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An acoustic target of constant density pt and variable index of refraction is imbedded in a surrounding acoustic fluid of 

constant density pa. A time harmonic wave propagating in the surrounding fluid is incident on the target. We consider two 

limiting cases of the target where the parameter e = pa/p, + 0 (the nearly rigid target) or E + ~0 (the nearly soft target). When 

the frequency of the incident wave is bounded away from the ‘in-vacua’ resonant frequencies of the target, the resulting 

scattered field is essentially the field scattered by the rigid target for E = 0 or the soft target if E + a). However, when the 

frequency of the incident wave is near a resonant frequency, the target oscillates and its interaction with the surrounding 

fluid produces peaks in the scattered field amplitude. In this paper we obtain asymptotic expansions of the solutions of the 

scattering problems for the nearly rigid and the nearly soft targets as E + 0 or E + co, respectively, that are uniformly valid 

in the incident frequency. The method of matched asymptotic expansions is used in the analysis. The outer and inner 

expansions correspond to the incident frequencies being far or near to the resonant frequencies, respectively. We have applied 

the method only to simple resonant frequencies, but it can be extended to multiple resonant frequencies. The method is 

applied to the incidence of a plane wave on a nearly rigid sphere of constant index of refraction. The far field expressions 

for the scattered fields, including the total scattering cross-sections, that are obtained from the asymptotic method and from 

the partial wave expansion of the solution are in close agreement for sufficiently small values of E. 

1. Introduction 

The target is an acoustic fluid of constant density pt and variable index of refraction n,(x), where x is 
the coordinate vector with components (x, y, z). It is embedded in an acoustic fluid with constant density 
pa and constant index of refraction n,. We assume that the density ratio E = p,/p, is either small or large 
so that the target is either nearly rigid or nearly soft, respectively. 

A time harmonic wave propagating in the surrounding fluid is incident on the target. If the frequency 
of the incident wave is bounded away from the ‘in-vacua’ or the resonant frequencies of the target, then 
the scattered. field is essentially either the rigidly scattered or the softly scattered field depending on 
whether the target is either nearly rigid or nearly soft. We refer to the fields scattered by either the perfectly 
rigid or the perfectly soft targets as the background fields. However, if the incident frequency is close to 
one of the resonant frequencies of the target, then the oscillations of the target will considerably alter the 
scattered fields. The resonant frequencies for the nearly rigid (soft) target are the eigenfunctions of the 
target with soft (rigid) boundary conditions. 

In this paper we employ the method of matched asymptotic expansions [l] to obtain asymptotic 
expansions of the solutions of the scattering problems as E + 0, that are uniformly valid in the frequency 
of the incident wave. In the analysis we assume that the background fields are ‘known’. That is, for targets 
with simple geometries the solutions are obtained analytically by e.g. partial wave (eigenfunctions) 
expansions. More generally, we assume that the background fields are known accurately from numerical 
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solutions of the perfectly rigid or perfectly soft scattering problems. Then our method shows how to 
construct asymptotically the solutions of the penetrable target scattering problem when e is small, or 
large. Of course, approximate solutions of the penetrable target problem can also be obtained by numerical 
computation. However, then the resulting algebraic system is ill-conditioned for incident frequencies near 
the resonant frequencies of the target for small e. This results in computational difficulties and inaccuracies. 
Our method analyzes the near resonance structure of the solution resulting in a specific formula for the 
solution, thus obviating near-resonant numerical difficulties and reducing the amount  of  computation as 
we discuss briefly in Section 8. 

The scattering problems are formulated in Section 2. The outer expansion of the method of  matched 
asymptotic expansions, which is obtained in Section 3 for the nearly rigid target, is valid if the frequency 
of the incident wave is bounded away from all of the resonant frequencies of the target. This expansion 
becomes unbounded as the frequency approaches a resonant frequency. The inner expansions, for the 
nearly rigid target which are obtained in Section 4, are valid near the resonant frequencies. Finally, the 
composite expansion of the method of  matched asymptotic expansions, which is obtained in Section 5 
for the nearly rigid target by appropriately combining the inner and outer expansions, yields the desired 
expansion that is uniform in the incident frequency. The method is applied in Section 7 to the scattering 
of a plane wave by a nearly rigid spherical target with a constant index of refraction. The present asymptotic 
representations are compared with the partial wave expansion for this scattering problem, and the results 
are summarized in Figs. 2-5. Finally, the results of the asymptotic analysis for the nearly soft target e -~ oo 
are summarized in Section 9. 

We have previously employed this method to analyze the scattering of acoustic waves from baffled 
membranes [2]. The idea of solving scattering problems approximately for baffled flexible surfaces using 
the small density ratio between the fluid and the target was first employed by Leppington [3], but he 
used a different method of analysis. 

