojection stage. The theoret-
ical bound of our GPU is 102 GB/s and 0.933 Tflops (tera
floating point number operations per second) for the memory
bandwidth and for the arithmetic performance, respectively.
As shown in this figure, we find that the effective bandwidth
for N = M = 2048 reaches 137 GB/s per GPU, which ex-
ceeds the theoretical bound. This can be explained by tex-
ture caches, which saves the bandwidth of video memory. In
contrast, the arithmetic performance is lower than 0.4 Tflops,
which is equivalent to 41% efficiency. This lower efficiency
indicates that processing elements in the GPU have to wait for
data to be fetched from video memory. Therefore, we have to
further increase the effective bandwidth to improve the effec-
tive arithmetic performance.

Finally, Table 3 shows a performance comparison with
previous algorithms [7–9]. Since different GPUs are used in
experiments, we have normalized the performance according
to the bandwidth of video memory. The proposed algorithm
achieves the highest efficiency among known algorithms.

5. CONCLUSION

We have presented an out-of-core reconstruction algorithm
for large volume data. The algorithm efficiently decomposes
the volume data into small portions. It also exploits data par-
allelism in the FDK algorithm to maximize the performance
in a multi-GPU environment. In experiments, our algorithm
takes about 3 minutes to reconstruct a 20482-voxel volume
from 720 20482-pixel projections. We also show that the

Table 3. Performance comparison with previous work.
Throughput (pps) GPU specification

Work Normalized Bandwidth Arithmetic
(Measured) (GB/s) (Tflops)

[8] 3.9 (1.7) 44.8 0.504
[9] 10.8 (7.1) 67.2 0.336
This paper 14.0 (14.0) 102.0 0.933

[7] 0.3 (0.3) 111.9 0.715
This paper 1.4 (1.4) 102.0 0.933

measured bandwidth exceeds the theoretical bandwidth for
the sake of texture cache utilization. Therefore, we think that
the measured performance is close to the theoretical bound.
In the future, we plan to further minimize the amount of data
transfer between video memory and main memory.

6. REFERENCES

[1] Marc Kachelrieß, Michael Knaup, and Olivier Bockenbach,

“Hyperfast parallel-beam and cone-beam backprojection using

the cell general purpose hardware,” Medical Physics, vol. 34,

no. 4, pp. 1474–1486, Apr. 2007.

[2] Yusuke Okitsu, Fumihiko Ino, and Kenichi Hagihara, “Fast

cone beam reconstruction using the CUDA-enabled GPU,”

in Proc. 15th Int’l Conf. High Performance Computing
(HiPC’08), Dec. 2008, pp. 108–119.

[3] Holger Scherl, Benjamin Keck, Markus Kowarschik, and

Joachim Hornegger, “Fast GPU-based CT reconstruction us-

ing the common unified device architecture (CUDA),” in

Proc. Nuclear Science Symp. and Medical Imaging Conf.
(NSS/MIC’07), Oct. 2007, pp. 4464–4466.

[4] Guorui Yan, Jie Tian, Shouping Zhu, Yakang Dai, and

Chenghu Qin, “Fast cone-beam CT image reconstruction using

GPU hardware,” J. X-Ray Science and Technology, vol. 16, no.

4, pp. 225–234, Oct. 2008.

[5] L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-

beam algorithm,” J. Optical Society of America, vol. 1, no. 6,

pp. 612–619, June 1984.

[6] nVIDIA Corporation, “CUDA Programming Guide Version

2.2,” April 2009, http://developer.nvidia.com/cuda/.

[7] Ya. I. Nesterets and T. E. Gureyev, “High-performance tomo-

graphic reconstruction using graphics processing units,” in

Proc. 18th World IMACS/MODSIM Congress Modeling and
Simulation (MODSIM’08), July 2009, 7 pages.

[8] Peter B. Noël, Alan M. Walczak, Kenneth R. Hoffmann, Jinhui

Xu, Jason J. Corso, and Sebastian Schafer, “Clinical evaluation

of GPU-based cone beam computed tomography,” in Proc.
High-Performance Medical Image Computing and Computer
Aided Intervention (HP-MICCAI’08), Sept. 2008.

[9] Xing Zhao, Jing jing Hu, and Peng Zhang, “GPU-based 3D

cone-beam CT reconstruction for large data volume,” Int’l J.
Biomedical Imaging, Article ID 149079, 2009, 8 pages.

[10] L. A. Shepp and B. F. Logan, “The fourier reconstruction of a

head section,” IEEE Trans. Nuclear Science, vol. 21, no. 3, pp.

21–43, June 1974.

795

