
A Knapsack-like Code Using Recurrence Sequence Representations

Nathan Hamlin Bala Krishnamoorthy William Webb
Department of Mathematics, Washington State University, Pullman, WA, USA.

{nhamlin,bkrishna,webb}@math.wsu.edu

Abstract

We had recently shown that every positive integer can be represented uniquely using a recurrence se-
quence, when certain restrictions on the digit strings are satisfied. We present the details of how such
representations can be used to build a knapsack-like public key cryptosystem. We also present new dis-
guising methods, and provide arguments for the security of the code against known methods of attack.

1 Introduction

One of the first public key cryptosystems was the traditional knapsack code proposed by Merkle and Hellman
[11]. This code has the advantage of fast encoding and decoding. Also, in more recent developments, it has
been shown that a quantum computer could make factoring large numbers fast enough to make the RSA
code insecure [15, 10]. However, it appears that quantum computers would still struggle to make knapsack
problems fast to solve [1].

Unfortunately, the traditional knapsack code was broken by two different approaches – by reversing the
disguising steps [14] and by a direct attack using lattice-based approaches [8]. We describe a new type
of knapsack-like code along with new disguising techniques, which make the code resistant to both these
classes of attacks. We first give a brief description of the traditional knapsack code and its weaknesses.

1.1 The traditional knapsack code

The plaintext message is assumed to be an integer M , 0 ≤ M < 2n. We consider the representation of M
in base 2:

M =
n−1∑
i=0

εi2
i, 0 ≤ εi ≤ 1. (1)

The creator of the code chooses a secret, superincreasing sequence {si}, i.e., where si > si−1 + · · · + s0.
The secret si are then disguised by one or more modular multiplications of the form

wi = ksi (mod m), (2)

where k and m are kept secret. The wi are made public. The sender of the message M computes

T =
n−1∑
i=0

εiwi. (3)

The encoded message T is then sent over a possibly insecure channel. The hope was that only the creator
of the code, who knows k,m, and the si, can solve Equation (3) for the coefficients εi. In particular, the
disguising step given in Equation (2) is easily reversed.

1

Shamir was able to break this code by calculating k and m and thus reversing the disguising [14].
Although the wi appear random, the fact that the si are superincreasing can be exploited to yield enough
clues to determine k and m, or at least equally useful alternative values.

The other attack, which has received the most attention, tries to solve Equation (3) directly using
lattice-based approaches [8, 2]. In essence, the solutions to Equation (3) correspond to a lattice of vec-
tors. Basis reduction algorithms are efficient methods to find short vectors in, and short bases of, lattices
[9, 7]. Although not guaranteed to do so, these approaches often find a shortest vector in the given lat-
tice [3]. A weakness in using the base-2 representation of the message M is that the corresponding vector
ε =

[
ε0 ε1 · · · εn−1

]T from Equations (1) and (3) is likely to be the unique shortest vector in an appro-
priately defined basis.

For example, if n = 1000, the size of M is roughly 21000. After using the si and disguising to create the
wi (using Equation (2)), the target sum T might be of size 21030 (depending on the number of disguising steps
used). The expected length of the true decoding vector ε =

[
ε0 ε1 · · · ε999

]T is 500 (for simplicity, we
talk about the square of the length here). The number of 0–1 1000-vectors of length less than 500 is roughly
2999. Hence the probability of any one of them equaling T is 2−31. In practice, approaches using basis
reduction may find vectors with some εi = −1 or εi = 2, and so on. We may penalize such solutions in
these approaches, but cannot forbid them. But allowing such εi values tend to produce longer vectors. Thus
it is indeed likely that the shortest vector in the lattice is the true decoding vector. In our new knapsack-like
code, we try to prevent such lattice-based approaches from being effective.

2 A Code Using Recurrence Sequence Representations

Hamlin and Webb recently presented a description of how to find a unique representation of any positive
integer using a recurrence sequence {ui} as a base [4]. We now show how to create a knapsack-like public
key code using such representations. We illustrate our construction on a small example, and refer the reader
to the above paper [4] for the complete proofs of all assertions.

