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Abstract— In this paper we study the stability of two di-
mensional (2D) behaviors with two types of variables: the
variables that we are interested to control (the to-be-controlled
variables) and the variables on which we are allowed to enforce
restrictions (the control variables). We derive conditions for the
stabilization of the to-be-controlled variables by regular partial
interconnection, i.e., by imposing non-redundant additional
restrictions to the control variables.

I. INTRODUCTION

In this contribution we deal with 2D behaviors whose
system variables are divided into two sets: the variables
that we are interested to control (called to-be-controlled
variables) and the variables on which we are allowed to
enforce restrictions (called control variables). In this context,
control is viewed as the ability to impose adequate additional
restrictions to the control variables in order to obtain a
desired overall functioning pattern of the to-be-controlled
variables. Hence, in this situation although we can not act
directly upon the to-be-controlled variables, we can nev-
ertheless influence their dynamics by imposing restrictions
on the control variables. This situation is known as partial
control or partial interconnection [21], [1], [10], [16], [13].
The situation in which the set of to-be-controlled variables
coincides with the set of control variables is referred to as
full control or full interconnection.

In particular we are interested in imposing restrictions to
the control variables by means of regular interconnections.
In such interconnection, the restrictions imposed on the
behavior by the controller are independent of the restrictions
already present. This type of interconnection is closely
related to the notion of feedback control in the classical state-
space systems, see [12], [26].

The problem of stabilization is well understood for 1D
behaviors in both contexts of full and partial control, see
for instance [21], [1], [9]. However, stabilization of 2D and
nD behaviors has only been studied in the context of full
control, see for instance [8], [14], [24], [17], with different
underling notions of stability. Here we adopt a notion of
stability defined with respect to a stability cone as considered
in [8], [14] and investigate the problem of stabilization of 2D
behaviors by regular partial interconnection.
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The paper is organized as follows: In Section 2 we present
all the necessary definitions and results on the theory of 2D
behaviors. In Section 3 we study the problem of stabilization
of 2D behaviors by means of regular partial interconnections
and the main results of the paper are presented.

II. PRELIMINARIES

In this section we introduce the fundamental material on
2D behaviors. To this end, we divide the section in four parts.
In the first subsection we introduce 2D discrete behaviors and
their basic properties. The second part is devoted to introduce
the notion of stability considered. The last two subsections
are concerned with the theory of behaviors with two different
types of variables.

A. 2D (kernel) behaviors

Throughout the paper R[s, s−1] := R[s1, s−1
1 , s2, s

−1
2 ] de-

notes the ring of Laurent polynomials, in the indeterminates
s1 and s2, with coefficients in R. We consider 2D behaviors
B defined over Z2 that can be described by a set of linear
partial difference equations, i.e.,

B = kerR(σ, σ−1) := {z ∈ Uq | R(σ, σ−1)w ≡ 0} ⊂ Uq,

where U is the trajectory universe, here taken to be (R)Z2
,

σ = (σ1, σ2), σ−1 = (σ−1
1 , σ−1

2 ), the σi’s are the elementary
2D shift operators (defined by σiw(k) = w(k + ei), for
k ∈ Z2, where ei is the ith element of the canonical
basis of R2) and R(s, s−1) is a 2D Laurent-polynomial
(or in short, L-polynomial) matrix known as representation
of B. Throughout this paper these behaviors are simply
referred to as behaviors. If no confusion arises, given an L-
polynomial matrix A(σ, σ−1), we sometimes write A instead
of A(σ, σ−1) and A(s, s−1).

Instead of characterizing B by means of a representation
matrix R, it is also possible to characterize it by means of
its orthogonal module Mod(B), which consists of all the
2D L-polynomial rows r(s, s−1) ∈ R1×q[s, s−1] such that
B ⊂ ker r(σ, σ−1), and can be shown to coincide with the
R[s, s−1]-module RM(R) generated by the rows of R, i.e.,
Mod(B) = RM(R(s, s−1)), see [22] for details.

