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Abstract. Automated theorem proving consists in automatically (i.e. without any
user interaction) discharging proof obligations which arise when applying rig-
orous methodologies for designing critical software systems. Recent develope-
ments in the so-called lazy approach in the integration of Boolean satisfiability
with decision procedures for decidable theories of first-order logic have pro-
vided new means to efficiently prove or refute such proof obligations. In this
paper, we present the first (known) attempt to design a distributed version of
lazy theorem proving on a network of computers so that the available process-
ing power can be used more effectively and avoid that automated reasoning be
the bottleneck of the application of formal methods. Experiments clearly show
the viability and the benefits of the proposed approach.

1. Introduction
Formal verification tools and techniques are challenged by increasingly complex software
systems. In particular, checking that a property is met by a system is the bottleneck in the
application of virtually any formal design approach. One recurring approach to this prob-
lem consists of building a conservative abstraction of the system and check if it is satisfied.
If this is the case, the original model also satisfies the property; otherwise, we are not al-
lowed to conclude and a refinement step is undertaken. The abstract model is changed to
take into account more details and it is checked if such a model satisfies the property of
interest. This abstract-check-refine cycle is repeated until we are allowed to conclude or
the available computational resources are exhausted. State-of-the-art model checkers for
software verification (see e.g. [Clarke et al. 2003, Ball et al. 2002]) are typical examples
of this approach to verification.

These different verification activities can be carried out, at least in part, using
so-called lightweight theorem provers, i.e. provers providing a high-degree of automa-
tion for selected classes of formulae in decidable theories of first-order logic (FOL).
Lightweight theorem provers have also been used successfully to check consistency of
formal specification artifacts [Couchot et al. 2004] and extended static checking of soft-
ware code [Detlefs et al. 1998]. The construction of such provers has been made possi-
ble by recent advances in the integration of highly efficient Boolean solvers (e.g. SAT
solvers) and decision procedures for theories in FOL. This integration can be either ea-
ger or lazy. In the eager integration, the formulas are translated to propositional logic
and decided using a SAT-solver (see, e.g. [Bryant et al. 2001]). Their main limitation is
w.r.t. flexibility since the decidable theory must obey severe restrictions for the transla-
tion to propositional logic to be possible. Lazy integrations abstract atoms of formulas



in FOL to propositional letters so that boolean satisfiability solvers (SAT solvers), or
Binary Decision Diagrams (BDDs), can be used to extract a satisfiable propositional as-
signment of the abstract formula (BDDs actually compactly represent all the satisfiable
assignments). Such an assignment is then translated back to a conjunction of literals in
FOL which can then be checked valid (or not) by the available decision procedure for the
first-order to which they belong. If checked valid, the process is started again by con-
sidering a new propositional assignment. Otherwise, the process halts by reporting that
the first-order input formula is not valid. The lazy approach is at the basis of several re-
cently developed tools such as Zapato [Ball et al. 2004], Verifun [Flanagan et al. 2003],
CVC Lite [Barrett and Berezin 2004] and our tool haRVey [Déharbe and Ranise 2003].
The main advantage of lazy over eager integrations is a much higher degree of flexibil-
ity while maintaining efficiency. For example, heterogenous theories obtained by unions
of “simple” theories can be considered by using well-known combination methods (see
[Ranise et al. 2004] for an overview). More recently, it has been shown that a care-
fully engineered implementation of a lazy integration can outperform the eager approach
[Ganzinger et al. 2004]. In the case of haRVey, an even greater flexibility is achieved by
integrating an automated deduction engine that can be configured with finitely axiomati-
zable theories.

The paper presents the first distributed approach to lightweight theorem proving
based on the following simple observation. If we consider n (> 1) propositional assign-
ments at the same time and we invoke n instances of the decision procedures on their
first-order counterparts (as sketched above), we can hope to significantly reduce the over-
all running time of the reasoning system. As it is well-known in distributed computing, to
make this observation practical, special care must be put into choosing a suitable number
n of instances of the decision procedures. Another open question is the choice of the n
propositional assignments that provide best results. As experimentation is a mean to val-
idate answers to these questions, we have implemented a distributed version of haRVey
which exploits the above observation. Our implementation uses the TOOLBUS architec-
ture [Bergstra and Klint 1998] which allowed us rapid prototyping. This paper presents
an experimental analysis with this prototype on a set of representative proof obligations
showing the viability of the proposed approach. In particular, we study the impact on
performances of different approaches in choosing n propositional assignments to be con-
sidered at the same time.