2.1 An example code

Let ui satisfy the recurrence ui+5 = ui+4 + ui+2 + 2ui+1 + 7ui (the initial values are not vital, and we
could take them to be the standard ones, i.e., u0 = 1, u1 = 1, u2 = 1, u3 = 2, and u4 = 4). The signature is
S = 10127. The representation of any positive integer M is of the form

M =

n−1∑
i=0

diui, (4)

where the string of digits dn−1dn−2 . . . d1d0 must be composed of blocks of digits which are lexicograph-
ically smaller than S. In this case, the allowed blocks of digits are 0, 100, 1010, 1011, 10120, 10121,
10122, 10123, 10124, 10125, 10126. Hence, for instance, 1011|1023|0|1010 is a legitimate string, but
1010|110123100 is not. Notice that no allowed block begins with 11.

We now illustrate how to calculate this type of representation of any numberM using a greedy approach.
Although this calculation is straightforward, the fact that makes this code harder to model for the cryptan-
alyst is that so many strings of digits are not allowed in the representations, even though the strings appear
similar to the allowed ones, and both classes of strings use digits of the same size.

2

2.1.1 Computing the representation of M

An easy way to calculate the representation of any numberM in the recurrence sequence {ui} is to calculate
the augmented sequence {vj,i} for 1 ≤ j ≤ 10, 0 ≤ i ≤ n given by

v1,i = ui,
v2,i = ui + ui−2,
v3,i = ui + ui−2 + ui−3,
v4,i = ui + ui−2 + 2ui−3,
v5,i = ui + ui−2 + 2ui−3 + ui−4,

...
v10,i = ui + ui−2 + 2ui−3 + 6ui−4.

The vj,i correspond to the allowed blocks of digits. In our example, the vj,i occur in groups of size 10. In
other examples, the groups could be much larger.

The correct expression for M is found simply by using the greedy algorithm on the vj,i, and converting
the sum into an expression in the ui. The vj,i could be calculated and stored, or calculated from the ui as
needed.

We explore the memory requirements for storing all the {vj,i}. The principal eigenvalue of the sequence
{ui} is α ≈ 1.9754. We may assume that ui is roughly αi, or is close to 2i. After disguising, the public
weights wi will be approximately 2n+40, and the target T approximately 2n+50. In other words, these
quantities require 40–50 extra bits of memory to represent. If n = 1000, the memory required for the
weights wi is roughly 1, 040, 000 bits (or 130 kilobytes). The memory required to store all the vj,i is hence
1.3 megabytes. Even if n is much larger, the memory needed for the wi is negligible.

2.2 Encryption and decryption

Let {ui} be a recurrence sequence that satisfies the following recurrence equation.

ui = a1ui−1 + a2ui−2 + · · ·+ ahui−h, (5)

where a1 > 0 and all ai ≥ 0. The string S = a1a2 · · · ah is its signature, and we let A = a1 +a2 + · · ·+ah.
Every natural number N has a unique representation in the form of Equation (4), where the digits are
composed of blocks that are lexicographically smaller than S. Including the zero block, there are A such
blocks. The auxiliary sequence {vj,i} is constructed as linear combinations of the ui with coefficients same
as the blocks other than the zero block. Hence there are A− 1 of the vj,i in each group. The total number of
vj,i numbers is hence (A− 1)n if there are n of the ui.

The creator of the code chooses a secret sequence {si} which has the property that si+1 > si (ui+1/ui)
for all i. This property replaces the condition of {si} being superincreasing as used in the traditional knap-
sack code.

The si are then disguised by any invertible mapping, some of which we describe below. The resulting
quantities wi are the public weights. If M is the original plaintext message, the user of the code expresses

M =

n−1∑
i=0

diui =

n−1∑
i=0

εj,i vj,i, (6)

and computes

T =
n−1∑
i=0

diwi =
n−1∑
i=0

εj,i yj,i, (7)

3

which is the transmitted message.

