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AN EQUIVALENCE RESULT FOR
VC CLASSES OF SETS
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Let R and ® be infinite sets and leA C R X ®. We show that the class of
projections ofA onto R is a Vapnik—Chervonenkig/C) class of sets if and only

if the class of projections oA onto® is aVC class We illustrate the result in the
context of semiparametric estimation of a transformation mddehis applica-
tion, the VC property is hard to establish for the projection class of interest but
easy to establish for the other projection class

1. INTRODUCTION

In the course of establishing the uniformity resylisiform laws of large num-
bers stochastic equicontinuiiyused to establish the limiting behavior of econo-
metric estimatorst is sometimes useful to show that certain classes of sets are
Vapnik—Chervonenkisor VC, classegseeg e.g., Pollard 1984 1983 Andrews
1994 and references therginThis is particularly true for estimators that opti-
mize averages or generalized averages of indicator functions of sets involving
finite-dimensional parameter&xamples include the maximum score estimators
of Manski (1975 1985 and the rank estimators of Hah9873 1987h, Cava-
nagh and Sherma(1998, Abrevaya(1999 2002, Khan (2001), Chen(2002),
and AsparouhovasparouhoyGolanskj Kasprzyk and Shermaig2002. This
paper establishes an equivalence resultMGrclasses of sets that can be used
in such settingsThis equivalence result had been previously established by
van den Drieq1998 Ch. 5, Prop 2.10) and was discovered by a referee and
brought to the attention of the authors after this paper had been accepted for
publication

Let R and® be infinite sets and leA be a subset of the product spakex
0. For eachy € 0, definellz(Al§) = {r € R:(r,0) € A}. We callTI;(A|0)
the projection ofA onto R given 6. Define the class of projectiorid;(A) =
{IIx(Al8):6 € ©}. Similarly, for eachr € R, definelly(Alr) = {# € 6:
(r,0) € A} andIlg(A) = {II4(Alr):r € R}.
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In a typical econometric applicatiorR is the range space of the random
variables in the econometric modab is a finite-dimensional parameter
space and A has the form{(r,§) € R X ©®:h(r,0) > 0} whereh is a
real-valued function ok X 0©. ThenIlz(A) is the class of positivity sets
{r € R:h(r,0) > 0}:6 € 6O}. The objective is to show thdl(A) is aVC
class of setslIf the functionh is linear in the components &, then theVC
property can be immediately deduced from a standard result in the empirical
process literaturéseg e.g., Pakes and Pollard 989 Lemma 24). However if
h is nonlinear in the components 6f then this result does not applgnd one
must argue from first principles to show thas (A) is aVC class

In the next sectionwe show that no matter what form the gehas I1;(A)
is aVC class of sets if and only iflg(A) is a VC class of setsWe illustrate
the usefulness of the result in the context of a semiparametric transformation
model involving a functiorh that is nonlinear in parametelis this exampleit
is difficult to show thatllz(A) is aVC class but easy to show thH,(A) is a
VC class

2. EQUIVALENCE RESULT

We begin by recalling the definition of ¥C class of setsA class of subset®

of a setS shattersa setS, of V points inSif {D N $:D € D} = P(S), the

power set ofS,. In other words D shattersS if it picks out all 2¥ subsets of
S. The classD is aVC class of sets if there exists\A< oo such thatD can

shatter noV point set§, C S (seg e.g., Pollard 1984 Ch. 2). The following

result was proved by van den Dries in 1998

THEOREM 1 II(A) is a VC class of sets if and only if,(A) is a VC
class of sets.