Plan of the paper. Section 2. gives some background material on the TOOLBUS archi-
tecture. Section 3. explains the basic algorithm underlying haRVey. It also explains how
a distributed algorithm has been derived from the original sequential version. Section
4. describes our prototype implementation of a distributed variant of haRVey. Section
5. reports on the experiments. Finally, Section 6. concludes and sketches our research
directions.

2. The TOOLBUS

The construction of a heterogenous, distributed system is a challenging task, both from a
design and implementation point of views. The TOOLBUS provides an elegant solution
to implement robust distributed systems, using a process algebra as language to describe
the protocol between the different components, and a uniform, term-like, communication



data type called Aterms, which is also used in haRVey to represent logic formulas. In
this section, we provide the reader with just the information necessary to understand how
haRVey components may be distributed and interconnected with the help of the TOOL-
BUS. Further details can be found in e.g. [Bergstra and Klint 1998].

Programmers write a TOOLBUS script describing the intended interaction proto-
col between the components, called tools. Scripts are then directly executable by the
TOOLBUS interpreter. Moreover, the TOOLBUS suite provides utilities to automatically
generate the interfaces that each tool has to implement to participate in the protocol. Cur-
rently, there is support for the programming languages JAVA and C (adapters are also
available for Perl, Python, Tcl/Tk and UNIX scripts).

A TOOLBUS script defines an interaction protocol between different (user-supplied)
tools by means of a composition of processes. We will adopt the term tool bus to denote
an instance of such protocol.

The TOOLBUS scripting language provides the classic process algebra constructs:
+ for choice, . for sequential composition, ‖ for parallel composition, * for repetition, if
then [else] fi for guarded command, and delta to represent deadlock. Moreover, the cre-
ate operator dynamically creates process instances; finally, execute and snd-terminate
respectively spawns and aborts the execution of a tool instance.

The execution of a tool can be dispatched from within the tool bus, with the com-
mand execute, or can be started externally and issue a connection request to the tool bus,
that may accept such connection requests with the rec-connect command.

Once connected to the tool bus, tools do not communicate directly. Instead, com-
munication channels are established between tools and processes, or between processes.
The communication between processes can be synchronous, using matching send-msg
and rec-msg commands, or asynchronous, with the send-note broadcasting command,
which can be received using the rec-note command from all processes that had previously
issued a subscribe command on the corresponding label.

Processes use handshaking to communicate with the tools. The tool-to-process
communication can be either a send-event message (notifies an event) or a send-value
message (sends a value), while the communcation from a process to a tool can be one
of the following three commands: snd-eval (evaluation request), snd-do (action request,
i.e. without return value), or snd-ack-event (acknowledges a previous event).

All the communication commands may have typed parameters and return results.
To distinguish between input and output parameters, the latter are decorated with the
symbol ? as suffix.

3. The lightweight theorem-prover haRVey

haRVey [Déharbe and Ranise 2003] checks if a first order formula ψ (possibly contain-
ing quantifiers) is a logical consequence of a theory T which can be finitely axiomatized.
For simplicity, in this paper, we will assume that ψ is of the following form ∀x1, ..., xn.φ,
where x1, ..., xn are the only variables occurring in φ which is required to be quantifier-
free1. haRVey works by refutation, i.e. it negates the formula ψ and tries to show that this

1Readers interested in the technical details on the elimination of quantifiers are referred to [Couchot et al. 2004].



negation is T -unsatisfiable, i.e. that models of T do not satisfy ¬ψ. Under the assump-
tions above on ψ, ¬ψ is ∃x1, ..., xn.¬φ and hence we consider the problem of determining
the T -unsatisfiability of ¬φ where each xi is considered as a (Skolem) constant.