Since the mappings used for disguising are invertible by the code’s creator, she can calculate

N =
n−1∑
i=0

disi =
n−1∑
i=0

εj,i tj,i. (8)

We must show that she can solve Equation (8) for the same digits di as appearing in Equation (6). The tj,i
and yj,i are combinations of the si and wi, respectively, in the same way as vj,i are combinations of the ui.
Also, each εj,i = 0 or 1, and for each i, at most one εj,i = 1.

In the greedy algorithm to express N using the tj,i, we subtract the largest possible tj,i from N at each
step, and repeat the process on the remainder. If the correct tj,i have been used previously, we have an
equation at each step that is essentially of the same form as Equation (8). That is, we know the number N ′

and that

N ′ =

k∑
i=0

εj,i tj,i, (9)

where the corresponding number

M ′ =
k∑

i=0

εj,i vj,i (10)

is used when expressing M . We rewrite Equations (9) and (10) as

N ′ = tj1 + tj2 + tj3 + · · · , and (11)

M ′ = vj1 + vj2 + vj3 + · · · , (12)

where j1 > j2 > j3 > · · · . In other words, we include only the terms for which εj,i = 1.
From Equation (11), we get tj1 ≤ N ′. Hence the greedy algorithm will use tj1 unless the next larger

number in the sequence tj1+1 ≤ N ′, in which case tj1+1 would be used. By the definition, tj1+1 = tj1 + sq
for some sq. Also, vj1+1 = vj1 + uq, but vj1+1 was not used in expressing M ′. Hence it must be true that
vj1+1 = vj1 + uq > M ′, whereas tj1 + sq ≤ N ′.

Now we replace the tj and vj by their corresponding combinations of the sj and uj , respectively, as
follows.

sq ≤ N ′ − tj1 = tj2 + tj3 + · · · = b1si1 + b2si2 + · · · , and (13)

uq > M ′ − vj1 = vj2 + vj3 + · · · = b1ui1 + b2ui2 + · · · . (14)

Since q is larger than any of the ir in Equations (13) and (14), and since the si were chosen so that
si/si+1 < ui/ui+1, from Equations (13) and (14) we have

1 ≤ b1(si1/sq) + b2(si2/sq) + · · · < b1(ui1/uq) + b2(ui2/uq) + · · · < 1,

which is a contradiction. Hence the greedy algorithm will indeed use tj1 .

3 Disguising Methods

As described above, the plaintext message M can be expressed either as
∑
diui or as

∑
εj,ivj,i where

εj,i = 0 or 1, and can be calculated using a greedy algorithm. The sequence {si} is chosen with the related
auxiliary sequence {tj,i}, which corresponds to the vj,i. Then, if M is expressed as in Equation (6) and N
as in Equation (8), the creator of the code can calculate the εj,i from knowing N , and can thus compute

4

M . A disguising method that maps si into wi is invertible if given T as expressed in Equation (7), she can
compute the number N . The yj,i are defined in terms of the wi, and in the same way tj,i are defined in terms
of si and vj,i in terms of ui.

Let E = max
∑
εj,i, where the maximum is taken over all expressions of possible messages M . If n is

the number of the ui then E ≤ n since using a greedy algorithm as described, at most one vj,i in each of n
groups is used. With more careful analysis we can show that E is much smaller than n, but that result will
not be critical for our analysis.

For example, in the usual modular multiplication, wi ≡ csi (mod m) or si ≡ c̄wi (mod m). Then

c̄T ≡
∑
i

dic̄wi ≡
∑
i

disi ≡ N (mod m).

The number N is uniquely determined if N < m, which is true if m > Emax{tj,i}. Thus, it suffices
to take m > Esn. Since the wi are defined modulo m, the wi are larger than the si by a factor of Esn. As
such, the wi require log2(Esn) more bits to express in base 2. This expansion in the size of the disguised
weights turns out to be similar in each stage of the disguising.