The methods of geometrical acoustics and the geometrical theory of diffraction [4, 5] are frequently 
used to obtain asymptotic expansions for the fields scattered from penetrable targets, such as we are 
considering in this paper. These expansions are valid for high frequency incident waves and for arbitrary 
density ratios. The expansions that are obtained in this paper are for small density ratios but they are 
uniform in the incident frequency. A variety of  iterative methods, such as Born's method [6], and numerical 
methods [7] are employed to solve the scattering problems for low frequency incident waves and arbitrary 
density ratios. The method of matched asymptotic expansions has also been used [8] to solve low frequency 
scattering problems. There the expansions are valid for small values of the incident frequency and they 
are uniformly valid in the spatial variables. 

When n t-= constant and the shape of the scatterer is simple, e.g. a cyclinder or a sphere, then a 
representation of the scattered field can be obtained by a partial wave, or eigenfunction expansion. The 
linear approximation method of nuclear resonance theory has been applied to each term of this partial 
wave expansion for related problems of scattering by elastic targets to study the resonant interaction of 
the incident field with the target for incident frequencies near the simple resonant frequencies of  the 
target; see [9] for an extensive review of  this work. The resulting resonance approximation, which does 
not require small density ratios, is equivalent to our inner expansion. However, by numerical evaluations 
of the partial wave series for special problems it was previously observed [9] that for small density ratios 
the scattered field was essentially given by the background fields if the incident frequencies are bounded 
away from the resonant frequencies of the target. Near the resonant frequencies the amplitude of  the 
scattered field is sharply peaked as suggested by the nuclear resonance approximation. The asymptotic 
analysis in this paper clearly reveals this structure of the scattered field and its dependence on the incident 
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frequency for arbitrary geometries of the targets and for arbitrary variations in tit(x). Thus, explicit partial 
wave representations of  the scattered field are not required to determine its features. Furthermore, an 
asymptotic approximation is obtained for the scattered field that is uniformly valid in the incident frequency, 
which is not obtained by the nuclear resonance theory. Finally, the asymptotic analysis suggests more 
efficient procedures for the numerical solution of the scattering problem, as we have already mentioned. 

2. Formulation 

The target, or scatterer, is an acoustic fluid that occupies the three dimensional region V, with boundary 
B. In V the constant fluid density is Pt and the index of refraction is tit(X), where the dimensionless space 
coordinates x = (x, y, z) are obtained from the dimensional coordinates by dividing them by a characteristic 
length, L of  the target, such as its maximum 'diameter'. The surrounding acoustic fluid, has constant 
density Pa, constant index of refraction na, and a constant sound speed Ca. We assume that the incident 
and the resulting scattered fields are proportional to e -i ' ' ,  where to is the specified circular frequency of 
the incident field. This factor is omitted in the remainder of  the paper. 

We denote the acoustic velocity potentials in V and exterior to V by q~(t) and ~(a), respectively. They 
satisfy the Helmholtz equations 

Aq bit) +kZ/z2(x)t~ (t) =0  f o r x e  V, (2.1a) 

A~(a)+k2q~(a)=0 for x e  V.. (2.1b) 

In (2.1) A is the Laplacian, I7" denotes the exterior of V, Ix =- nt/na, and k is the dimensionless wave 
number defined by 

k =- toL/Ca.  (2.2) 

The boundary conditions corresponding to (2.1) are that, qb (") satisfies an appropriate condition as 
r-~ Ix1 ~ oo, and on the interface B 

q~(t) = e~(a), q~(t) = q:,~a) for x e B. (2.3a,b) 

Here, the subscript n denotes the normal derivative taken along the outward unit normal 'n to V on B 
and e is defined by 

e = P a / P t .  (2.4) 

The conditions (2.3a, b) imply that the acoustic pressures and velocities normal to B are continuous across 
B. For the limiting cases e ~ 0 and e ~ oo the limit problems correspond respectively to either an acoustically 
rigid or an acoustically soft target, as we demonstrate. Thus, for e small (large) we refer to the target as 
nearly rigid (nearly soft). 

A time harmonic source with velocity potential ~(l)(x, k) propagates in 17 and is incident on V. Then 
we express the total acoustic fields in V and I? by 

~(t)=~b(t) f o r x e V ,  ~(a)=~b-['~(a) f o r x e V ,  (2.5a) 

where the background field qb b is defined by 

q~b ~ ~(!) + ¢,(R), (2.5b) 
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and 4, ~a~ and &ct~ are the scattered acoustic potentials. In addition, t/'~R~ is the acoustic potential in I7" that 
results from the scattering of the incident field from either a rigid or soft target depending on whether 
we consider e ~ 0 or e-~ oo. This is, ~R)  satisfies (2.1b), the radiation condition as r-]x]--> oo, and either 

qb ~R~ = - qb~ I~ for x e B, and a nearly rigid target (2.6a) 

or 
( ~ ( R )  = - -  ~ ( I )  for x e B, and a nearly soft target. (2.6b) 

We assume that ~b is either known explicitly, such as from a partial wave expansion, or it is known 
approximately from an accurate numerical evaluation, such as by the T matrix method [7]. We can 
equivalently assume that the Green's function for (2.1b), which satisfies the radiation condition as r ~  oo, 
is known for both the Neumann and Dirichlet problems. Denoting them by G(x, ~', k) and G(x, ~:; k) 
respectively, we have Gn = G--- 0 for x e B. In addition, the reflected fields in the surrounding fluid are 
given for the rigid and soft targets in terms of  the incident field, respectively by, 

B B 

(2.7) 

where d ~ ( ~ )  is a differential element of surface area on B and the subscripts v denote normal derivatives 
in the ~ variable. 

