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ABSTRACT
This paper addresses quasi-steady analysis of a

magnetorheological (MR) dashpot damper. MR dashpot
dampers show mixed fluid mode of flow and shear flows since a
dashpot inside dampers works as a piston and a moving wall
simultaneously. In this study, quasi-steady analysis of MR
dashpot dampers has developed based on the utilization of the
Bingham-plastic constitutive model to assess performance
metrics such as damping capacity. For the mixed mode MR
damper that is the sums of flow and shear flows, fluid velocity
profile, shear stress profile, and damping coefficient are
theoretically derived. In addition, the preyield thickness
equation to characterize the relationship between the Bingham
number and the preyield thickness is constructed. Through
computer simulation, damping characteristics of the mixed
mode MR dashpot damper are evaluated and compared with
flow mode case.

INTRODUCTION
The inherent characteristics of MR (magnetorheological)

fluids such as continuously controllable yield stress and fast
response have prompted many researchers to develop novel
dampers so as to reduce and isolate vibration and shock motion
of devices.

Most of dampers have designed and manufactured based
on three working fluid modes of damper operation: shear mode
[1-3], flow mode [4-6], and squeeze mode [7-9]. The shear
mode occurs when one of two magnetic poles moves linearly or
rotationally relative to the other. In the shear mode, the fluid is
directly sheared by relative motion of these surfaces. The flow
mode is characterized by pressurized flow between two
magnetic poles that form the opposite walls of a rectangular or
annular duct. The squeeze mode occurs when the magnetic
poles move toward each other, squeezing out the fluid.
However, the shear mode dampers require large magnetic pole
surface area contacted with the fluid in order to achieve high
damper force, and the squeeze mode dampers can only work in
the very small vibration situation. The flow mode is most
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advantageous for high force high stroke applications.
As an expansion of flow mode dampers, mixed mode MR

dashpot dampers will be addressed in this study. MR dashpot
dampers show mixed fluid mode of flow and shear flows since
a dashpot inside dampers works as a piston and a moving wall
simultaneously. Based on the utilization of the Bingham-plastic
constitutive model, quasi-steady analysis of MR dashpot
dampers has developed in order to assess performance metrics
such as damping capacity. For the mixed mode MR damper,
fluid velocity profile, shear stress profile, and damping
coefficient are theoretically derived. In addition, the preyield
thickness equation to characterize the relationship between
Bingham number as a nondimensional input and the preyield
thickness is constructed. Through computer simulation,
damping characteristics of the mixed mode MR dashpot
damper are evaluated and compared with flow mode case.

MR DASHPOT DAMPER
MR dashpot dampers have the mixed mode of working fluid
operation such as flow (Poissieulle flow) and shear modes
through the valve inside MR dampers. A schematic diagram of
fluid velocity profile in the valve inside the MR dashpot
damper is shown in Figure 1. As mentioned earlier, the dashpot
works as a piston and a moving wall simultaneously.

Figure 1. Schematic diagram of fluid velocity profile in the
valve inside MR dashpot damper.
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The other magnetic pole or wall configured by the outer
cylinder of the damper is stationary. Note that the dashpot
motion is reverse to the direction of the fluid velocity in the
valve. This is because the pressure at the left side of the valve is
higher to the pressure at the right side in the situation when the
dashpot is moving to the left direction. Thus, the fluid
pressured by the dashpot is passing from the left to right side of
the valve.  

THEORETICAL MODELING
The damper force 

€ 

F  of MR dashpot damper can be given
by

€ 

F = ApΔP+ Asτ w                 (1)

Here, 

 

Ap  is the effective piston head area and 

€ 

ΔP  is the
pressure drop between both end sides of the MR valve.
As = bL  is the side surface area of the piston head, 

€ 

b is the
width of the valve, 

€ 

L  is the active length of the valve, and 

€ 

τ w

is the resistant shear stress at the side surface of the piston head.
The pressure drop at quasi-steady state can be obtained from
force equilibrium in the annular duct as follows [10]:

€ 

ΔP = −
dτ
dr

+
τ
r

 

 
 

 

 
 L                 (2)

Here, 

 

τ  is the shear stress and 

€ 

r  is the radial coordinate. Note
that fluid acceleration term is neglected at Eq.(2). For high
velocity flow or high frequency oscillatory flow, the fluid
inertia term must be incorporated [10]. Approximating the 1D
axisymmetric annular duct geometry of the valve by a
rectangular duct, Eq.(2) simplifies to

€ 

ΔP = −
dτ
dy

L                (3)

Here, 

 

y  is the coordinate originated from the center of the
valve toward the wall of the valve.