As described earlier in Section 1.1, the nature of modular multiplication and the fact that some of the si
are very small give the cryptanalyst a way to possibly compute the parameters c and m. We now describe
some alternative disguising methods and indicate why they could not be reversed by the cryptanalyst.

First, perform an ordinary modular multiplication so that all the obtained values are of roughly the same
size. Take any collection of pairwise prime moduli. For simplicity, we could use distinct primes pk for 1 ≤
k ≤ r. Replace the weight wi by the r-vector Wi =

[
wi (mod p1) wi (mod p2) · · · wi (mod pr)

]T .

Then the jth component of ∑
i

diWi ≡
∑
i

diwi (mod pj). (15)

Hence we can use the Chinese Remainder Theorem to compute
∑

i diwi (mod p1 . . . pk), and so the nu-
merical value of

∑
i diwi is determined if p1 . . . pk > AEmax{wi}. Again, the number of bits needed to

express the vector Wi is log2(AEmax{wi}) more than the number needed to express the wi.
We can do two stages of this type of mapping, the first one with large moduli m1 and m2 resulting

in vectors of the form [w′i w
′′
i] for the original weight wi. The second stage uses a large number of small

primes separately on w′i and w′′i . These primes could be the same or different for w′i and w′′i . In fact, we
could simply take p1 = 2, p2 = 3, p3 = 5, and so on.

Since each of the two residues modulom1 andm2 are disguised in this way, we have two lists of residues
modulo 2 and 3 and 5, and so no. The creator of the code can choose a secret permutation of these residues.
When there are k primes p1, . . . , pk, each weight is a vector of dimension 2k. A cryptanalyst could easily
see from the size of the components whether a given component is modulo 2 or modulo 3, and so on. But
he cannot know which of the two residues modulo pi came from the m1 branch and which from the m2

branch of the disguising method. There are 2k possible choices here. Although it is easy to use the Chinese
Remainder Theorem on any such choice, making even one incorrect choice will produce incorrect residues
modulo m1 and m2. Further, the values m1 and m2 are not known to the cryptanalyst. Thus the security of
the disguising rests on the large number of permutations of the residues modulo pi, and not on the difficulty
of solving a particular type of calculation.

This method can be combined with other mappings as well. Another strong candidate is using modular
multiplications in the rings of algebraic integers [13]. This step also turns each ordinary integer weight into
a vector of dimension k, where k is the degree of the algebraic extension used. A sequence of such steps can
be represented as a tree. Each sequence of steps corresponds to a different tree, a different set of parameters,
and a different system of equations describing these parameters. Even if we assume that a cryptanalyst could
obtain information about the disguising mapping from a system of such equations, he does not even know

5

what system of equations is the correct one to solve. The number of such possibilities could be made as
large as we wish. Note that the final public weight vector consists of the leaves of the corresponding tree,
which could also be secretly permuted. Thus the cryptanalyst does not know the correct permutation nor
the correct tree model to use. Any incorrect choice results in a nondecoding result, as a consequence of the
Chinese Remainder Theorem.

4 Cryptanalysis

The disguising methods we just described makes an attack that hopes to reverse the disguising steps quite
unlikely to succeed. But even for the traditional knapsack code, attacks that try to solve Equation (3) directly
using basis reduction algorithms [8, 2] have posed the greater threat to security.

Solving Equation (3) along with the constraints that εi = 0 or 1 could be modeled exactly using inte-
ger optimization methods. While directly solving these instances with just this single constraint could be
difficult even for moderate values of n, basis reduction-based reformulations could be more effective [6].
But adding more constraints makes the integer optimization instances increasingly hard to solve even when
we have only a few hundred weights, e.g., see the recent work on basis reduction-based methods to solve
market split problems [16]. Solving Equation (7) with very complex constraints and thousands of weights
appears impossible using current methods.