haRVey is based on a combination of Boolean solving and superposition theorem
proving. The core algorithm of haRVey is presented in Figure 1. Let fol2prop be a bi-
jective mapping from ground atoms of φ to boolean propositions, abs its homomorphical
extension to ground formulas, and prop2fol the inverse mapping from boolean proposi-
tions to ground atoms. φ is first univocally abstracted to a propositional formula φa and a
Boolean solver finds satisfiable assignments to this abstraction. Each such assignment βa

is then translated back to a conjunction `1∧· · ·∧`n of ground first-order literals, which can
be checked for T -(un)satisfiability, using a superposition-based reasoning wrapped into
the function fol check unsat . This is actually implemented by simply feeding a third-
party superposition-based prover with the axioms of T and the set {{`i}}i=1,...n of unit
clauses. A refinement of this schema which dramatically improves performances (based
on the capability of generating suitable lemmas to prune the search space of the Boolean
solver) is actually implemented in haRVey. The function fol check unsat is extended so
that also a small unsatisfiable sub-formula of the input conjunction of ground literals is
returned. More precisely, we assume that fol check unsat(T , β) = (>, π) iff π is a sub-
formula of β and π is T -unsatisfiable. π is called the proof of the assignment β. Using
π to constrain the formula φ, several assignments can be discharged at once, resulting in
often dramatically better results.

function check unsat (T: theory; φ: formula)
φa ←− abs(φ)
while φa 6= ⊥ do begin

βa ←− pick assignment(φa)
(ρ, π)←− fol check unsat(T, prop2fol(βa))
if ρ 6= > then return no
φa ←− φa ∧ ¬fol2prop(π)

end
return yes

Figure 1. The core algorithm of haRVey.

A key feature of haRVey with respect to other lazy theorem provers is the fact
that the decision procedure is based on superposition-based automated deduction, which
makes it possible to apply it to verify the validity of a formula in any finitely presentable
background theory. This feature also provides the possibility to handle nicely the ver-
ification of formulas with quantifiers [Couchot et al. 2004]. In the current develope-
ment version of haRVey, boolean satisfiability can be realized with BDDs [Bryant 1986]
or the SAT-solver zchaff [Moskewicz et al. 2001], and first-order reasoning is a com-
bination a la Nelson and Oppen [Nelson and Oppen 1979] of the superposition-based
E prover [Schulz 2002] and a decision procedure for a fragment of linear arithmetics.
So far haRVey has been successfully applied to the verification of pointer-based pro-
grams [Ranise and Déharbe 2003], B specifications [Couchot et al. 2004], static checking
of automatically generated code for aerospatial applications [Déharbe and Ranise 2005]
as well as array programs [Déharbe et al. 2004].
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Figure 2. Schematic architecture of distributed haRVey.

4. Distributed Algorithm
By considering Figure 1, it is not difficult to see how to obtain a distributed version of the
algorithm. The key idea is to consider n (> 1) propositional assignments concurrently
and invoke n instances of the decision procedures on their first-order counterparts (as
sketched above); in this way, we can hope to significantly reduce the overall running time
of the reasoning system. Indeed, to make this observation practical, particular care must
be put in choosing a suitable value for n.

4.1. Overview of the architecture
The first step in designing the distributed version of haRVey is to identify the different
components (or tools, in TOOLBUS terminology) that can be distributed over a network,
with the following restrictions in mind:

1. The distributed version shall be scalable so that it can take advantage of having a
large or a small number of nodes.

2. The communication overhead in the distributed version shall be minimal, so the
data shared between the different components shall be as little as possible.

3. The distributed and the sequential versions of the tool shall have as much code in
common as possible, in order to limit maintenance problems.

We have therefore split haRVey into the following components, as illustrated in
the interaction diagram depicted in Figure 2:

interface: It is responsible for receiving proof obligations from interested clients and
returns the result of the verification. Even though we could imagine having several
instances of the interface, it only complicates the protocol and does not offer much
insight on how a distributed lazy theorem prover performs.

propositional reasoning: The component will maintain the propositional abstraction of
the given proof obligations, generate assignments, and send them to the instances
of the first-order reasoning component. As the data structures necessary to handle
propositional reasoning are quite complex and intertwined (be they BDDs or a
SAT-solver), we chose to have a single instance of this component.

first-order reasoning: This is the component responsible to verify if assignments are
indeed satisfiable or invalid. As it is necessary to carry out several independent
verifications of this type, we identified that this component is candidate to be
replicated in a distributed algorithm.



The interaction between these components is modeled after two well-known pat-
terns of distributed programming. First, the interaction taking place between the interface
and the propositional reasoning tool follows the client/server pattern, while the interac-
tion occuring between the propositional reasoning component, and the first-order reason-
ing instances follows the master/slave pattern.