For a full column rank L-polynomial matrix R ∈
Rp×q[s, s−1] define its Laurent variety (or zeros) as

V(R) = {(λ1, λ2) ∈ C2 | rank(R(λ1, λ2)) < rank(R)},

where the first rank is taken over C and the second one over
R[s, s−1]. Note that V(R) is equal to the set of common
zeros of the q × q minors of R.
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It is worth pointing out that although the representation
of a behavior B is highly non-unique, any two different
representations of B share the same Laurent variety, i.e.,
if B = kerR1 = kerR2, then V(R1) = V(R2).

Definition 1: A full column rank L-polynomial matrix
R ∈ Rp×q[s, s−1] is said to be right minor prime (rMP) if
V(R) is finite and right zero prime (rZP) if V(R) is empty.
A full row rank L-polynomial matrix R ∈ Rp×q[s, s−1] is
said to be left minor/zero prime (`MP/`ZP) if RT is right
minor/zero prime, respectively. An L-polynomial matrix L
is called a minimal left annihilator (MLA) of R if it has full
row rank, LR = 0, and for any other L-polynomial matrix
S such that SR = 0 we have that S = AL for some L-
polynomial matrix A. We define minimal right annihilators
in a similar way, with the obvious adaptations.
Note that L is an MLA of R if it has full row rank and
imR = kerL. It can be shown that an MLA always exists, it
is `MP and it is uniquely determined modulo a unimodular
matrix.

We next review the notions of controllability and auton-
omy in the context of the behavioral approach.

Definition 2: A behavior B ⊂ (Rq)Z2
is said to be

controllable if for all z1, z2 ∈ B there exists δ > 0 such
that for all subsets U1, U2 ⊂ Z2 with d(U1, U2) > δ, there
exists a z ∈ B such that z |U1 = z1 |U1 and z |U2 = z2 |U2 .
In the above definition, d(·, ·) denotes the Euclidean metric
on Zn and z |U , for some U ⊂ Zn, denotes the trajectory z
restricted to the domain U .

In contrast with the one dimensional case, 2D behaviors
admit a stronger notion of controllability called rectifiability.
Whereas controllable behaviors are the ones that can be
represented by a `MP L-polynomial matrix, or in other
words by an MLA of some L-polynomial matrix, rectifiable
behaviors correspond to `ZP representation matrices.

On the other hand, we shall say that a behavior B = kerR
is autonomous if R has full column rank. In the 1D case, all
autonomous behaviors are finite dimensional vector spaces
whereas in the 2D case this is no longer true. In fact, a 2D
autonomous behavior B = kerR has finite dimension if and
only if R is rMP.

Every 2D behavior B can be decomposed into the sum
B = Bc + Ba, where Bc is the controllable part of B
(defined as the largest controllable sub-behavior of B) and
Ba is a (non-unique) autonomous sub-behavior. This sum
can be chosen to be direct for 1D behaviors, but this is not
always possible for multidimensional behaviors, see [25].

B. Stability

A discrete 1D behavior B ⊂ (Rq)Z is said to be stable if
all its trajectories tend to the origin as time goes to infinity.
In the 2D case, we shall define stability with respect to a
specified stability region, as in [14], by adapting the ideas
in [8] to the discrete case. For this purpose we identify a

direction in Z2 with an element d = (d1, d2) ∈ Z2 whose
components are coprime integers, and define a stability cone
in Z2 as the set of all positive integer linear combinations of
2 linearly independent directions.

By a half-line associated with a direction d ∈ Z2 we mean
the set of all points of the form αd where α is a nonnegative
integer; clearly, the half-lines in a stability cone S are the
ones associated with the directions d ∈ S.

Given a stability cone S ⊂ Z2, a trajectory z ∈ Uq is said
to be S-stable if it tends to zero along every half line in S. A
behavior B is S-stable if all its trajectories are S-stable. It
turns out that stable behaviors on Uq (with respect a stability
cone S) must be finite dimensional.