By inserting (2.5) into (2. l ) and (2.3), and using (2.6) we conclude that the scattered potentials must satisfy 

At~(t) d-k2~2~b(t)---0 for x e  V, (2.8) 

A~(a) h-k2t~(a)--0 for x e  ~', (2.9) 

and for x e  B: 

__ rh( t )  t~( t )  . ( a ) q  &~a~_ -~n , = e[~b + *  j for a nearly rigid target (2.10) 

&~t) = -~. an ~b, = for a nearly soft target. (2.1 1) 

We shall now reformulate the scattering problems (2.8)-(2.11) as a 'boundary value problem' for the 
target potentials. The 'boundary conditions' are integral equations for ~]~(t) o n  B. To do this we first express 
the exterior potential &~a) in terms of the interior potential ~t) .  By employing the exterior Green's functions 
G and (~ and the first equation in (2.10) and the last equation (2.11) we then obtain from the integral 
representation of ~b ~a) that 

¢ b ' a ' ( x ) = I S G ( x , , ; k ) c b ' t ' d I 2 ( ,  ) for / e I~, for a nearly rigid target, (2.12) 

B 

~b~a'(x)= ----1 f f  G~(x,,;k)&~t)d.O(~:) for x e ~', for a nearly soft target. (2.13) 
g d . /  

B 

Then we insert (2.12)-(2.13) into the second equation (2.10) and the first equation in (2.11), respectively, 
to obtain 

&(t~= 4~b+e G ~  dO(~:) for x e  B, for a nearly rigid target, (2.14) 

B 
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4~)=~--~n ~b-- ~ G~4~ (t) dD(~:) for x • B, for a nearly soft tilrget. (2.15) 

B 

Consequently, (2.14) and (2.15) are integral equations for 4~ ") on the interface B. Thus, the nearly rigid 
and nearly soft scattering problems are reformulated as, solving (2.8) in V subject to either (2.14) or 
(2.15) on B. When 4~ (t) is determined, we use either (2.12) or (2.13) to find 4~ ("). 

In Sections 3-5 we determine uniform asymptotic expansions as e-~ 0 of the nearly rigid scattering 
problem. Similar asymptotic expansions as e ~ 0 of the nearly soft scattering problem are presented in 
Section 8. 

3. The nearly rigid scattering problem: The outer expansion 

We seek an asymptotic expansion as e--) 0 of the solution to the nearly rigid scattering problem in the 
form 

d)(O(x; e ) =  ~ eJd)~t)(x; k). (3.1) 
j = o  

- - ( t )  i . . . , The coefficients O~ ,J  =0,  1, are determined by inserting (3.1) into (2.8) and (2.14), and equating 
coefficients of the same powers of e. Thus, we find that d)) ° satisfy the Helmholtz equation (2.8) and that 
for x • B they satisfy the conditions 

I I  .t> 
,~(t) ~bSj,+ G(x,~;k) OOJ-~ d~, j=O, 1,2 . . . .  (3.2) 
. r j  = 07; " 

B 

where d)~ - 0, and 8jk is the Kronecker delta function. 
To analyze these problems, we first denote the eigenvalues and eigenfunctions of 

A~b+k2/,~2(x)l//=0 f o r x • V ,  ~b=O, x • B  (3.3) 

by ki and Oi(x), i = 1, 2, 3 , . . . .  They correspond to the resonant frequencies and normal modes of the 
target immersed in a vacuum, i.e. the boundary conditions in (3.3) correspond to a soft scatterer. We 
assume that these eigenfunctions form a complete set which are normalized by the conditions 

v 

Since d~o t) satisfies (2.8) and since ~b~o t)= 0 on B, from (3.2) with j = 0, we conclude that ~b~o t ) -  0 in V if 
k ~ ki, i = l, 2, 3 . . . . .  It then follows from (2.12) that ~b<o a) -= 0 for x • I).. Furthermore, it follows from (3.2) 
with j = 1 that ~b[ t), which is a solution of (2.8) for x •  V, satisfies 

~b~ t)= ~b for x •  B. (3.5) 

We solve (2.8) and (3.5) when k #  k~, i = 1, 2 , . . . ,  by employing the Green's function g(x, ~; k) of (2.8) 
that vanishes for x • B. The solution is given by 

~t)(x;  k)= [ f  g~(x, se; k) tibb(~: , k )da(~) .  (3.6) 

B 
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The eigenfunction representation of g(x, ~; k) is 

g(x, ~; k)= q,,,(~)q,,,(x) 
,.=t ~ " (3.7) 

This series converges in the L2 norm to g. By inserting (3.7) into (3.6) we obtain the normal mode expansion 
of the interior potential as 

oo 
cb]°(x, k)= Z fl,,(k)qJ,,(x) 2 2 x c V (3.8) 

,.=, k -k in  ' 

where the coefficients tim are defined by 

f lm(k)=-f fCl)b( , ;k)~( , )dg2.  (3.9, 

B 

Again, the series (3.8) converges in the L2 norm to  (~]t) for x e V. 
It follows from (3.8) that (~(1 t) a n d  hence from (2.12) that (~(a) are  both singular as k--> k),j = 1, 2, 3,. . . .  