Proof By symmetryit is enough to show thdig (A) not VCimpliesTl;(A)
not VC. Sqg suppose thaklg(A) is not aVC class of setsWe must show that
for eachn = 1, there exists am point setRy C R thatll;(A) shatters

Fix n = 1. Sincelly(A) is notVC, it can shatter som¥ point set for each
V = 1. In particular there exists a 2 point set®y = {#;:1 =i =2"} C 6
that I1o(A) shatters This implies that there exists a®2 point set R, =
{r;:1=j = 22"} C R such that{Tlo(Alr;) N Oy:1; € Ry} = P(O,). Define
a 2" X 22" matrix M, such that for = 1,...,2" andj = 1,...,2%,

) 1 if(r;,6) €A
M'J =
"o if(r.6) A

Thus the jth column of M, corresponds tdle(A[r;) N O, the subset of,
thatTIe(Alr;) picks out For exampletaken = 2 and order the;’s so that
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The ninth column oM, is [0,1,1,0]', and sollg(Alrg) N Oy = {6, 65}.

The key insight is that thigh row of M,, corresponds tdl(Al6;) N R4, the
subset ofR; thatll; (Al6,) picks out We want to seleck, C R, such thatR,
is ann point set and Il (Al6) N Rg: 6 € Op} = P(Ro). This will prove the
result

Forn =1, defineP, to be the 2 X n matrix of O's and 1's such that the rows
of B, correspond to the™2subsets of am element setFor example

0

I
P P O O
P O R O

Note that the columns of botM, and B, have 2' elements Moreover by
construction M, consists of all possible columns of" 22lements of O’s
and 1’s In particular the columns o, must appear as columns bf,, say as
columnsjy, jo,..., jn. Lt Ro = {r;,,r,,...,r; }. From the previous discussipn
{TIR(Al6;)) N Ro:6; € B} = P(Ro). u

Remark TheVC dimension of a class of subséisof a setSis the largesv
for which some set o¥ points inSis shattered byD. Fix n = 1. We see from
the proof of Theorem 1 that ifi, (A) hasVC dimension at least2 thenIl(A)
hasVC dimension at least. See Wenocur and Dudlg{t981) and Stengle and
Yukich (1989 for complementary results oviC classes of sefs

We apply Theorem 1 to an example in Asparouhova et(2002. These
authors state sufficient conditions fofn-consistency and asymptotic nor-
mality of rank estimator of Haf19873 of the parameter vector characterizing
the transformation in a semiparametric transformation mote¢y also state
sufficient conditions fory/n-consistency and asymptotic normality of a new
class of rank estimators of this parameter vector

Their key assumptiqmA7, is that a certain class of sets iS/& class In the
special case of the Box—Cd®964) transformationthis class of sets has the
form TIx(A), where R = R4, ® = R, and A = {(r,6) € R X 0:
h(r,0) > 0} with r = (y1,¥>,¥3,¥a) andh(r,0) = y{ — y§ — y§ + y4. The
nonlinearity ofh as a function of¢ makes it difficult to prove directly that
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Iz (A) is a VC class Because of this nonlinearitpemma 24 in Pakes and
Pollard (1989 does not apply

However showing thaflly(A) is aVC class is easyFix r € R. Simple cal-
culus shows thah(r,-) has at most three zerok follows that Il (A|r) is a
union of at most two intervals oM. Since the set of all intervals o@ is a
VC class and for eachk = 1, the set of all unions ok sets from avC class
is a VC class(seg e.g., Pollard 1989, it follows thatII4(A) is a VC class
Deduce from Theorem 1 th&t; (A) is aVC class

Finally, we note that Lemma 1 in Asparouhova et(@002 is used to estab-
lish thatlTz (A) is aVC class of sets for the Box—Cd#®964 example Though
the respective proofs are quite differgtiteir Lemma 1 can be viewed as a
special case of Theorem Their Lemma 1 requires théai) the parameter space
® be a subset of the real line and) the setA have the form{(r,0) €
R X ©:h(r,6) > 0}. Theorem 1 on the other handapplies to an arbitrary
parameter spacée.g., it could be infinite-dimensionaland does not require
that the sefA have the form specified ifii); A can be any subset of the product
spaceR X 0.

NOTE

1. We thank an anonymous referee for this remark ab@litlimension and for these references
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