Lemma 3: ([14, Lemma 2]) Every 2D behavior B ⊂ Uq

which is stable with respect to some stability cone S is a
finite dimensional linear subspace of the trajectory universe,
Uq = (Rq)Z2

.
In order to characterize stability, we introduce some pre-

liminary notation. Given two elements λ = (λ1, λ2) ∈ R2

and k = (k1, k2) ∈ Z2, we define

λk := λk1
1 λ

k2
2 .

With this notation a 2D q-vector polynomial function p(k)
of k is such that

p(k) =
∑
i∈I

αik
i,

where I ⊂ (Z+)2 is a finite bi-index set and αi ∈ Rq .

Definition 4: We say that z is pure polynomial exponen-
tial with frequency λ if z(k) = p(k)λk, with p(k) a q-
vector polynomial function. If z is a linear combination of
pure polynomial exponential we say that z is a polynomial
exponential. The frequencies of a polynomial exponential
z =

∑
αizi, where zi are pure polynomial exponential,

are defined as all the frequencies of the pure polynomial
exponential zi. A frequency λ ∈ R2 is said to be S-stable if
for every direction d ∈ S,

|λd| < 1.
Theorem 5: ([14, Th. 8],[23, Th. 4.4]) Let B = kerR ⊂
Uq be a behavior, and let S be a stability cone. The following
are equivalent:

1) B is S-stable.
2) V(R) is finite and every λ ∈ V(R) is S-stable.
3) Every z ∈ B is a polynomial exponential with S-stable

frequencies.

C. Behaviors with two types of variables

Since in this paper we are interested in considering dif-
ferent types of variables in a behavior (the to-be-controlled
variables and the control variables), we introduce the notation
B(w,c) for a behavior whose variable z is partitioned into
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two sub-variables w and c. Partitioning the corresponding
representation matrix as [R M ], we can write

B(w,c)= {(w, c) ∈ Uw+c | R(σ, σ−1)w +M(σ, σ−1)c = 0}
= ker[R M ].

In the case one is only interested in analyzing the evolution
of one of the sub-variables, say, w, it is useful to eliminate
the other one (c) and consider the projection of the behavior
B(w,c) into Uw, defined as

πw(B(w,c)) = {w | ∃ c such that (w, c) ∈ B(w,c)}.

The elimination theorem [11] guarantees that πw(B(w,c))
is also a (kernel) behavior, for which a representation can
be constructed as follows: take a minimal left annihilator
(MLA) E of M . Then πw(B(w,c)) = ker(ER), see [7, Cor.
2.38].

On the other hand given a behavior B = ker R ⊂ Uw we
define the lifting of B into Uw+c as

B∗(w,c) := {(w, c) ∈ Uw+c | c is free and w ∈ B}. (1)

Obviously B∗(w,c) = ker[R 0]. Analogous definitions can be
given if the roles of w and c are interchanged. For the sake
of brevity, if no confusion arises, we identify B and B∗(w,c)

and denote Bw := πw(B(w,c)) and Bc := πc(B(w,c)).

Definition 6: Given a behavior B(w,c) ⊂ Uw+c we say
that c is observable from w if (w, c1), (w, c2) ∈ B(w,c)

implies c1 = c2. The weaker notion of detectability is defined
along the same lines. Let S be a stability cone. We say that
c is S-detectable from w if (w, c1), (w, c2) ∈ B(w,c) implies
c1 − c2 tends to zero along every half line in S.

Usually, in control problems involving behaviors with
two types of variables it is important to consider the set
of variables that are not observable or hidden from the
remaining set of variables, see [20], [19], [16]. Hence, given
a behavior B(w,c) we shall define

B(0,c) := {c ∈ Uc | (0, c) ∈ B(w,c)},

as the behavior of the variables c that are not observable
or “hidden”from w. Clearly, B(0,c) = kerM . Similarly we
define B(w,0) as the set of w variables that are hidden from
the variables c.