Direct basis reduction-based approaches, as opposed to integer optimization approaches, can handle
much larger problems. But these methods cannot impose strict adherence to the constraints as the integer
optimization models do. Instead, these algorithms find short vectors in appropriately defined lattices, which
correspond to solutions of Equations like (3) and (7). In the case of Equation (3), the shortest vector in
the lattice is the desired vector of εi, even though the basis reduction-based methods are not guaranteed to
find this particular vector. Indeed, the shortest vector problem (SVP) and the closely related closest vector
problem (CVP) are known to be hard problems. CVP is known to be NP-complete, and so is SVP under
randomized reductions [12]. Still, such algorithms are often successful in practice to solve the problem
instances exactly [3].

Most basis reduction-based approaches on the default knapsack code in Equation (3) start by defining an
appropriate lattice in which the shortest vector corresponds to the correct decoding message. For the subset
sum problem with weights wi and the target sum T , Coster et al. [2] consider the lattice generated by

L =

[
cwT c T
2I 1

]
, (16)

where w is the vector of weights wi, I is the n × n identity matrix, and 1 is the n-vector of ones. When
the multiplier c is chosen large enough, the vector ε corresponding to the correct decoding will generate
the shortest vector in this lattice by multiplying the first n columns of L by ε and the last column by −1.
This shortest vector has a length of

√
n. To locate this shortest vector, one tries to find short(est) vectors in

the lattice L. While it is not guaranteed to find the correct decoding vector in every case, these algorithms
succeed with high probability when the density of the knapsack, defined as n/(maxi log(wi)), is small.
When n is of the order of a few hundreds, these methods have been shown to be effective in finding the
correct decoding [5].

To see how these methods might be applied to our code, we examine the example described in Section
2.1. The cryptanalyst has the choice of trying to solve either

T =

n−1∑
i=0

diwi or T =

n−1∑
i=0

εj,i yj,i. ((7) revisited)

6

We examine both possibilities by first calculating the expected lengths of the vectors d = [d0 · · · dn−1]T
of dimension n = 1000 and the vector ε of εi,j values of length 10n = 104. It is not clear how one
would add constraints forbidding the particular substrings of digits that are not permitted in d in the former
approach. While one could potentially model all constraints forbidding nonallowed combinations of εi,j
in the latter approach, this step would produce a candidate lattice L in which the single knapsack row is
replaced by a substantially large number of simultaneous linear Diophantine equations. Hence the original
basis reduction-based methods will struggle to find the correct decoding vector in this case as well. We
could add one further level of difficulty in modeling the correct lattice L for the latter approach using εi,j .
We could slightly alter M by adding a small number M̄ , or by using 2M or 3M instead of M , so that the
expected length of the decoding vector becomes longer. The value M̄ , or the multiplier, is sent in the clear,
and should not affect the security of the code.

Further, since the first few groups of the vj,i do not have the same number of elements, it is convenient
to start with, say, u20 instead of u0. In the encoding process, the remaining values smaller than u20 are
also sent in the clear. This modification also makes the choice of the sequence of si easier to make, without
increasing the size of the final public weights much. Sending these small values in the clear does not change
the efficiency of the code significantly.

In the encoding procedure, suppose at some stage we have the value M ′ as in Equation (10). If M ′

falls randomly in the interval [uk, uk+1), we first calculate the probability that vj,k ≤ M ′ < vj+1,k. Then
we calculate the probability that M ′ − vj,k falls in a particular smaller interval [u`, u`+1). Recall that the
associated principal eigenvalue is α ≈ 1.9754, and we may approximate uk by αk for large k. There are 10
subintervals to consider. Letting vj,k = vj temporarily for ease of notation, the intervals are I1 = [v1, v2 =
v1 + uk−2), I2 = [v2, v2 + uk−3), I3 = [v3, v3 + uk−3), and Ij = [vj , vj + uk−4) for 4 ≤ j ≤ 10, where
v10 + uk−4 = uk+1.