4.2. Description of the tool bus protocol

The main process. The top-level process is presented in Figure 3. It spawns an in-
stance M of the propositional reasoning tool master-server (line 04), and then repeatedly
presents one of the two following behaviours:

• A connection request from an instance S of the first-order reasoning tool slave is
handled in process ConnectSlave (line 05).
• The reception of a new proof obligation is dealt with in process Check (line 07).

This loop is exited when M emits a quit event (i.e. when it has completed the verification),
at which point the process is stopped (lines 09 and 10).

Establishing new master-slave connections. The process ConnectSlave (see Figure 4)
is the sub-process of the main process responsible for the connection between a new in-
stance S of the first-order reasoning tool slave and the instance M of the tool master-
server. It sequentially receives a connection request from S (line 04), creates an instance
of the process Slave (described below) which is attached to S, gets the corresponding
process identifier Pid (line 05), and notifies asynchronously the master M that a new slave
is available, sending a message parameterized with the value of Pid (line 06).

Interface with instances of the first-order reasoning tool. The process Slave (see
Figure 5) describes the part of the protocol related to interfacing one instance S of the
slave tool responsible to carry out first-order reasoning. It is responsible for handling two
types of events:

• Verification requests are emitted from the Check process via a folCheckUnsat
message (line 08), are dispatched to be evaluated to the slave tool S (lines 09 and
10). The result is then sent back through a folCheckUnsatResults message (line
11).
• Initialization requests, parameterized with the set of theory axioms, are forwarded

to S, via a folInit message (lines 13 and 14).

Handling proof obligations. Process Check (see Figure 6) mediates the communica-
tions between the three types of tools to coordinate the verification of a proof obligation.
In a first phase, it accepts a connection request from a client tool C (line 08), sends it
the message propCheckUnsat and gets the parameters of the verification: theory axioms
and goal formula (lines 09 and 10). These parameters are forwarded to the master-server
tool M (line 11). The process enters then in the second phase, which is the main loop of
the distributed algorithm (lines 12 to 19), until it gets signaled by M that the verification
has completed (line 20), then forwards the result to the client and terminates it (lines 21
and 22). The main loop is a choice between two behaviours:



01 process Main is
02 let M : master-server,
03 in
04 execute(master-server, M?) .
05 (ConnectSlave(M)
06 +
07 Check(M)
08 ) *
09 rec-event(M, quit) .
10 shutdown(”Checker is closed”)
11 endlet
12 toolbus(Main)

Figure 3. The main process

01 process ConnectSlave(M: master-server) is
02 let Pid : int, Name : str, S : slave
03 in
04 rec-connect(S?) .
05 create(Slave(S), Pid?) .
06 snd-do(M, slaveCreate(Pid))
07 endlet

Figure 4. Establishing a connection with a new slave

01 process Slave(S: slave) is
02 let Assignment, Theory: term,
05 ProofStatus: int,
06 ProofLiterals: term
07 in
08 ( (rec-msg(folCheckUnsat(S, Assignment?)) .
09 snd-eval(S, folCheckUnsat(Assignment)) .
10 rec-value(S, folCheckUnsat(ProofStatus?, ProofLiterals?)) .
11 snd-msg(folCheckUnsatResult(S, ProofStatus, ProofLiterals)) )
12 +
13 (rec-msg(folInit(S, Theory?)) .
14 snd-do(S, folInit(Theory)) )
15 ) * delta
16 endlet

Figure 5. Process mediating communications with a slave tool



• First (lines 12 to 15), M can emit a new assignment to be checked for unsatisfia-
bility by some slave first-order reasoning tool S. S is then initialized and signaled
this new verification task. M is sent an acknowledgement as soon as the verifica-
tion has been started.
• Second, and conversely, (lines 17 and 18), a slave first-order reasoning tool S may

return the result of the verification of a previously sent assignment. This result is
then forwarded to M.

The verification in the slave tools is done asynchronously with respect to the mas-
ter tool. It is up to the master to create new assignments and dispatch them to slaves
that have previously been connected to the tool bus. A detailed description of the inner
workings of the master-slave tool is presented in the next section.