Integrating Eq.(3) yields the shear stress profile in the
valve

€ 

τ = −
ΔP
L
y +ατ                (4)

Here, 

 

ατ  is the integration constant. The boundary conditions
are

€ 

τ −ypi( ) = τ y   and  

€ 

τ ypo( ) = −τ y         (5)

which leads to 

€ 

ατ = 0 . Thus

τ = −
ΔP
L
y                   (6)

€

€

€

€ 

€

€

€

€ 
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From Eq.(6), the resistant shear stress at the side surface of the
piston head is determined as follows:

€ 

τ w =
ΔPd
2L

                  (7)

Here, 

 

d  is the gap in the valve. Substituting Eq.(7) into Eq.(1)
yields the damping force of the MR dashpot damper

€ 

F = Ap +
Ad

2
 

 
 

 

 
 ΔP               (8)

Here, 

 

Ad = bd  is the cross-sectional area of the valve.
 The constitutive equation for MR fluid for Bingham

model for one-dimensional flow is well known

€ 

τ = τ y sgn(u) + µ
du
dy

 

 
 

 

 
              (9)

Here, 

 

u  is the fluid velocity, 

€ 

τ y  is the yield shear stress, and
µ  is the fluid viscosity.

Substituting Eq.(9) into Eq.(3) yields the relation

€ 

d 2u
dy 2

 

 
 

 

 
 = −

ΔP
µL

               (10)

Fluid Velocity Profile
Integrating Eq.(10) yields the fluid velocity gradient

€ 

′ u y( ) =
α
µ
−
ΔP
µL

y
 

 
 

 

 
               (11)

Here, 

 

α  is the integration constant. Again, integrating the
velocity gradient yields the fluid velocity profiles:

€ 

u y( ) =
α
µ
y − ΔP

µL
y 2

2
 

 
 

 

 
 + β           (12)

Here, 

 

β  is the integration constant. The fluid velocity 

€ 

u  at
mixed mode such as flow and shear flows is determined by
boundary conditions and compatibility conditions. First, the
boundary conditions are

€ 

u1 −
d
2

 

 
 

 

 
 = 0   and 

€ 

u3
d
2

 

 
 

 

 
 = −Vp        (13)

Here, 

 

ui  implies the fluid velocity in the ith region and 

€ 

Vp  is
the dashpot velocity. The fluid velocity compatibility
conditions are

u1(−ypi ) = u3(ypo)                (14)
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Here, 

€ 

ypi  is the inner location of the preyield region and 

€ 

ypo
is the outer location of the preyield region. Velocity gradient
compatibility conditions must also be satisfied. Note that the
plug or preyield region moves at constant velocity, since it is
essentially a rigid, so that the velocity gradient across the plug
must be zero. The velocity gradient compatibility conditions are

€ 

′ u 1 −ypi( ) = ′ u 3 ypo( ) = 0            (15)

Note that, for flow mode analysis, the velocity symmetry
condition must hold. Thus the plug is symmetric about the
center of the valve. However, in the case of mixed mode such
as flow and shear flows, the velocity symmetry does not hold.
Thus the center of the plug is dependent on the piston velocity.

