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Abstract—Detection of meeting events is one of the most
important tasks in multimodal analysis of planning meetings.
Speaker detection is a key step for extraction of most mean-
ingful meeting events. In this paper, we present an approach
of speaker localization using combination of visual and audio
information in multimodal meeting analysis. When talking,
people make a speech accompanying mouth movements and
hand gestures. By computing correlation of audio signals,
mouth movements, and hand motion, we detect a talking
person both spatially and temporally. Three kinds of features
are extracted for speaker localization. Hand movements are
expressed by hand motion efforts; audio features are expressed
by computing 12 mel-frequency cepstral coefficients from audio
signals, and mouth movements are expressed by normalized
cross-correlation coefficients of mouth area between two suc-
cessive frames. A time delay neural network is trained to learn
the correlation relationships, which is then applied to perform
speaker localization. Experiments and applications in planning
meeting environments are provided.

Keywords-meeting event detection; meeting analysis; speaker
localization; mutimodal meeting analysis; mouth movement;
hand motion; audio signal analysis; planning meeting;

I. INTRODUCTION

A. Multimodal Analysis of Planning Meetings

Meetings are gatherings of humans for the purpose of
communication. Meeting events are captured by cameras [1]
in video-based multi-modal analysis of planning meetings.
Considering the scenario, where there is access to long
video/audio data streams of venues for meetings and joint
planning, an analyst may have to browse the video and find
when a particular meeting participant is speaking and the
junctures where speaking-turn-exchange occurs. The analyst
may request a segmentation of the underlying discussion
by coherence of topical foci or index it with likely topic
break points. These topical clusters may be weighted by the
detection of chained referential, clustering of exchanges by
subsets of participants, or by clustered references to artifacts
of discussion (e.g. a particular locus along a map on the
wall). In addition, the system should be able to classify
the activity in the venues as either ordered meeting, sub-
group caucusing, or social bantering. The analyst may be
interested in locating video segments involving the highest
ranking discussant by the communicative behavior of the
discussants, or the formation of sub-group coalitions in

the meetings. When speech information is not available
(e.g. because of poor audio quality or for languages where
automatic speech recognition is inadequate), the indexing
may be accomplished solely on vision-based multi-modal
behavior and prosody analysis. When automatic speech
recognition is useful, the analyst may frame questions in
terms of topical discussion content and chained references
to the content using information from the multi-modal
communication (speech, gesture and gaze) of the participants
in meeting. Understanding of particular linguistic constructs
like motion descriptions may be enriched with information
from other modalities (such as path and ground information
provided by the accompanying gestural behavior). Such
multi-modal language analysis technology may be applied
either to meetings of friendly cooperative discussants (e.g. to
enrich video-based minutes of military planning meetings to
provide commanders better understanding of evolving sub-
plans formulated by distributed teams, or to evaluate the
communicative effectiveness of trainees in war-gaming), or
in surveillance video of subjects who are unwitting of the
presence of the recording device. This paper addresses the
aspect of speaker localization which is a key step for the
detection of most meaningful meeting events in multi-modal
analysis of planning meetings.

B. Speaker Localization

In speaker localization, there are three typical approaches:
audio-based approach, vision-based approach and audio-
vision-based approach.

Audio-based approaches, such as [2], [3], [4], locate
speakers using arrays of microphones. Vision-based ap-
proach, such as [5], [6], [7], employ dynamic Bayesian
networks or Bayesian network models for speaker detection
and recognition. There models are used to combine four
simple vision sensors: face detection, skin color, skin texture
and mouth motion. [11] employs a duration dependent
input output Markov model to localize speakers. [12] uses
simple image processing techniques to detect face and face
features of the speaker, and then employs visual measures of
speech activity as well as audio energy to determine if the
previously detected user is actually speaking. Audio-vision-
based approaches, such as [8], [9], [10], detect speakers
both spatially and temporally by employing vision and audio
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signal together.
In multi-modal analysis of planning meetings, it is re-

quired that speakers locate with spatial and temporal infor-
mation, so that the speakers’ other communication behavior
can be analyzed in both spaces. In this paper, we present our
visual audio-based techniques to perform speaker localiza-
tion in our meeting room. Three kinds of signals including
audio, hand gesture, and mouth movement are employed
in our approach. We apply a time delay neural network
(TDNN) to fuse these signals and detect the talking person
both spatially and temporally. The spatial information of the
talking person is determined by his mouth position.