01 process Check (M:master-server) is
02 let C: client, S: slave,
03 CTheory, CGoal: term,
04 MAssignment, MTheory: term,
05 SProofStatus: int, SProofLiterals: term,
06 FinalResult: int,
07 in
08 rec-connect (C?) .
09 snd-eval(C, propCheckUnsat) .
10 rec-value(C, propCheckUnsat(CTheory?,CGoal?)) .
11 snd-do(M, propCheckUnsat(CTheory,CGoal)) .
12 ( (rec-event(M, folCheckUnsat(S?,MAssignment?, MTheory?)) .
13 snd-msg(folInit(S,MTheory)) .
14 snd-msg(folCheckUnsat(S,MAssignment)) .
15 snd-ack-event(M,folCheckUnsat(S,MAssignment)) )
16 +
17 (rec-msg(folCheckUnsatResult(S?,SProofStatus?,SProofLiterals?)) .
18 snd-do(M,folCheckUnsatResult(S,SProofStatus,SProofLiterals)) )
19 ) *
20 rec-event(M, checkEnd(FinalResult?)) .
21 snd-do(C, checkEnd(FinalResult)) .
22 snd-terminate(C,FinalResult)
23 endlet

Figure 6. Process handling verification requests

4.3. Description of the components of distributed haRVey

This section provides details on the inner workings of each of the three tools that com-
pose the distributed version of haRVey. The client interface and the first-order reason-
ing slave basically consist in wrapping the corresponding functionalities implemented in
the sequential version of haRVey. For instance, the slave has just to invoke the routine
fol check unsat (as in Figure 1) when it receives a message labelled folCheckUnsat.

However, for the propositional reasoning master-server, the situation is not so
simple. A new assignment has to be dispatched whenever a slave instance is idle. So the



master-server must maintain the set S of the available first-order reasoning slaves, the set
B ⊆ S of the busy slaves, the theory T of the current proof obligation, a propositional
formula φ to represent the assignments that have not yet been checked for unsatisfiability,
and another propositional formula ψ to maintain the assignments that have not yet been
dispatched to some slave.

The master-server must therefore be able to generate several different models from
a propositional formula. Now, recall that haRVey can either use a SAT-solver or a BDD-
based representation for the propositional reasoning. Contemporary SAT-solvers, based
on evolutions of the Davis and Putnam algorithm [Davis et al. 1962], are not designed to
provide several satisfying assignments and it would be necessary to make significant al-
terations to adapt an existing tool to our needs. In the case of BDDs, the situation is much
simpler: each branch from the root node to the true leaf is a satisfying assignment (indeed
a BDD is no more than a compact representation of all possible assignments). Moreover,
although SAT-solvers are able to handle much larger formulas than BDDs, the complexity
of the propositional structure in the proof obligations generated for software verification
is usually simple enough to be handled easily with BDDs. Finally, using SAT-solvers
require converting formulas to clausal normal form, introducing extra propositional vari-
ables, and eventually makes harder the reasoning in the background theories. Thus, in
this first attempt at exploring the potential of distributed lazy theorem proving, we opted
to use a BDD based representation.

The main routine of the master-server tool is shown in Figure 7. The set of slaves
is initialized and the event handling loop is started. The following messages are handled
in this loop (the implementation of the event-handling part of the code is automatically
generated by the TOOLBUS):

slaveCreate The message happens when a new instance of the slave first-order reason-
ing tool connects to the tool bus (line 06 of Figure 4). The routine handling this
message is given in Figure 8.

propCheckUnsat The message occurs when the client user-interface tool has sent a
new proof obligation to the tool bus (line 11 of Figure 6). Figure 9 contains the
routine handling this message: the state variables are updated with the proof obli-
gation, and the auxilixary routine dispatch is invoked. This routine is responsible
for dispatching new assignments to idle slaves and is detailed in Figure 10. It first
checks that there are assignments that have not yet been checked. If this is the
case, then for each idle slave, a new assignment is constructed (using the same
routine as in the sequential algorithm) and dispatched. Otherwise, no assignments
have been shown unsatisfiable (see next paragraph) and the result is that the given
formula g is T -unsatisfiable.

folCheckUnsatResult This message happens when a slave tool returns a result (line 11
of Figure 5). The corresponding routine is given in Figure 11. First, the outcome
of the verification is tested: if the assignment is unsatisfiable, then the (smaller)
unsatisfiable subset π of the assignment is used to prune both φ and ψ, as in the
sequential case, and a new assignment is dispatched as explained above. Other-
wise, the whole verification is ended with an checkEnd message. In this case, the
result is that the formula g is T -satisfiable.