Remark 7: The definition of observability and detectabil-
ity can be reformulated in terms of the hidden behaviors.
Indeed, taking into account that we are dealing with linear
behaviors, it is not difficult to verify that c is observable
from w if and only if B(0,c) is the zero behavior. Moreover,
c is S-detectable from w if and only if B(0,c) is S-stable.
Similarly, w is observable (S-detectable) from c if and only
if B(w,0) is the zero behavior (S-stable).

D. Control by regular partial interconnection

The behavioral approach to control rests on the basic
idea that to control a system is to impose appropriate
additional restrictions to its variables in order to obtain a new

desired behavior. These additional restrictions are achieved
by interconnecting the given system with another system
called the controller. From the mathematical point of view,
system interconnection corresponds to the intersection of the
behavior to be controlled with the controller behavior.

Two situations have been considered in the literature. The
first one is known as full interconnection and corresponds to
the case where the controller is allowed to impose restrictions
on all the system variables. In this case, the interconnection
of a behavior to be controlled, B ⊂ Uw, with a controller
behavior, C ⊂ Uw, yields a controlled behavior given by

K = B ∩ C, (2)

or alternatively, in module terms, by Mod(K) = Mod(B)+
Mod(C). If (2) holds, we say that K is implementable by
full interconnection from B.

A particular interesting type of interconnection corre-
sponds to the case where the restrictions imposed by the
controller do not overlap with the restrictions already active
for the behavior to be controlled. Recalling that the elements
of the modules associated with a behavior represent the
corresponding equations (or restrictions), this means, in
terms of the corresponding modules that

Mod(B) ∩Mod(C) = {0},

(or, equivalently, that B + C = Uw) and therefore

Mod(K) = Mod(B)⊕Mod(C).

In this case we say that the interconnection of B and C is a
regular interconnection and denote it by B ∩reg C.

The second situation corresponds to the case where the
system variables are divided into two disjoint sets: the set of
to-be-controlled variables, whose behavior we want to shape,
and the set of control variables, on which the controller is
allowed to act in order to achieve the desired result. With the
purpose of making the notion of partial control more precise
we introduce the following notation.

Consider a behavior B(w,c) ⊂ Uw+c (the plant), where
the w is the (vector of) to-be-controlled variable(s), and c
is the (vector of) control variable(s). In order to interpret
the interconnection of the plant B(w,c) ⊂ Uw+c with the
controller C ⊂ Uc in terms of behavior intersection, we
first have to lift the controller behavior C and regard it as a
behavior C∗(w,c) in the extended variable (w, c). This yields
the “extended”controlled behavior

B(w,c)∩C∗(w,c) = {(w, c) ∈ Uw+c | (w, c) ∈ B(w,c), c ∈ C}.

For the sake of simplicity, whenever no confusion arises,
we shall simply write B(w,c) ∩ C instead of B(w,c) ∩ C∗(w,c).

The behavior of interest is now

K = πw(B(w,c) ∩ C).

In contrast with the situation in which all variables are
available for control, the full interconnection case, we refer
to this situation as partial interconnection or partial control.
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Also in the context of partial interconnections, regularity
plays an important role. Given two behaviors B(w,c) ⊂ Uw+c

and C ⊂ Uc, we say that the interconnection B(w,c) ∩ C is
regular if

Mod(B(w,c)) ∩Mod(C∗(w,c)) = {0},

or equivalently if B(w,c) + C∗(w,c) = Uw+c. In this case,
we denote the interconnection by B(w,c) ∩reg C∗(w,c) or (in
simplified notation) by B(w,c) ∩reg C.

The following lemma presents some results about partial
interconnections and hidden behaviors that will be used in
the sequel.

Lemma 8: Let B(w,c) ⊂ Uw+c and C ⊂ Uc be two
behaviors. Then, the following hold true.