Consequently, the expansion (3.1), which we write as 

t~ ( t )=  86~  t) + O ( 8 2 ) ,  (3.10) 

and which we call the outer expansion, is invalid near the resonant frequencies k~, k2, . . ,  of  the target. 
The corresponding expression for ~b (a~ 

tim(k) I I G ( x , ~ ; k )  O~b"(~)d~(~)+O(e2) (3.11) ~b~a)(x;k)=e ~ k2 2 ,-=l - k m  0v 
B 

follows from (2.13) and (3.10). Thus, for all k bounded away from the resonant frequencies the scattered 
fields are O(e). Hence, the acoustic potential is O(e) inside the target and, to lowest order, it is obtained from 
the background field outside the target. 

4. The nearly rigid scattering problem: The inner expansion 

We obtain an asymptotic expansion as e ~ 0 of the nearly rigid scattering problem, that is valid for k 
near a resonant frequency kin, by first defining the stretched frequency parameter a by 

k = kin(1 +ca). (4.1) 

Then we seek an asymptotic expansion for ~b ~t), which we call the inner expansion, in the form 

~b (t)= • Uj(x; k)e j. (4.2) 
j - 0  

An inner expansion for ~b (a) is determined by inserting (4.2) into (2.12). 
We find in the usual way by substituting (4.1)-(4.2) into (2.8) and (2.14) that the coefficients Uo and 

UI must satisfy the boundary value problems 

A 2 2 Uo+kml.~ U0=0 f o r x 6 V ,  Uo=-0 f o r x ~ B ,  (4.3) 
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AUI + k,,/z22 UI =_2k2alz2Uo for x~ V, Ul=q:'b+ffG'gU°d.O, g9 for x e  B. (4.4) 

B 

The coefficients U~, j = 2, 3, 4 , . . .  satisfy similar inhomogeneous problems. 
In the following analysis we assume that k,, is a simple eigenvalue of (3.3). A discussion of multiple 

eigenvalues for a related scattering problem of the baffled membrane is given in [2]. Thus, the solution 
of (4.3) is 

Uo = A,,,qJ,,,(x). (4.5) 

The constant amplitude Am is to be determined. Since the homogeneous problem corresponding to (4.4) 
has a non-trivial solution, the inhomogeneous terms in (4.4) must satisfy an appropriate Solvability 
condition. To obtain this condition, we multiply both sides of the differential equation for UI in (4.4) by 
~b,, and then integrate the result over V. This gives 

fff ~m[AUl+k21z2U,]dx 2 = -2kmaA,,, 
v 

(4.6) 

where we have used (4.5) and the normalization condition (3.4). Then by applying the divergence theorem 
to the left-hand side of (4.6), using the differential equation (3.3) for @,,, and the boundary condition of 
(4.4) for U1, (4.6) is reduced to a linear algebraic equation for Am. The solution of this equation is 

[3m( km) (4.7) 
Am 2k~a +am 

where the constant tim is defined by (3.9) and am is defined by the double surface integral 

a'-=-f( ff  09 09 
B B 

- -  dO(~) da(x) (4.8) 

Here da is a differential element of area. 
If the ~,, and/or  G(x, ~; kr,,) are known only numerically, then the integrals in (4.8) must be evaluated 

numerically. Thus, the inner expansion, which is valid for k near kin, is given by 

~b (t) = A,,@,,,(x) +O(e)  (4.9) 

where A,, is given in (4.7). The corresponding expression for ~b (a) 

f f  G(x,~;k,,,) 0@'(s~) da(se) +O(e)  (4.10) 4,(a)=A~ 
3 J  0u 
B 

follows from (2.13) and (4.9). The inner expansion is O(1) as e-~0, and thus it is of the same order as 
the background field, see (2.5a). This demonstrates that the target's main influence on the scattered field 
occurs when k is near k,,. 
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5. The nearly rigid scattering problem: The uniform expansion 

According to the method of matched asymptotic expansions, see [1, pp. 1 1-13], there is an 'overlap' 
interval for k near kin, ( a ~ o o ) ,  in which the outer and inner expansions are both valid asymptotic 
expansions of ~b (t). This leads to the matching conditions [1] of the method of matched asymptotic 
expansions. They are conditions on the coefficients of the outer and inner expansions, which we can show 
are identically satisfied. This is to be expected as there are no undetermined constants or functions in the 
outer or inner expansions. This occurs in other applications of  the method of matched asymptotic 
expansions where the singularity occurs as a parameter approaches a critical value; e.g. see [10]. We omit 
all details of the present analysis. 