function master server main ()
B, S ←− ∅, ∅
HandleEvents()

Figure 7. The main routine of the master-server.

function slaveCreate (s: slave)
S ←− S ∪ {s}

Figure 8. The routine handling slaveCreate messages.

function propCheckUnsat (O: options, T : theory, g: formula)
φ, ψ ←− g, g
T ←− T
dispatch()

Figure 9. The routine handling propCheckUnsat messages.

function dispatch ()
if φ then

while B − S 6= ∅ ∧ ψ do
let s ∈ (B − S), α← pick assignment(ψ) in

ψ ←− ψ ∧ ¬α
B ←− B ∪ {s}
send(folCheckUnsat(s, α, T ))

end
end

else
send(checkEnd(>))

end

Figure 10. The auxiliary routine dispatch.

function folCheckUnsatResult (s: slave, r: boolean, π: formula)
B ←− B − {s}
if r then

φ←− φ ∧ ¬π
ψ ←− ψ ∧ ¬π
dispatch()

else
send(checkEnd(⊥))

end

Figure 11. The routine handling folCheckUnsatResult messages.



5. Experimental results
The distributed version of haRVey, as described in the previous section, has been im-
plemented and tested in a small network of workstations. We report on two experiments
that we have carried out. First, we present in Section 5.1. different approaches to choose
the assignment. As a matter of fact, as this choice has a direct impact on how much the
propositional formula gets pruned, it may affect the efficiency of the verification. Second,
in Section 5.2., we present the speed-up obtained with the distributed version of haRVey
considering a varying number of available slaves.

These experiments have all been carried out in an 10Mbps Ethernet network, in
a normal working environment, where all the tools had to compete for resources with
other user processes. The examples composing the benchmarks have been collected
from different protocol and software verification examples. Indeed, we used proof obli-
gations generated from the B methodology [Couchot et al. 2004], the formalization of
the Burns mutual exclusion protocol, and the verification of pointer-manipulating pro-
grams [Ranise and Déharbe 2003]. This benchmark has been composed of proof obli-
gations requiring several interactions between the propositional and first-order reasoning
engines.

5.1. Assignment choice
We have developed several approaches to choose a (satisfying) assignment from the
propositional abstraction of a formula. As distributed haRVey only uses BDDs, we have
developed these approaches for BDDs. We recall that an assignment is represented in a
BDD as a branch from the root node to the leaf node for the constant true. Traversing the
BDD to find an assignment is straightforward and basically consists in recursing down
the graph up to a node that has a true child node. The complexity is thus O(n), where n
is the number of atoms in the verified formula.

The goal of the assignment choice approaches is to find assignments such that, if
they are shown unsatisfiable, their proof can be used to prune as large a number of as-
signments as possible. Indeed, if two similar assignments are verified, it is reasonable to
expect that their proof would prune the same portion of the search space in the proposi-
tional representation. With these ideas in mind we developed four different approaches.
The rightmost approach is the most simple, and was originally implemented in sequential
haRVey: the BDD is recursively traversed down by picking the right child. The ran-
dom approach choses randomly one of the two child nodes. The zigzag approach choses
alternatively the right or the left child. Finally, in the alternate approach, the traversal
produces alternatively the rightmost or the leftmost branch.

Table 1 reports the number of assignments that need to be computed for each
of these approaches on the sequential version of haRVey. No approach dominate the
others, and we conclude that, in the sequential case, the assignment choice approach
has no measurable impact on the average result. Indeed, when an assignment is found
unsatisfiable, its proof is returned and is used to prune the search tree. This prevents other
assignments with the same proof from being generated in the remainder of the search.

5.2. Performance in the distributed version
We repeated the previous experiment with the distributed version of haRVey, set up with
two and four slaves. One important remark is that, due to the essentially random nature