1) πw(B(w,c) ∩ C) = πw(B(w,c) ∩ (C + B(0,c))).
2) B(w,c)∩reg C if and only if B(w,c)∩reg (C+B(0,c)).
3) B(w,c) ∩reg C if and only if Bc ∩reg C.
Proof: Let B(w,c) = ker[R M ] and C = kerC. Note that

B(0,c) = kerM ⊂ Uc and since B(0,c) ⊂ C + B(0,c), then
C + B(0,c) = kerKM for some L-polynomial matrix K.

1. It is enough to show that πw(B(w,c) ∩ (C + B(0,c))) ⊂
πw(B(w,c) ∩ C) since the other inclusion is trivial. Let
w ∈ πw(B(w,c) ∩ (C + B(0,c))). Then, by definition of πw

there exists a c such that (w, c) ∈ B(w,c) ∩ (C + B(0,c)) =

ker
[
R M
0 KM

]
. Clearly, c must satisfy KMc = 0, i.e.,

c ∈ C + B(0,c) = kerKM and therefore c = c∗ + c∗∗,
where c∗ ∈ C and c∗∗ ∈ B(0,c) = kerM . Hence, as
(w, c) ∈ ker[R M ], (w, c∗) ∈ ker[R M ] which implies

that (w, c∗) ∈ ker
[
R M
0 C

]
= B(w,c) ∩ C, and therefore

w ∈ πw(B(w,c) ∩ C).
2. In terms of the corresponding modules we need to show

that

RM([R M ]) ∩ RM([0 C]) = {0}
m

RM([R M ]) ∩ RM([0 KM ]) = {0}.

As kerC = C ⊂ C + B(0,c) = kerKM , RM(KM) ⊂
RM(C) and the “only if”part is obvious. For the converse,
let (0, 0) 6= (r,m) ∈ RM([R M ]) ∩ RM([0 C]). Clearly
r must be zero and then there exists an L-polynomial row
s such that s[R M ] = (0,m) 6= (0, 0), which implies
sM = m ∈ RM(C) ∩ RM(M) = RM(KM). Thus,
(0,m) ∈ RM([R M ]) ∩ RM([0 KM ]).

3. By [22, Cor.3], the proof of 3 amounts to showing that

RM([R M ]) ∩ RM([0 C]) = {0}
m

RM(LM) ∩ RM(C) = {0},

where L is an MLA of R. In order to prove the “if”part,
let (0, 0) 6= (r,m) ∈ RM([R M ]) ∩ RM([0 C]). It is
easy to see that r must be zero and therefore there exists
s ∈ L such that s[R M ] = (0,m). Thus, 0 6= sM =
m ∈ RM(LM)∩RM(C). To prove the converse implication
suppose that 0 6= m ∈ RM(LM) ∩ RM(C). Then, m =

αLM = βC for some L-polynomial rows α and β. This
implies that (0,m) = αL[R M ] = β[0 C] and therefore
(0, 0) 6= (0,m) ∈ RM([R M ]) ∩ RM([0 C]). �

Remark 9: Obviously, a behavior K ⊂ Uw is imple-
mentable from a given behavior B ⊂ Uw by full (not
necessarily regular) interconnection if and only if K ⊂
B. This condition is however not enough in the partial
interconnection case. Indeed, it was proven in [1], [16], [19]
that K is implementable by partial (not necessarily regular)
interconnection from B(w,c) if and only if

B(w,0) ⊂ K ⊂ Bw.
It is immediately apparent that the study of partial control
problems requires additional tools with respect to full control
problems. One such a tool is the notion of the canonical
controller which has proved to be a key concept for solving
many implementation problems by partial control, see for in-
stance [19], [16], [13], [5], [4]. For a given control objective
K ⊂ Uw, the canonical controller associate with K is defined
as follows:

Ccan(K) := {c | ∃ w such that (w, c) ∈ B(w,c) and w ∈ K}.