If h ≤ k − 5, then M ′ − vj,k ∈ [uh, uh+1) can occur in any of the 10 subintervals. If h = k − 4,
then M ′ − vj,k ∈ [uk−4, uk−3) can occur only in intervals I1, I2, or I3, and M ′ − vj,k ∈ [uk−3, uk−2) can
occur only in I1. Hence the probability that M ′ − uk ∈ [uk−5, uk−4) is 10(uk−4 − uk−5) / (uk+1 − uk) ≈
10α−5, while the probability that M ′ − uk ∈ [uk−4, uk−3) is 3(uk−3 − uk−4) / (uk+1 − uk) ≈ 3α−4. If
M ′ ∈ [uk, uk+1) and M ′ − uk ∈ [uh, uh+1), then there are k − h − 1 groups of the vj,i that are skipped,
i.e., they are not present in the representation of M ′. Then the expected number of skipped groups between
each pair that does appear is approximately

10
k−5∑
h=0

αh−k (k − h− 1) + 3α−4(3) + α−3(2)

= 10
k∑

j=5

α−j (j − 1) + 9α−4 + 2α−3

≈ 10
(
α−3 + 3(α− 1)α−4 / (α− 1)2

)
+ 9α−4 + 2α−3

≈ 3.383 + 0.591 + 0.259 = 4.233.

Therefore the expected number of groups represented when expressing M is n / 5.233, or 191 when n =
1000.

In this example, M ≈ α1000 ≈ 5.5× 10295 ≈ 2982. After the disguising steps described above, the size
of the target sum T in number of bits needed is about 1030. There are then 21030 ≈ 10310 possible target
objects or vectors. Even if we use extra disguising steps, the number of target objects might be as large as
10325.

We expect the representation of M to use some vi,j from 191 of the 1000 groups. As described above,
we can easily alter M slightly to make sure at least 191 groups are used, i.e., the vector corresponding to the

7

correct decoding has length at least 191. If we look at shorter vectors, say of length 180, consisting of one
vi,j from 180 different groups, there are(

1000
180

)
10180 ≈ 10383

such vectors. Thus we expect 10383−325 = 1058 of these vectors to yield the same T . There are many even
shorter vectors that yield T . If a basis reduction-based method finds the shortest vector yielding T , it will
not be the one needed to decode T . If the method finds some short vector at random, the chance that it is the
correct decoding vector would be much smaller than 10−58.

Now suppose the cryptanalyst tries to solve Equation (7) directly for the vector of digits d instead. The
candidate vectors have dimension 1000 now, but the entries may be as large as 6.

To compute the expected length of d, we need to calculate the expected value of each digit. By the
calculations described above, we expect 191 of the 10 blocks 100, 1010, . . . , 10126 to appear. The jth

block is used if M is in the interval Ij described above. Hence the block 100 is used with probability
uk−2 / (uk+1 − uk) ≈ α−2/(α− 1), 1010 and 1011 appear with probability α−3/(α− 1), and the other 7
blocks with probability α−4/(α− 1).

Among the 1000 digits di, we expect roughly 475 zeros, 370 ones, 103 twos, and 13 each of 3, 4, 5, and 6.
The expected length of the vector is 1900. There are more than 10441 vectors of length 1550 consisting of 200
zeros, 500 ones, 150 twos and 50 threes. There exist even more shorter vectors. Since there are only 10325

target vectors, we expect many shorter vectors to correspond to the same value T . Thus, unless it is possible
to force the basis reduction-based algorithms to exclude vectors that do not correspond to allowable strings
of digits, these methods will yield shorter vectors that do not correctly decode the encrypted message T .
Integer optimization-based methods could exclude nonallowed vectors, but they could not handle problems
of this size.

The example code presented above is actually smaller and simpler than one that would be suggested for
use. Indeed, one could take n as large as 105 without needing too large an amount of memory, and A as
large as 100 or 1000. This setting would require the cryptanalyst to solve problems with 108 vectors if he
used the version of Equation (7) with yj,i.