C. Organization of the Paper

In Section II, we introduce the work flow of our approach.
The extraction of visual and audio features is described in
Section III. An architecture of TDNN used in this paper is
given in Section IV. An implementation of the approach in
multimodal meeting analysis environments is discussed in
Section V, followed by a summary of the paper in Section
VI.

II. SUMMARY OF OUR APPROACH

Figure 1 shows the summary of our approach. First,
we extract features from video and audio signals. For
hand gestures, we apply motion efforts to express hand
movements. Hand motion efforts are computed from hand
motion trajectories extracted from video. We detect mouth
movements by normalized cross-correlation in mouth area.
We use correlation coefficients to characterize the mouth
movements. We compute mel-frequency cepstral coefficients
as features of audio signals. Second, we analyze correlation
relationships of hand motion efforts of hand movements,
correlation coefficients of mouth movements, and features
of audio signals. Next, we create a TDNN and use sample
data to train the network to learn the correlation relationships
between video and audio signals while people are speaking.
Finally, we apply the TDNN to perform speaker localization.
Results include talking persons and positions of mouths.

III. EXTRACTION OF VISUAL AND AUDIO FEATURES

A. Features of Hand Movements

In order to obtain features of hand movements, we extract
hand motion trajectories using a parallel algorithm called
Vector Coherence Mapping (VCM)[13]. The VCM algo-
rithm is able to exploit spatial and momentum coherence and
color constraints using a fuzzy image integration approach.
The parallel nature of the algorithm and its robustness to
motion blur and noise contribute to its effectiveness in
gestural motion tracking. The algorithm has been applied to
extract hand motion out of very long video sequences, some
in excess of 74,000 frames of video. VCM tracks a large
number of vectors (typically 600 to 2000 per frame) and
integrates the fields. This averaging effect gives a smooth
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Figure 1. Approach of speaker localization

motion field that is temporally accurate (i.e. no oversmooth-
ing across frames to degrade temporal resolution). These
vectors are clustered to identify the moving hands. Cluster-
ing errors are fixed manually using an editing program that
permits the user to initialize the vector clustering system
when clustering errors occur. For the dataset captured with
a monocular camera, we can obtain two dimensional (x and
y) hand motion trajectories. If the dataset is captured in
synchronized stereo with calibrated cameras, we can obtain
three dimensional (x, y, and z) motion trajectories.

We apply“effort” to measure hand movements [14]. The
effort is roughly analogous to the kinetic energy of the
hand movement. The kinetic energy can be computed by
calculating the instantaneous velocity of the hand. Since it
involves taking the first derivative of the hand trajectory,
this method amplifies noise. Here, we compute the energy
of motion using a sliding window.

If p(i) is the position of hand at time i, the RMS energy
E(t) of window of width N at time t can be computed as:

E(t) =

√
1
N

∫ t+N/2

t−N/2

|p(i) − p̂(t)|2di (1)

where p̂(t) is the average hand position in the window:

p̂(t) =
1
N

∫ t+N/2

t−N/2

p(i)di (2)

In practice the energy (effort) is computed for discretized
time (video frames), so the integrals in the above formulas
are substituted with summations and N specifies the width
of the window in frames. Figure 2 shows an example of
hand motion trajectories and efforts. In the figure, the top
shows right hand trajectories in x and y directions and the
bottom shows the corresponding motion efforts.

B. Features of Mouth Movements

In order to obtain features of mouth movements, we need
to extract mouth positions for all participants in meetings.

39



0 100 200 300 400 500 600 700 800 900 1000
100

150

200

250

300

350
H

an
d 

P
os

iti
on

Frame

X
Y

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

H
an

d 
E

ffo
rt

Frame

Effort-X
Effort-Y

Figure 2. Hand motion trajectories and efforts

We build a skin color model and a skin color filter for each
participant. Face regions can be segmented by the filters.

The skin color model theory is established by Yang and
other researchers [15]. Xiong and Quek [16] apply skin
color techniques to detect faces and build 3D texture map
model for head tracking. A survey on skin color detection
techniques is available in [17]. The skin color model theory
tells us that under certain lighting conditions, a skin color
distribution can be characterized by a multivariate Gaussian
distribution in the normalized color space.