For the problem of stabilization, since the control objective
is not unique (as we are interested in stability, but not require
a specific behavior to be achieved), we shall define the set of
all canonical controllers associate to the set of implementable
S-stable behaviors:

Ccan
s =
={Ccan(Bs

w) |Bs
w is an implementable S-stable behavior}

={Ccan(Bs
w) | Bs

w is an S-stable behavior and
B(w,0) ⊂ Bs

w ⊂ Bw}.

III. STABILIZATION BY REGULAR PARTIAL
INTERCONNECTION

In this section we establish necessary and sufficient condi-
tions for the solvability of the problem of stabilizing a given
behavior by a regular partial interconnection. Moreover,
we show that, under certain conditions, we can derive a
constructive solution to the problem and characterize the
structure of the to-be-controlled behavior.

The problem of stabilization by regular partial intercon-
nection can be formally stated as follows: Given a behavior
B(w,c) ⊂ Uw+c and a stability cone S, find conditions for
the existence of a controller behavior C ⊂ Uc such that

πw(B(w,c) ∩reg C) is an S-stable behavior.

Assumption: We assume in the sequel that B(w,0) is an
S-stable behavior. This entails no loss of generality since,
as follows from Remark 9 it is a necessary condition for
the stabilization of B(w,c) by regular partial interconnection.
Note that this means that w is S-detectable from c in B(w,c),
a condition that already appears in [1] for the 1D case.
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Next, we present a result that characterizes the situation
in which the to-be-controlled variables of a given behavior
B(w,c) are stable with respect to a stability cone.

Lemma 10: Let S be a stability cone and B(w,c) =
ker[R M ] a behavior. Let L and E be an MLA of R and M
respectively. Then, the following are equivalent:

1) Bw is S-stable.
2) M(σ, σ−1)Bc is S-stable.

3) ker
[
L
E

]
is S-stable.

4) There exists an S-stable behavior Bs such that Bc =
Bs + B(0,c).

Proof: (1) ⇒ (2) Let (w, c) such that R(σ, σ−1)w =
−M(σ, σ−1)c. It is easy to see that if w is S-stable, then
R(σ, σ−1)w, and therefore also M(σ, σ−1)c, is S-stable.

(2)⇒ (1) By definition Bw = {w | ∃ c such that Rw =
−Mc} = {w | ∃ v ∈ M(σ, σ−1)Bc : Rw = v}. Since
M(σ, σ−1)Bc is S-stable, v is a polynomial exponential
trajectory with S-stable frequencies. Thus, if w is such that
Rw = v, then

w = w∗ + w0,

with w0 ∈ kerR and w∗ a polynomial exponential trajectory
whose frequencies are contained in the frequencies of v [23].
Thus, the frequencies of w are among those of w∗ and w0.
Since kerR = B(w,0) is assumed to be S-stable, together
with the condition that v is S-stable, this implies that w is
S-stable, i.e., Bw is S-stable.

(2⇔ 3) It follows from the fact that applying [15, Lemma
2.13] we obtain

ker
[
L
E

]
= M(σ, σ−1)kerLM = M(σ, σ−1)Bc.

(2) ⇒ (4) By Lemma 3, M(σ, σ−1)Bc is finite dimen-
sional and let {w1, ..., wr} be a basis for M(σ, σ−1)Bc

where each wi is an S-stable polynomial exponential tra-
jectory. For each wi there exists an S-stable polynomial
exponential trajectory ci such that

wi = M(σ, σ−1)ci,

where ci ∈ Bc, i = 1, . . . , r. Define Bs :=span<
c1, ..., cr >, where the span is considered over R[σ, σ−1].
Note that Bs is an S-stable (kernel) behavior (thus linear
and shift invariant) contained in Bc. For all w =

∑
αiwi ∈

M(σ, σ−1)Bc, αi ∈ R, we have that c =
∑
αici satisfies

w = M(σ, σ−1)c. This implies that M(σ, σ−1)Bc ⊂
M(σ, σ−1)Bs. The reciprocal is obvious, taking into account
that Bs ⊂ Bc. So,

M(σ, σ−1)Bc = M(σ, σ−1)Bs.