5 Discussion

We have described how to use recurrence sequence representations to create a knapsack-like public key
code. An immediately relevant question is whether specific properties of such representations could be used
to make this code even more secure. In particular, security against attacks targeting the representation using
εi,j relies of the size of the instances, which could not be handled by state of the art methods. But could we
make such attacks less feasible, or even impossible to mount, using inherent properties of the sequence used
for the representation? One possible approach is to make the selection of εi,j depend on the residue of di+1

modulo some number that also depends on i.

References

[1] Vikraman Arvind and Rainer Schuler. The quantum query complexity of 0-1 knapsack and associ-
ated claw problems. In Toshihide Ibaraki, Naoki Katoh, and Hirotaka Ono, editors, Algorithms and
Computation, 14th International Symposium, ISAAC 2003, Kyoto, Japan, December 15-17, 2003, Pro-
ceedings, volume 2906 of Lecture Notes in Computer Science, pages 168–177. Springer, 2003.

8

[2] Matthijs J. Coster, Antoine Joux, Brian A. LaMacchia, Andrew M. Odlyzko, Claus-Peter Schnorr, and
Jacques Stern. Improved low-density subset sum algorithms. Computational Complexity, 2(2):111–
128, 1992.

[3] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Advances in Cryptology –
EUROCRYPT 2008, Lecture Notes in Computer Science, pages 31–51. Springer-Verlag, 2008.

[4] Nathan Hamlin and William A. Webb. Representing positive integers as a sum of linear recurrence
sequences. The Fibonacci Quarterly, 50(2):99–105, 2012.

[5] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In Henri
Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 235–256. Springer Berlin / Heidelberg, 2010. Full version available at
http://eprint.iacr.org/2010/189.

[6] Bala Krishnamoorthy and Gbor Pataki. Column basis reduction and decomposable knapsack problems.
Discrete Optimization, 6(3):242–270, 2009.

[7] Jeffrey C. Lagarias, Hendrik W. Lenstra, and Claus-Peter Schnorr. Korkine-zolotarev bases and suc-
cessive minina of a lattice and its reciprocal lattice. Combinatorica, 10(4):333–348, 1990.

[8] Jeffrey C. Lagarias and Andrew M. Odlyzko. Solving low-density subset sum problems. Journal of
ACM, 32:229–246, 1985.

[9] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and László Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:515–534, 1982.

[10] Erik Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A. Megrant, P. O’Malley, D. Sank,
A. Vainsencher, J. Wenner, T. White, Y. Yin, A. N. Cleland, and John M. Martinis. Computing prime
factors with a Josephson phase qubit quantum processor. Nature Physics, 8(10):719–723, 2012.

[11] Ralph C. Merkle and Martin E. Hellman. Hiding information and signatures in trap door knapsacks.
IEEE Transactions on Information Theory, 24(5):525–530, 1978.

[12] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspec-
tive. Kluwer Academic Publishers, 2002.

[13] Nathan Moyer. A Knapsack-type cryptosystem using algebraic number rings. PhD thesis, Washington
State University, 2010. Available at citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi
=10.1.1.211.580.

[14] Adi Shamir. A polynomial-time algorithm for breaking the basic Merkle-Hellman cryptosystem. IEEE
Transactions on Information Theory, 30(5):699–704, 1984.

[15] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quan-
tum computer. SIAM Journal on Computing, 26(5):1484–1509, October 1997.

[16] Heiko Vogel. Solving market split problems with heuristical lattice reduction. Annals of Operations
Research, 196(1):581 – 590, 2012.

9

http://eprint.iacr.org/2010/189
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.211.580
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.211.580

	1 Introduction
	1.1 The traditional knapsack code

	2 A Code Using Recurrence Sequence Representations
	2.1 An example code
	2.1.1 Computing the representation of M

	2.2 Encryption and decryption

	3 Disguising Methods
	4 Cryptanalysis
	5 Discussion