The composite expansion of the method of matched asymptotic expansions gives the required uniform 
asymptotic expansion of  the scattered fields for k in an interval about kin. It is given by the sum of the 
inner and outer expansions minus the outer expansion in terms of the 'inner' variable tz, as a ~ co. It can 
be shown that to lowest order the composite expansion is given by 

£ r 2 l ,~=, Lk _-s#j d-~-~+--~a~)jt/.9(x) for x c  V (5.1) 

where dm =- 2kin (k  - kin). Inserting (5.1) into (2.13) we find that the corresponding uniform expansion of 
~(a) for k in an interval about km is given by 

t~ (a, r = e t-£~--£-k~ umtu,,-reu,,,)~----7-S--~-7---S~-'J ~b~)(x; k) for x~ lP, (5.2) 
j = l  

where the functions ,h! ~) are solutions of (2.9) which satisfy the radiation condition and the boundary "e'j 

conditions OrbJa)/a~'= O@]/O~ for x~ B, j =  1, 2, 3 , . . . .  They are given by 

t ~ J a ' ( x ;  k)~- F r a(x ,  g'~ k)lll~,(e ) d a ( ~ ) .  (5.3) 

B 

In the far field where r ~ o% the Green's function g is given by the spherical wave 

e ikr 
G(x,  ~; k) = D(  ~, ~; k) - - [ 1  + O ( l / r ) ]  (5.4) 

r 

where ~= x / r  is the unit vector in the observation direction. The directivity factor D of the Green's 
function, which depends on the shape of the target and on k, is assumed to be known either analytically 
or numerically because we assume that the solution of the rigid scattering problem is known similarly. It 
is related to the directivity factor Aa of  the rigid target by 

aR(r; k ) = - [ [  D(¢, ~; k ) ~ ) ( ~ ) d / 2 ( ~ ) .  

B 

We next insert (5.4) into (5.3) and substitute this result into 
representation 

A e ikr 
tb(~)~A(r; k ) - - [ l  +O(1 / r ) ]  for r~oo.  

r 

(5.5) 

(5.2) to obtain the far field uniform 

(5.6) 
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The directivity factor in (5.6) is given by 

,Sj(k)  eamflm(k~)5,./~E(~; 
A(~;k)=-e,=l ~ [k-T----;~ dm(d,,,+eam)l j k) 

where the Fj are defined by 

j = l ,  2, 3 . . . . .  

B 

(5.7) 

(5.8) 

The functions Fj are the 'modal'  directivity factors, that is, they are the directivity factors of  the solutions 
~b~')(x; k). 

The composite expansions (5.1) and (5.2) are uniformly valid for k in an O(1) interval about the simple 
eigenvalue kin. They are also valid for k bounded away from the other eigenvalues kj, j ~ m. If each 
eigenvalue is simple, then we obtain an expansion that is uniformly valid for all k by summing the terms 
depending on m in (5.1)-(5.2). This gives 

~b (t)= e ~ Zj(k, e, a )0j  +" • • for x~ V (5.9a) 
j = l  

q~(a)= e ~ Zj(k, e, a )~a ) (x ;  k) + ' ' '  
j = l  

where the coefficients Zj are defined by 

for x E V (5.9b) 

ZJ =- flj(k) eflj(kj)aj 
k 2 - k  2 dj(dj +eaj)' 

Similarly, in the far field we obtain 

^ e ikr 
~b (a)= At(r; k) - -  

r 

j = 1, 2 , . . . .  (5.9c) 

(5.10a) 

where the uniform directivity factor Ac is given by 

At(P; k ) -  e ~ Zj(k, e, a)Fj(P; k) + - -  -. (5.10b) 
j = l  

The total scattered potential is then obtained by adding (5.10a) to the far field expansion of ~(R). We 
find as r-~ oo that 

eikr 
~(R) + ~b(") = A C T - -  +" " ' ,  ACT=--AR+Ac (5.11) 

r 

where the directivity factor A R for the rigid target is defined by (5.5). 

6. Interpretation and discussion of results 

The inner and outer expansions can be recovered from the uniform expansions (5.1), (5.2), (5.6) and 
(5.7) by taking appropriate limits in these equations. Thus, if k -  km = O(1) as e -*0, then the second term 
of (5.1) is O(e2). Consequently, the first term dominates and (5.1) reduces to the outer expansion (3.10). 
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Similarly, the far field potential given by (5.6), (5.7) and (5.8) is reduced in the outer l imit  to 

t~(a) = 

which is the far field limit of  (3.1 l). Thus, ~b ") and ~b Ca~ are O(e) when the incident frequency is bounded 
away from all of  the acoustic target's resonant frequencies. Then the acoustic target behaves essentially 
like a rigid scatterer. 