This implies that

Bc = Bs + kerM.

Indeed, if c ∈ Bc, then M(σ, σ−1)c = M(σ, σ−1)cs for
some cs ∈ Bs. Thus, c−cs ∈ kerM , i.e., c ∈ cs+kerM and
therefore c ∈ Bs + kerM , proving that Bc ⊂ Bs + kerM .

On the other hand, both Bs and kerM are contained
in Bc (the former by construction and the latter since
Bc = kerLM ), and so Bc ⊃ Bs + kerM .

(4)⇒ (2) Obvious. �

The following Theorem, whose proof we omit, provides
necessary and sufficient conditions for the solvability of the
problem of stabilization by regular partial interconnection.

Theorem 11: Let S be a stability cone and B(w,c) =
ker[RM ] a behavior. Let L, E and [F1 F2] be an MLA of R,

M and
[
L
E

]
respectively and denote B1 := ker

[
L
E

]
.

Then, the following are equivalent:
1) B(w,c) is S-stabilizable by regular partial interconnec-

tion.
2) There exists a controller behavior C such that

M(σ, σ−1)(Bc ∩reg C) is S-stable.
3) There exists a behavior B2 such that

B1 + B2 = kerE and B1 ∩B2 is S-stable.

4) There exist matrices A and K such that[
0 I
F1 F2

A

]
is an MLA of

 L
E
K


and

ker

 L
E
K

 is S-stable.

5) There exists a C ∈ Ccan
s that is implementable by

regular full interconnection from Bc.

It is worth pointing out that since S-stable behaviors are
finite dimensional, statement 3 of Theorem 11 can be further
analyzed using the results of Bisiacco and Valcher in [3] on
the problem of decomposing a 2D behavior into the sum
of two sub-behaviors (one of which is fixed) having finite
dimensional intersection. Unfortunately, [3, Th. 5.7] shows
that the conditions for the existence of such decomposition
are far from being constructive. Statement 5 reduces the
problem to the implementation of a canonical controller C
by regular full interconnection. Although such condition is
not difficult to test for a given C through a direct summand
condition, see [2], [15], [18], it becomes uneasy as Ccan

s

contains, in general, infinite number of elements. However,
it can be proved that under certain conditions we are able to
obtain a rather simple equivalent condition for the problem
solvability.

Theorem 12: Let B(w,c) = ker[R M ] be a behavior, S a
stability cone and L,E an MLA of R and M respectively.
Assume that [R M ] has full row rank. Then B(w,c) is S-
stabilizable by regular partial interconnection if and only if
kerL is rectifiable (i.e., L is `ZP).

When dealing with partial control problems, one normally
seeks for reducing them to equivalent problems in the context
of full control, as happens for instance, for the problem of
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implementation by regular partial interconnection, see [13],
[16], [19], [4], [5]. This is so because full interconnection
problems can be handled more easily and in many cases
there exist computational effective solutions. However, for
the problem under consideration a characterization in terms
of stabilization by regular full control seems to be impossi-
ble. Nevertheless, by imposing a condition on the hidden
behavior B(0,c), we can obtain a characterization in the
context of full control. The following results treat this issue.

Theorem 13: Let B(w,c) be a behavior and S a stability
cone. Assume that B(0,c) is S-stabilizable by regular full
interconnection from Bc. Then, the following are equivalent:

1) B(w,c) is S-stabilizable by regular partial interconnec-
tion.