We build the face skin color model in RGB space. In
order to reduce lighting effects, we convert original color
images to chromatic color images. Suppose x(R,G,B) and
x′(Rn, Gn, Bn) are pixels in the original color image and
chromatic color image respectively.

Rn =
R

R + G + B
,Bn =

B

R + G + B
,Gn =

G

R + G + B
(3)

In above, as Rn + Bn + Gn = 1, there are only two
independent components, so we omit the third component.
For each pixel, we have a color vector x = (Rn Bn)T . The
two dimensional Gaussian distribution model is expressed
as N(μ,Σ) i.e.

p(x) =
1

2π|Σ|1/2 exp[− 1
2 (x − μ)T Σ−1(x − μ)]

(4)

with {
μ = E{x}
Σ = E{(x − μ)(x − μ)T } (5)

where,

μ is the mean vector;
Σ is the covariance matrix.

With skin color samples, we apply Maximum Likelihood
Estimation approach to estimate these parameters (μ̂, Σ̂).

Based on the skin color model, we create a skin color filter
for each participant with a threshold. With the skin color
filter, face regions can be segmented. We create a mouth
template to detect mouth positions in the face regions from
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Figure 3. A procedure of computation of MFCCs
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Figure 4. An example of an audio signal and its 12 MFCCs

each frame of video. The mouth positions are also applied
to express the positions of speakers.

After obtaining mouth positions, we can define mouth
areas with a window (a rectangle) and detect mouth (lip)
movements. Since we only need to know whether the mouth
has motion and we do not need to know how much motion.
We use a normalized cross-correlation to measure changes
of the mouth area between two frames. Suppose Ft and Ft+1

are two frame images at time t and t + 1. The normalized
cross-correlation coefficient Ct can be computed as below.

Ct =

∑
(x,y)∈W (Ft(x, y) − F t)(Ft+1(x, y) − F t+1)

(
∑

(x,y)∈W (Ft(x, y) − F t)2
∑

(x,y)∈W (Ft+1(x, y) − F t+1)2)
1
2

(6)
where W is a windowing function in Ft.

C. Audio Features

Mel Frequency Cepstrum Coefficients (MFCCs) of an
audio signal are used as audio features, which are commonly
used in speech recognition systems [18]. Figure 3 shows
a procedure of computation of MFCCs. First, divide audio
signals into frames. Second, obtain the amplitude spectrum
for each frame using Discrete Fourier Transform (DFT); and
then, take the logarithm and compute cepstral coefficients,

c(n) =
1
2π

∫ π

−π

log|X(ejω)|ejωndω, (7)

where, |X(·)| is the power spectrum of the audio signal
x(n). Finally, we perform mel-frequency warping and trans-
form them into MFCCs by DCT. We compute 12 MFCCs
in a window as features of audio signals.

Figure 4 (a) shows an audio signal for a person saying
“meeting analysis” for 11 times and Figure 4 (b) shows its
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Figure 5. Architecture of TDNN in our approach

12 MFCCs. Of course, if there is no any speech signal,
the MFCCs should be zero. Therefore, we can use MFCCs
to determine whether we have speakers at this moment.
Feather more, different people have different characteristics
of MFCCs. We can apply this property to identify speakers.

IV. ARCHITECTURE OF TDNN IN OUR APPROACH

Figure 5 shows an architecture of TDNN used in our
approach. This is a four layer neural network including an
input layer, two hidden layers, and an output layer. The input
layer has n×m neurons. The n is determined by the number
of features and the m is determined by the segmentation of
video (i.e. a segment of video has m frames). The time delay
between the first hidden layer and the input layer is W1.
There are two hidden layers. There are nh1 × mh1 neurons
in the first hidden layer and nh2×mh2 neurons in the second
hidden layer. The time delay between the two hidden layers
is W2. The output layer has one neuron for the state of the
subject. The result 1 indicates that the subject is speaking,
0 not speaking. We adopt the Standard Back Propagation
(SBP) algorithm as the learning method to train this TDNN.