Test Ri Ra Zz Al Test Ri Ra Zz Al Test Ri Ra Zz Al
01 8 8 8 8 02 6 6 6 6 03 3 2 9 2
04 6 3 5 3 05 4 1 5 2 06 4 7 8 24
07 4 26 9 5 08 6 5 8 10 09 8 16 10 17
10 7 6 6 7 11 4 4 7 7 12 6 8 6 8
13 4 16 2 15 14 5 10 7 7 15 5 19 8 15
16 21 52 23 26 17 4 7 8 19 18 4 9 10 7
19 5 5 5 5 20 10 13 12 15 21 4 4 4 4
22 15 13 15 15 23 45 44 47 42 24 41 8 39 2
25 8 9 8 9 26 18 19 18 19 27 32 32 29 33
28 37 37 38 39 29 57 57 57 58 30 74 73 74 74
31 12 10 12 10 32 5 5 5 5 33 5 5 5 5
34 18 17 18 17 35 30 30 24 25 36 12 11 12 13
37 14 13 12 12 38 11 11 11 11 39 73 74 71 67
40 16 21 17 14 41 4 4 4 4 42 15 13 15 15
43 37 37 38 39 44 8 8 8 8 45 7 8 5 7
46 8 9 8 8 47 4 4 4 4 48 10 10 9 9
49 4 4 4 4 50 10 10 9 9

Table 1. Comparison of the assignment choice approaches (sequential case), where Ri stands for
rightmost, Ra for random, Zz for zigzag, and Al for alternate.

of low-level network protocols, the number of assignment checks to verify the original
formula is non-deterministic in the distributed case. Indeed, when two slaves deliver
a result concomitantly, the master might receive them in a different order. This may
result in different prunings, and cause the master to dispatch a different assignment at
the next iteration, which ultimately explains the difference in the number of generated
assignments. In our experiments, we repeated each verification several times and report
here an average value of the measures.

Thus, for each of the 50 examples in our benchmark, we measured the number
of dispatched branches with one (B1), two (B2) and four (B4) slaves, using the four as-
signment choice approaches presented in the preceding Section. To illustrate the impact
of distribution, we computed the estimated speedup Sn = (n.B1)/(Bn), where n is the
number of slaves.

The measured speedups are reported in Figure 12. For reference purposes, each
diagram also contains two lines, corresponding to no speedup (horizontal plain line, with
speedup = 1), and linear speedup (diagonal dotted line, with speedup = slaves). The
closer the results are to the linear speedup, the more efficient is the distributed algorithm.
We can clearly visualize that, on our benchmark, the Random approach performs better
than the three others, which present similar behavior. A plausible explanation is that
Rightmost, Zigzag and Alternate tend to generate similar successive assignments (in the
case of Alternate, every other assignment is generated on the same area of the BDD),
which have a higher probability to realize the same or similar prunings, while this is not
the case for Random. Indeed, while in the sequential version, the n + 1-th assignment
is generated after the pruning of the search tree with the proof generated from the n-th
assignment, this is not necessarily the case in the distributed version; therefore approaches



that tend to generate dissimilar consecutive assignments will always tend to perform better
in the distributed version.

Finally, note that, in some experiments (mainly happening in those conducted
with the Random approach), distributed theorem proving achieves super-linear speedups.
This happens when the proof of unsatisfiability of an assignment is so general that it
prunes a relatively large part of the search tree. This may happen for the class of formulas
such that the value of a relatively small subset of the atoms causes unsatisfiability. Our
experiment shows that the probability of achieving super-linear speedups is larger in the
random choice assignment approach.
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Figure 12. Speedups for the different approaches.

6. Conclusion
This paper presents how the lightweight theorem prover haRVey, which uses a lazy ap-
proach, can be distributed over a network of computers. The feature, unique to haRVey,
that BDDs can be used to represent the propositional structure of the formulas to be veri-
fied has greatly simplified the realization of the distributed version.

The distributed algorithm has been prototyped by distributing the code of the se-
quential version of haRVey into three distinct tools: user interface, propositional rea-
soning, and first-order reasoning. The last tool can be instantiated an arbitrary number
of times in the distributed algorithm. The implementation has been realized using the
software architecture TOOLBUS: a process algebra script describes the tool interaction
protocol and is used to generate the code responsible for the communication and syn-
chronization, as well as the interfaces that the tools shall implement to participate in the
interaction. Also, we developed different approaches that impact on how the workload is
distributed. We validated our approach via a series of experiments that show, first, that
the distributed version does indeed achieve an interesting speedup in average and, second,
that the so-called Random assignment choice approach is the most efficient policy.



In the future, we plan to use the interaction protocol as a basis to a grid-based ap-
proach to lazy theorem proving. We also envision to extend or adapt the proposed protocol
so that propositional reasoning can be handled with a SAT-solver, based on some existing
framework for propositional logic [Chrabakh and Wolski 2003, Ganai et al. 2003].
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