Region 1 (Postyield): 

€ 

−
d
2
≤ y ≤ −ypi  Two boundary

conditions for region 1 are used to obtain the fluid velocity in
the valve. First, the velocity gradient at the inner location of the
preyield region given by Eq.(11) must be zero, to ensure
compatibility of the shear rate. Hence

€ 

′ u 1 −ypi( ) = 0 =
α1
µ

+
ΔP
µL

ypi

 

 
 

 

 
           (16)

which yields an expression for the integration constant 

€ 

α1 , as
below

€ 

α1 = −
ΔP
L
ypi                 (17)

Applying no-slip condition at the bottom of the valve given by
Eq.(13) into Eq.(12) yields the integration constant 

€ 

β1, as
below

€ 

β1 =
ΔP
µL
 

 
 

 

 
 
d 2

8
−
ypid
2

 

 
 

 

 
            (18)

Substituting the integration constants yields the velocity profile
for region 1:

€ 

u1(y) = −
ΔP
2µL
 

 
 

 

 
 y + ypi( )

2
−
d
2
− ypi

 

 
 

 

 
 
2 

 
 
 

 

 
 
 
     (19)

Region 3 (Postyield): 

€ 

ypo ≤ y ≤
d
2

 First, applying

velocity gradient compatibility condition given by Eq.(15) into
Eq. (11) yields the integration constant

′ u 3 ypo( ) = 0 =
α 3

µ
−
ΔP
µL

ypo

 

 
 

 

 
           (20)
€ 

3
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which yields an expression for the integration constant 

€ 

α3 , as
below:

€ 

α3 =
ΔP
L
ypo                 (21)

From Eq.(12) with the boundary condition given by Eq.(13),

€ 

u3
d
2

 

 
 

 

 
 = −Vp

=
α
µ
d
2
−
ΔP
µL

d 2

8
 

 
 

 

 
 + β

         (22)

Finally, the fluid velocity profile for region 3 is obtained

€ 

u3(y) = −
ΔP
2µL
 

 
 

 

 
 y − ypo( )

2
−
d
2
− ypo

 

 
 

 

 
 
2 

 
 
 

 

 
 
 
+Vp    (23)

Region 2 (Preyield): 

€ 

−ypi ≤ y ≤ ypo  Because the velocity
gradient must be zero across the preyield or plug region, the
fluid velocity must be constant across the plug region as well.
Thus using Eq.(14) yields the fluid velocity profile in region 2

€ 

u2(y) =
ΔP
2µL
 

 
 

 

 
 
d
2
− ypi

 

 
 

 

 
 
2

=
ΔP
2µL
 

 
 

 

 
 
d
2
− ypo

 

 
 

 

 
 
2

+Vp

        (24)

Preyield Thickness
The preyield or plug thickness and its location in the valve

can be determined using the shear stress boundary conditions.
From Eqs.(5) and (6), the preyield thickness 

€ 

δ  can be
expressed as below:

€ 

δ = ypi + ypo =
2Lτ y

ΔP
            (25)

With Eqs.(24) and (25), solving for the location of the preyield
thickness leads to

€ 

ypi =
1
2
δ + yc( )  and  

€ 

ypo =
1
2
δ − yc( )      (26)

where 

€ 

yc  is the center of the preyield thickness and expressed
as

yc =
2µLVp

ΔP d −δ( )
                 (27)
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Note that, in this study, the origin of the 

€ 

y  coordinate is the
center of the valve. Introducing Bingham number 

€ 

Bi  defined
as below

€ 

Bi =
τ yd
µVd

=
τ yd

µ A − 1
2

 

 
 

 

 
 Vp

            (28)

where, 

€ 

Vd  is the average fluid velocity in the valve and

A =
Ap

Ad

 

 
 

 

 
 . the center of the preyield thickness in Eq.(27) can

be written as

€ 

yc =
δ 

A − 1
2

 

 
 

 

 
 Bi 1−δ ( )

              (29)

where the nondimensional preyield thickness 

€ 

δ 

€ 

δ =
δ
d

                    (30)

Preyield Thickness Equation
If the preyield thickness is determined, the damper force

F  of the dashpot damper can be easily obtained from Eqs.(8)
and (25). The preyield thickness is obtained by solving preyield
thickness equation which can be derived from equating flow
rate 

 

Qp  displaced by piston to the flow rate through the valve.
The flow rate 

€ 

Qd  through the valve is obtained by integration
of the velocity profiles in each region:

€ 

Qd = b u1dy
−
d
2

− ypi∫ + b u2dy
− ypi

ypo∫ + b u3dy
− ypo

d
2∫

=Qp = Ap −
Ad

2
 

 
 

 

 
 Vp

    (31)

With nondimensional variables such as nondimensional
preyield thickness and Bingham number, rearranging Eq.(31)
yields the preyield thickness equation for mixed mode analysis
as below:

€ 

6A δ + 6A δ ( )
2
−6 1+

δ 
2

 

 
 

 

 
 δ 3

2 A − 1
2

 

 
 

 

 
 1−δ ( )

2
1+

δ 
2

 

 
 

 

 
 

−Bi = 0       (32)

Using binomial series [12], Eq.(32) simplifies to

€

€ 

€ 
4  
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Figure 2. Errors of nondimensional preyield thickness between
Eq.(32) and Eq.(33) versus Bingham number.