V. EXAMPLE APPLICATIONS

A. Experimental Setup and Meeting Room Configuration

Figure 6 shows the configuration of our meeting room.
There are five participants labeled C, D, E, F, G in the meet-
ing. Ten movie cameras labeled C1, C2, C3, C4, C5, C6,
C7, C8, C9, C10 are installed to record the meeting events.
T1 and T2 are two table microphones to record speech.
Each camera is installed in a fixed position on the ceiling
of the meeting room, so that each camera can see certain

E

C D

G F

T1 T2C1

C2
C3 C4

C5

C6

C7
C8C9

C10

E

F G

C D

Figure 6. Meeting room configuration

participants at the same time. For speaker localization, we
use three videos from cameras C1, C5, and C7 respectively.
We let camera C1 see E, C5 for F, G, and C7 for C, D,
so that we can see participants’ front faces. We locate the
participants’ mouths as their positions. In the meeting room,
we also installed a Vicon motion capture system (we did not
show the system in Figure 6) to provide us ground truth data.
Eight Vicon infra red cameras are installed in fixed positions
on the celing of the meeting room. These infra red cameras
can track Vicon markers mounted on targets to provide 3D
motion data.

B. Experimental Work Flow

As we mentioned in Section V-A, there are five partici-
pants in the meeting. We need to detect the talking person
both spatially and temporally during the meeting. First,
we perform face detection to determine face positions for
all participants in the meeting room by a head tracking
approach [16]which is developed for meeting analysis. The
participants’ face positions can be used for the detection of
their mouths. Second, we compute three kinds of features in-
cluding hand efforts with hand movements, cross-correlation
coefficients with mouth movements, and MFCCs with audio
signals for each participant. All participants share the audio
signals recorded by table microphones T1 and T2. Next,
we create a TDNN for each participant. In our case, we
create five TDNNs for the five participants in the meeting
room. Before we apply these networks to detect the speaking
person, we need to create sample data to train them and let
them learn the complicated relationships of video and audio
signals while people are talking. Finally, We input the three
kinds of features into the TDNNs. The networks can decide
which one is a talking person at a given time. While we
compute mouth movements for each participant, we detect
the mouth position which can also be used as the location
of the talking person.

C. Experimental Results and Analysis

We applied our approach to the experimental dataset
AFIT010705. This dataset comprised 74,000 frames video
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Figure 7. Mouth positions of dataset AFIT010705

(41.11 minutes) and audio. The topic of this meeting is
Foreign Material Exploitation.

We have processed the whole dataset. Since it is too long,
we choose a focus section which there are a lot of talking,
gestures, and mouth movements to display the results. This
section comprised 3229 frames.

First, we extract audio features by computing 12 MFCCs
using a 10 ms window with the audio signals shown in
Figure 8 (a). The results are shown in Figure 8 (b). Second,
we segment face regions with skin color models and filters
and detect mouth positions for all participants. Figures 8
(c), (d), (e), (f), and (g) show the results. Next, we extract
hand motion trajectories for all participants with the VCM
algorithm and compute hand motion efforts which are shown
in Figures

After training, we input these three kinds of features into
the TDNN to detect who is speaking. Figure 9 shows the
results. In the figure, “1” expresses “speaking” and “0” for
“not speaking”.

From the results we can see that subject E talked a lot
because he is a leader of this meeting. Subject G has a lot
of talking at the beginning of this section and subject C has
a lot of talking near the end of the section. Subject D did
not say anything in this section. He just listens to other’s
talking and gives eye gazes to other subjects.

We compared the results with ground truth in the Final
Cut Pro system. The results are satisfying. We obtain some
errors which happened when the mouths are occluded by
hands and the heads turned away from the cameras so that
we can not see the mouths. Low resolution is another reason
for the errors.

VI. CONCLUSIONS AND DISCUSSION

Speaker localization is very important for the detection of
meeting events in multimodal analysis of planning meetings.
It enables us to focus on the analysis of speaker’s commu-
nication behavior during the meeting and detect meaningful
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Figure 8. Results for dataset AFIT010705
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information units of the meeting. By following the speakers,
we can easily understand the contents of the meeting. We
presented our techniques of speaker localization in multi-
modal analysis of planning meetings. The basic idea of the
approach is that speech accompanies with mouth movements
and sometimes hand gestures. In our approach, we create a
TDNN for each participant in the meeting to decide whether
he/she is speaking or not. Three kinds of features are used
for speaker localization.
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