However, when the incident frequency approaches a resonant frequency, i.e. when k = km(l + ea) for 
a = O(1) as e ~ 0, the first term in (5.1) is O(1). It combines with the second term to yield the inner result 
(4.9). Similarly, the far field expression (5.6)-(5.8) for the scattered potential is reduced, for k near kin, to 

eikm r 
~(a)  ~--. AmEs(P; km) +" • " (6.2) 

t 

which is the far field limit of  (4.10). This is O ( l / e )  larger than the outer expansion (6.1) and it is of  the 
same order as ~ l )  and q~tR). Thus, the scattered potential ~b ~a) contributes to the lowest order approximation 
only when k is near kj, j =  1, 2 , . . . .  

The coefficient of  the outgoing spherical wave in (6.2) is the product of  the amplitude Am and the 
modal directivity factor Fro. Furthermore, lAmEs[ 2 is the differential cross-section of  the scattered acoustic 
potential for k near k,,. The function IFm(~; km)] 2 is the differential cross-section of  the scattered acoustic 
modal potential ~b~)(x; ks). The amplitude As contains information about the coupling between the 
acoustic medium and the target, which we now describe. 

As in [2], we can show that the four fold integral (4.8) which defines am is given by 

a,, = R + iI (6.3) 

where R and I are defined by 

R=- f f ; I Vc~)(x; k,,)[2-k2,(b~)(x; km)12} dx dy dz , 

Io fo I =- ks IFm(~; ks)[ 2 sin 4~ d4~ dO. (6.4) 

Here I / k s  is the total cross-section of 4 ~ ( x ;  ks)  and R is twice the corresponding dimensionless 
Lagrangian. The total acoustic scattering cross-section for k near ks can therefore be written as 

IAml ~ 
- - -  I ( 6 . 5 )  ~T -- ks 

where 

IAml 2 = I/3, ,(km)l 2 
(2k2 a + R ) 2  + i  2 . (6 .6)  

The result (6.6) is sketched as a function of  a in Fig. 1. Since the maximum occurs at a = - R / 2 k  2, 
the largest response does not occur at k = ks (or equivalently, a = 0). Thus, R gives the detuning of the 
target due to the surrounding fluid. Furthermore, it follows from (6.6) that I is the bandwidth of  I A s l .  

To evaluate IAs[ 2 it is assumed that ks and qJ,, are known explicitly or by numerical computation. Then 
the integrals that define/3,., R and I must be determined similarly. 
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IAI 2 

Fig. 1. A g raph  of  [A[ 2 for  a s imple  e igenvalue.  

If ~ - - - 0 ,  then tim(k,,)= 0 and the solvability condition (4.6) gives 

(2kEa +am)A,. = 0. (6.7) 

A nonzero solution of  this equation requires a = - a m / 2 k  2. From (4.1), (6.3) and (6.4) it follows that the 
complex eigenfrequency of the composite medium consisting of  the target and the surrounding fluid is' 
then given asymptotically by, 

( k  - eR~ . el  
k - ,  ,. 2 k m ] - 1 ( 2 - ~ )  +O(e2)" (6.8) 

The negative imaginary part in (6.8) corresponds to damping because the assumed time dependence is 
e -i°''. Since the decay rate is proportional to I, this parameter measures the ability of  the target, 'vibrating 
near frequency kin', to radiate acoustic energy into the region 1?.. 

7. An illustrative example: A nearly rigid sphere 

We consider a unit sphere, whose index of  refraction # -= constant, that is insonified by the incident 
acoustic potential 

@~t)= eikz. (7.1) 

A partial wave representation of the solution of the total scattering problem (2.1)-(2.4) is [6], 

~(a) = t=u ~ D, jt( kr ) - h , - ~  h~( kr ) Pt(cos 4~) +,=o ~ e,ht( kr ) Pt( cos ~ ) for r >  1 (7.2a) 

~o=_ q~,)= ~, fdl(klzr)Pt(cos qb) for r <  1. (7.2b) 
I=0 

Here, jt and ht are spherical Bessel and Hankel functions of  the first kind, respectively, P~ is the Legendre 
polynomial and 4' is the polar angle measured from the positive z-axis. The primes denote differentiation 
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with respect to the argument of the function. The constants in (7.2) are given by 

i eixDtj'(kix) 
Dt=-( i ) ; (21+l ) ,  e;=- k2hl (k )A  , 

ieDl 
A =_ h l ( k ) j ; ( k i x ) -  eixjl(kix)h,(k),  ft =- k2A • (7.3) 

The first sum in (7.2a) is the background potential = O ~  + OCR) in the surrounding fluid and the second 
sum is 4~ (a). The numbers 

s s k l = Z J i x ,  1 = 0 , 1 , 2 , . . . , s = 1 , 2 , 3 , . . . ,  (7.4) 

where z~ are the zeros ofjz(z), are the eigenvalues of (3.3) for the rigid sphere. They are all simple. The 
corresponding eigenfunctions, are 

~b~ 1 2/]212]~1 
-~-- X]~g--:- j t (z tr)P;(cos ~b)/jl(zT) (7.5) 

tx y z ~r 

where we have used the customary double index notation for the eigenvalues and eigenfunctions. 
We can show by taking the limit of (7.2) and (7.3) as e ~ 0, and for k bounded away from the eigenvalues 

k~, that we recover the outer expansions (3.8), (3.9) and (3.12) for ~b ~a) and 4, (t), as expected. Similarly, 
we can show that by taking the limit e - 0  in (7.2) where k=k~(1 + e a )  and a is O(1) that we recover 
the inner expansions (4.7)-(4.9) as expected. We omit all details of these calculations. 