2) Bc is S-stabilizable by regular full interconnection.
Proof: (1) ⇒ (2) Assume K stabilizes B(w,c) =

ker[R M ] by regular partial interconnection and let E and
L be an MLA of M and R, respectively. Define K :=
K + B(0,c). As kerM = B(0,c) ⊂ K, K = kerKM , for
some L-polynomial matrix K. According to Lemma 8, K
also stabilizes B(w,c) by regular partial interconnection, i.e.,
πw(B(w,c)∩K) is S-stable, and RM[R M ]∩RM[0 KM ] =
{0}, which implies that RM(LM) ∩ RM(KM) = {0}. By
assumption there exists a behavior K̂ such that B(0,c)∩reg K̂
is S-stable. Take

C := K ∩ K̂ = ker
[
KM

K̂

]
where K̂ is a representation of K̂. We claim that C stabilizes
Bc by regular full interconnection.

Denote B̃(w,c) := B(w,c) ∩ C = ker

 R M
0 KM

0 K̂

.

Applying the equivalence of 1, 2 and 4 of Lemma 10 to
B̃(w,c), together with the fact that πc(B̃(w,c)) = Bc ∩C and

that B̃(0,c) = B(0,c) ∩ C = ker

 M
KM

K̂

 is S-stable (since

it is contained in B(0,c) ∩reg K̂), we obtain that

πw(B̃(w,c))⇔

 M(σ, σ−1)
KM(σ, σ−1)
K̂(σ, σ−1)

 (Bc ∩ C) is S-stable

⇔ Bc ∩ C is S-stable.
(3)

Clearly πw(B̃(w,c)) is S-stable as it is contained in
πw(B(w,c) ∩ K) which is S-stable, and therefore Bc ∩ C
is S-stable. We are thus reduced to proving that the in-

terconnection of Bc = kerLM and C = ker
[
KM

K̂

]
is

regular, i.e., RM(LM) ∩ (RM(K̂) + RM(KM)) = {0}.
Note that RM(K̂) ∩ (RM(LM) + RM(KM)) = {0} since
RM(K̂) ∩ RM(M) = {0}. Thus,

RM(LM)∩(RM(K̂)+RM(KM))=RM(LM)∩RM(KM),

which in particular implies that

Bc ∩reg C if and only if B(w,c) ∩reg K.

By assumption B(w,c) ∩reg K and so Bc ∩reg C.

(2)⇒ (1) Let C be such that Bc∩reg C is S-stable. Then,
M(σ, σ−1)(Bc) ∩reg C) is also S-stable and therefore part
2 of Theorem 11 is satisfied. �

Note that the assumption that B(0,c) is S-stabilizable by
regular full interconnection from Bc is a relaxation of the
condition that B(0,c) is S-stable, or in other words, that c is
S-detectable from w in B(w,c). This leads to the following
corollary.

Corollary 14: Let B(w,c) be a behavior and S a stabil-
ity cone. If c is S-detectable from w, then B(w,c) is S-
stabilizable by regular partial interconnection if and only if
Bc is S-stabilizable by regular full interconnection.

This result, can be compared with [1, Th.6] on
the stabilization of 1D behaviors by regular partial
interconnection, with the difference that now the conditions
are given on the behavior of the control variable c
rather than on the behavior of the system variable w.
This is not unexpected since, as shown in [13], [16],
contrary to what happens in the 1D case, the partial
implementation conditions for nD behaviors are equivalent
to full implementation conditions on the behaviors of c
rather than of w.

However, the following theorem shows that if B(0,c) is
controllable, a necessary condition for stabilization of B(w,c)

by regular partial control is the stabilization of Bw by regular
full interconnection. In turn, as shown in [6], this amounts
to saying that

B = Bc ⊕Bs, (4)

where Bc (the controllable part of B) is rectifiable and Bs

is an S-stable behavior.
Theorem 15: Let B(w,c) be a behavior and S a stability

cone. Assume that B(0,c) is controllable. If B(w,c) is S-
stabilizable by regular partial interconnection, then the fol-
lowing two equivalent conditions hold:

1) Bw is S-stabilizable by regular full interconnection.
2) There exists an S-stable behavior Bs such that

Bw = Bc
w ⊕Bs, (5)

where Bc
w (the controllable part of Bw) is rectifiable.
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