 

A 

A − 1
2

 

 
 

 

 
 

6δ 

1−δ ( )
2
1+

δ 
2

 

 
 

 

 
 

1− δ 
24A 2
 

 
 

 

 
 1+

δ 
2

 

 
 

 

 
 

 

 
 

 

 
 −Bi = 0    

(33)

Errors of nondimensional preyield thickness between Eq.(32)
and Eq.(33) are presented in Figure 2. As observed in Figure 2,
A  increases, the error decreases. The maximum error of

simplified nondimensional preyield thickness in Eq.(33) is less
than 0.04%. In this study, Eq.(33) will be used as the preyield
thickness equation for the mixed mode MR dashpot damper.

On the other hand, note that, for flow mode analysis, the
preyield thickness equation is given by [11,13]

€ 

6δ 

1−δ ( )
2
1+

δ 
2

 

 
 

 

 
 

−Bi = 0             (34)

If A →∞, the preyield thickness equation for mixed mode
analysis given by Eq.(33) is exactly equal to that for flow mode
analysis given by Eq.(34).  

Given the piston velocity, 

€ 

Vp , the Bingham number, 

€ 

Bi
is calculated, and nondimensional preyield thickness, 

€ 

δ , can
be determined as the root of the nonlinear equation in Eq.(33)
in its domain 

€ 

0 <δ <1.

EQUIVALENT DAMPING
The damper force in Eq.(8) can be rewritten using Eq.(25)

F = Ap +
Ad

2
 

 
 

 

 
 
2τ yL
δ d

              (35)

€ 

A 

€ 

A = 20

€ 

A =1
€ 
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Using Eq.(28) and Eq.(33), the damper force of the mixed
mode MR damper can be expressed as a function of the
velocity as below:

€ 

F =CeqVp                   (36)

where

Ceq =
Ap Ap +

Ad

2
 

 
 

 

 
 12µL

bd 3

1− δ 
24A 2
 

 
 

 

 
 1+

δ 
2

 

 
 

 

 
 

1−δ ( )
2
1+

δ 
2

 

 
 

 

 
 

 

 

 
 
 
 

 

 

 
 
 
 

     (37)

The damper force in the absence of field is 

€ 

F0 =C0Vp ,

which implies that 

€ 

δ = 0 , so that where

€ 

C0 =
Ap Ap +

Ad

2
 

 
 

 

 
 12µL

bd 3
             (38)

This leads to an expression for the damping coefficient, or
the ratio of the field dependent damping 

€ 

Ceq  to the damping in
the absence of field, 

€ 

C0 , as below

€ 

Ceq

C0

=

1− δ 
24A 2
 

 
 

 

 
 1+

δ 
2

 

 
 

 

 
 

1−δ ( )
2
1+

δ 
2

 

 
 

 

 
 

 

 

 
 
 
 

 

 

 
 
 
 

           (39)

The above expression is a nondimensional representation of the
damping capacity of the MR damper. Note that, for the flow
mode analysis, the damping coefficient 

€ 

Ceq C0( ) f  is given by

[11,13]

€ 

Ceq

C0

 

 
 

 

 
 
f

=
1

1−δ ( )
2
1+

δ 
2

 

 
 

 

 
 

           (40)

It is an interesting thing to check how much the mixed mode
MR damper will show bigger damping coefficient than flow
mode MR damper.