We now investigate the far field behavior of the partial wave expansion (7.2), which we refer to as the 
exact solution, and show numerically that it agrees closely, for sufficiently small e, with the uniform 
asymptotic result given by (5.11). From (7.2a) we find as r -  ~ that 

e ikr 
t ~ b =  A E - - q - "  " ", AE(~b; k ) - ~ A R + E  (7.6a) 

r 

where the directivity factors AR and E are defined by 

D j_'~(k) ( - i) '+' 
AR=--tLoql 'h~(k) '  q , - - - - - - ~  P;(cos 4~) (7.6b) 

c~ 

E =- ~ qtet. (7.6c) 
1 = O  

The function AR given by (7.6b) is the directivity factor of the rigid sphere. It agrees with the expression 
(5.5) for A R specialized to the unit sphere. This can be seen by expressing the Green's function G for 
the rigid sphere in a modal series, expanding this result for r >> l, and by inserting the directivity factor 
D of G into (5.5). 

The directivity factor Fj defined in (5.8) and used in the uniform result (5.10b) can be evaluated similarly 
for the sphere by substituting the directivity factor D for the sphere's Green's function into (5.8). Integrating 
the resulting expression yields, 

k~ ,~_ /+1  
Fj --- F~ = q , ~  ~/ ~ -  . (7.7) 

The directivity factor AcT for the total far field given by the uniform asymptotic expansion in (5.11) is 
now compared in Figs. 2 and 3 with the directivity factor AE for the total exact far field given in (7.6a). 



G.A. Kriegsmann, A.N. Norris and E.L. Reiss / Scattering by penetrable targets 513 

.4 

AF .3 ~~ 
.2 V 

.I 

0.0 . . . . . . .  
0 1 2 3 4 5 6 7 8 9 10 

k 

Fig. 2. Forward directivity factors AF for the nearly rigid sphere with e=0.1. The sol;d (dashed) curve is the exact (uniform 
asymptotic) result. 

The solid line in Fig. 2 is the graph for e =0.1 of [AE(0; k)[, i.e., in the forward scattered direction, and 
the dashed line is the graph IAcT(0; k)l. The agreement is good. Presumably, by evaluating additional 
terms in the asymptotic expansions the agreement can be improved. The same functions are shown in 
Fig. 3 for e = 0.02. Then it is impossible to graphically distinguish between the asymptotic and exact 
expressions. The sharp minima in Figs. 2 and 3 correspond to the inner regions which clearly become 
narrower as e ~ 0. The minima in Fig. 3 occur at the eigenfrequencies k~ in agreement with our theory. 

.4 ¸ 

.3 

AF 
.2 

.1 

0.0 
0 1 2 3 4 5 6 7 8 9 10 

k 

Fig. 3. Same as Fig. 2 but with e = 0.02. The exact and asymptotic results are essentially indistinguishable. 

The exact and uniform asymptotic total cross-sections or E and OCT respectively are graphed in Figs. 4 
and 5 for e = 0.1 and e = 0.02, respectively. The solid line corresponds to OrE while the oscillating dashed 
curve gives orcT. Note again that there is almost exact agreement for e = 0.02 and good agreement when 
e = 0.1. The sharp minima again occur at the eigenvalues k~. The monotonic dashed curve in Fig. 4 is the 
cross-section for the rigid sphere. The small disagreement between the exact and the uniform asymptotic 
results, in the outer regions, is well within the O(e) error in the asymptotic approximation. 

8. Remarks on numerical methods 

As we discussed previously and observed for special geometries from partial wave representations by 
previous investigators [9], the nearly rigid (or soft) acoustic target responds like a rigid scatterer when 
the incident frequency is bounded away from the resonant frequencies ks of  the target. However, when 
k ~ k,, the resulting near-resonant oscillations of  the target radically changes the scattered fields. 
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Fig. 4. Total cross-sections ~ for the nearly rigid sphere with 
e=0.1. The solid (dashed) curve is the exact (uniform 
asymptotic) result. The monotonically increasing dashed curve 

is the total cross-section for the rigid sphere (e = 0). 

1 2 3 4 5 6 7 8 9 10 
k 

Fig. 5. Same as Fig. 4 but  with e = 0.02. 

The rapid change in the scattering characteristics near resonance suggests that numerical procedures, 
such as the T matrix method [7] or coupled integral equation techniques [11], are ill-conditioned for 
k--> k,,, m = 1, 2 , . . . .  Then the accurate determination of the solution's structure for k near k,, would at 
least require repeated calculations for closely spaced values of  k near k,,, resulting in an inefficient and 

costly computation.  
Our analysis suggest the following numerical procedure for solving penetrable target scattering problems. 

Use a standard numerical method, see e.g. [7], to obtain @(R)(x; k) for the values of  k that are desired. 

Then determine k,, and qJ,, by solving the eigenvalue problem (3.3) numerically for the desired resonant 
values. Next, solve for ~b~)(x; k,,), which is defined in the sentence following (5.8) for the desired values 
of  k,~ by the same numerical procedure used to determine q~(R). By using this result we express a,, given 

by (4.8) as 

= _  f f O~b,,,(x) ~b~)(x ; k , . ) d a ( x )  
a,. J J  Ou 

B 

(8.1) 

and determine it by a numerical evaluation of the integral in (8.1). Similarly the coefficients /3m are 
determined by numerical evaluations of  the integrals in (3.9). Finally, the amplitudes Am given in (4.7) 

are determined. 
Thus, the outer expansion of the total scattered field is given numerically by 

t~(a)  = ¢~(R) --I.- O ( E )  ' ¢~(t) = O ( E )  (8.2) 

A more accurate determination of the outer expansion can be obtained by numerically evaluating the 
quantities (~]a) and ~]t) given in Section 3. The inner expansion of the scattered field for k near k,, is 
given numerically by 

~ ( a ) :  ¢~(R) +Am~b(a)(X; k,,) + O(e ) ,  ~ ( t ) :  A,,~b,,(x) +O(e ) ,  (8.3) 

see (4.10) and (4.9). Similarly, numerical evaluations of  the uniform asymptotic approximation are obtained 
by using the formulas given in Section 5 and the quantities already evaluated numerically. 
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9. Nearly soft target 

515 

In this section we state the results for nearly soft targets described mathematically by (2.8), (2.15) and 
(2.13) in the limit as e--> oo. The outer expansions, analogous to (3.12) and (3.13) are 

~btt)(x; k)= ~ ~ Qj(x)+O(l /e ) ,  (9.1a) 
j=l k 2-  k~ 

~b(")(x; k)= _ 1  f f ~b(t)(,; k)G~(x, , ;  k ) d O ( , ) + O ( l / e  2) (9.1b) 
E 3 J  

B 

In (9.1a) the coefficients 3'j are defined by 

- f f (9.2) 
B 

where tP (R) in (2.5b) is now the solution to (2.1b) which satisfies the Dirichlet condition (2.6b) and Qj(x) 
are the eigenfunctions of 

AQ+kE~2(x)Q=O forx~V, Q .=0  f o r x c B  (9.3) 

which are normalized by (3.4) with ~b; replaced by Qg. We observe that the boundary condition in (9.3) 
corresponds to a rigid target. 

The inner expansions, which are analogous to those given by (4.9) and (4.10), are 

~b(t)(x; kin) = eB,,,Q,,,(x) +0(1), gb(a)(x, k m ) = - B m  f f G~(x ,~;km)Qm( , )dO+O(1/e) ,  
B 

(9.4) 
where 

%,,(k,,,) e ( k - k . )  
B,, 2c~kE +bm , c~- k,. (9.5) 

and the constant br. is defined by the double surface integral 

b,. -- - Qr.(X) G~(x, ¢; k , . )Q.(¢)  dO( , )  da(x). (9.6) 
B B 

Similarly the composite expansions corresponding to the results given by (5.1)-(5.2) are 

~b(t)= ~ [ 3,j(k) 7,.(k,.)bmSmj],,,, , 
d , . ( ed , .+b , . ) j t / j t x )+ . . ,  forx~ V, (9.7a) L k 2 - k  2 j = t  

c~(.)=l ~ ~ 3'j(k) "rm(k,,)bm&.j) 
forx  (9.7b) E j=l [ k 2 - k  2 

where the operator J is defined by 

J(x; k)~b--- - ~ f G~(x, , ;  k)~b(,)dO(,) .  (9.8) 
B 
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F o r m u l a e  ana logous  to (5.6)-(5.10) for  far  field quant i t ies  are der ived  in a s t r a igh t fo rward  m a n n e r  and  
are omi t t ed  here.  

The  d i scuss ion  and  in te rp re ta t ion  o f  the  results  for  the  near ly  r igid target  car ry  over  comple t e ly  with 

m i n o r  modi f i ca t ions  excep t  for  one s t r ik ing difference.  Away  f rom resonance  the acous t ic  field wi th in  the 

target  is O(1)  for  the  near ly  soft ta rget  whereas  it is O ( e )  for  the  near ly  r igid target .  The  sca t tered  acous t ic  

po ten t i a l s  for  bo th  p r o b l e m s  vanish  in their  respect ive  limits.  Nea r  resonance ,  the  field wi th in  the b o d y  

is very large ( O ( 1 / e )  as e-->0) for  the  near ly  soft b o d y  and  it is O ( l )  for  the nea r ly  r igid body .  The 

sca t te red  acous t ic  po ten t ia l s  are bo th  O(1) nea r  r e sonance  for  bo th  targets.  
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