Δ
Ceq

C0

 

 
 

 

 
 =

Ceq

C0

 

 
 

 

 
 −

Ceq

C0

 

 
 

 

 
 

f

Ceq

C0

 

 
 

 

 
 

f

= −
δ 

24A 2
 

 
 

 

 
 1+

δ 
2

 

 
 

 

 
 

            (41)

€

€

€ 5  
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Here, 

 

Δ Ceq C0( )  is the increment from the flow mode
damping coefficient to the mixed mode damping coefficient.
Since 

 

0 ≤δ ≤1,

€ 

−
1

16A 2
≤ Δ

Ceq

C0

 

 
 

 

 
 ≤ 0              (42)

Thus, Eq.(42) implies that the mixed mode damping coefficient
is equal or less than the flow mode damping coefficient. In
addition, since 

€ 

A >>1 in general MR damper geometry and
damping coefficient increase is proportional to 

€ 

1/A 2, the
difference between the mixed mode and flow mode damping
coefficients is almost nothing in most of practical damper
applications. Note that, absolute values of the equivalent
damping 

€ 

Ceq  or damping in the absence of field 

€ 

C0  are not
smaller than the flow mode case.

ANALYSIS RESULTS
The first performance diagram of the mixed mode MR

dashpot damper is the damping coefficient 

€ 

Ceq C0( ), versus
the Bingham number 

€ 

Bi . The damping coefficient linearly
increases with respect to the Bingham number. As 

€ 

A 
increases, the damping coefficient for the mixed mode analysis
is close to the flow mode result.

Figure 4 presents the nondimensional preyield thickness
versus the Bingham number.  As the Bingham number
increases, the nondimensional preyield thickness increases like
one-side sigmoid shape. This implies that the ratio of the yield
shear stress over the viscous shear stress increases, or the yield
stress becomes larger than the viscous shear stress, the extent of
preyield region in the valve will  increase.  In addition,  it
demands for  very  la rge Bingham numbers  so that th e
nondimensional plug thickness will  approach unity. 

€ 

δ =1
physically implies that the preyield region will completely fill

  
Figure 3. Damping coefficient versus Bingham number. The
lines stand for the mixed mode results and the circle stands for
the flow mode result.

€ 

A 
€ 

A = 20

€ 

A =1€ 

A = 5

€ 

A = 2
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Figure 4. Nondimensional preyield thickness versus Bingham
number. The lines stand for the mixed mode results and the
circle stands for the flow mode result.

Figure 5. Damping coefficient versus nondimensional preyield
thickness. The lines stand for the mixed mode results and the
circle stands for the flow mode result.

the valve. On the other hand, as 

€ 

A  increases, the
nondimensional preyield thickness for the mixed mode analysis
is also close to the flow mode result.

Figure 5 presents the damping coefficient versus the
nondimensional preyield thickness as represented by Eq.(39).
As the nondimensional preyield thickness increases, the
damping coefficient dramatically increases. On the other hand,  
the damping coefficient versus the nondimensional preyield
thickness plot for the mixed mode analysis is not much
affected, as explained in Eq.(42).

CONCLUSIONS
Quasi-steady analysis for mixed mode MR dashpot dampers
was addressed in this study. MR dashpot dampers show mixed
fluid mode of flow and shear flows since a dashpot inside
dampers works as a piston and a moving wall simultaneously.
Based on the utilization of the Bingham-plastic constitutive
model, quasi-steady analysis of MR dashpot dampers
conducted in order to assess performance metrics such as
damping capacity. For the mixed mode MR damper, fluid

€ 

€ 

A 

€ 

A 
6 
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velocity profile, shear stress profile, and damping coefficient
were theoretically derived. In the case of mixed mode such as
flow and shear flows, the fluid velocity symmetry in the valve
does not hold and the center of the plug or preyield region is
dependent on the piston velocity. In addition, the preyield
thickness equation to characterize the relationship between
Bingham number as a nondimensional input and the preyield
thickness was constructed and the exact preyield thickness
equation can be successfully replaced by the approximation
derived through binomial within the maximum error of 0.04%.
Through computer simulation, damping characteristics of the
mixed mode MR dashpot damper are evaluated and compared
with flow mode case. The damping coefficient for the mixed
mode analysis is equal or less than that for the flow mode
analysis. In practical situation where 

€ 

A  is greater than 5 or
Bi  is in small number, the mixed mode results is almost
similar to the flow mode result.
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