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PHYSICS OF PLASMAS VOLUME 6, NUMBER 6 JUNE 1999
Influence of continuous spectrum on ballooning instabilities
in plasmas with shear-flow

J. B. Taylor
EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon,
Oxon OX14 3DB, United Kingdom

~Received 17 November 1998; accepted 22 February 1999!

The influence of shear-flow on stability of plasma ballooning modes is important for Tokamak
experiments. In a static plasma, the growth rate of ballooning modes is readily determined using the
‘‘ballooning transformation,’’ but this is ineffective for plasmas with flow. One then has only the
quasi-static approximation. This gives the growth rate in the limit that shear velocityV8→0, but no
other information on the effect of shear-flow. Furthermore, it is invalid in typical cases because of
the intervention of the stable magnetohydrodynamic continuum. In this paper, a simple model is
used to investigate the influence of shear-flow on ballooning modes. This shows that the
intervention of the continuum leads to a reduction in the growth rate proportional touV8u for small
V8. This is in accord with some numerical simulations—but contrary to the (V8)2 variation
expected from a perturbation expansion. In fact, since the effect is nonanalytic inV8, it cannot be
obtained from a perturbation expansion inV8 and an alternative formalism is first developed for
dealing with this problem.@S1070-664X~99!00406-1#
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I. INTRODUCTION

The effect of shear-flow on the stability of short wav
length perturbations~ballooning modes! in a toroidal plasma
is an important factor in tokamak experiments. In the a
sence of shear-flow, the stability of ballooning modes can
calculated using the well-known ‘‘balloonin
transformation’’.1–5 However this method is not effective fo
problems that involve significant shear-flow.6–9

In the ideal magnetohydrodynamic~MHD! model, linear
perturbations of an axi-symmetric toroidal plasma, w
sheared toroidal rotationV~c!, are described by an equatio
of the form8

LFc,u,
]

]u
2 inq,

1

n

]

]u
,
1

n

]

]c
,

]

]t
2 inV8Gj50, ~1!

where the operatorL is periodic in the poloidal angleu, n is
the toroidal mode number, andc labels a magnetic surfac
with inverse rotational transform 2pq(c). The ballooning
transformation replaces the periodic coordinateu by an ‘‘ex-
tended poloidal coordinate’’h ~2`,h,`!. Then, when
V850, a perturbation with large toroidal mode numbern can
be expressed in an eikonal form

j5j exp~ inq@h1S~c!#1gt !, ~2!

whereB•¹S50 and j and S vary slowly across magneti
surfaces. In the limitn→`, this reduces Eq.~1! to anordi-
nary differential equation~ODE! on each magnetic surface

LSFc,h,
]

]h
,q8~h1k!,gGj50, ~3!

where the ‘‘ballooning phase angle’’k[dS/dc.
The eigenfunctions ofLS are bounded ash→6` and the

eigenvalue is periodic ink, g(k12p)5g(k). For any phase
anglek, the spectrum of eigenvaluesg(k) on each surface
2421070-664X/99/6(6)/2425/5/$15.00
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includes a stable continuum, as well as any discrete unst
eigenvalues.2 In a typical case, there is a single unstab
eigenvalue over part of the range ofk, but for the remainder
there is only the stable continuum.~We will refer to this as
the unstable eigenvalue ‘‘merging with the continuum’’ ask
changes.!

As shown in the full theory~including corrections of
order 1/n),2 the stability of ballooning modes in astationary
plasma is determined by the maximum ofg(k,c) so that
merging of the unstable eigenvalue with the continuum d
not pose any particular problem.

Unfortunately, the situation is quite different in the pre
ence of shear-flow. If the eikonalS is to be slowly varying, it
must then satisfy bothB•¹S50 and9–12

S ]

]t
1v•¹ DS50. ~4!

For toroidal flow, this implies

S5 inq@h1S~c!#2V~c!t, ~5!

and in the limit n→` one obtains, in place of Eq.~3!, a
partial differential equation~PDE!

LRFc,h,
]

]h
,q8~h1k!2V8t,

]

]t Gj~h,t !50. ~6!

The operatorLR is periodic in t at fixed ĥ[(h2V8t/q8)
and Eq.~6! has Floquet solutions8–10,12

j5 f ~ ĥ,t !exp~mt !, ~7!

with f periodic in t. ~These are not the eigenmodes of t
stationary flow problem, but the ‘‘Floquet growth rate’’m is
the same as that of the eigenmode. The relation between
Floquet and eigenmode solutions is described in Ref. 8
discussed in more detail in Ref. 13.!
5 © 1999 American Institute of Physics
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At a fixed t, the ‘‘instantaneous’’ eigenvaluesg(t) of the
operatorLR are those for a static plasma at a ballooni
phase anglek2V8t/q8, andg(t) is thus periodic int. In the
‘‘quasi-static’’ limit V8→0, the growth ratem is the average
of g(t) over the Floquet period,14,15 or, equivalently, the av-
erage ofg(k) over the phase anglek, i.e.

m5
1

2p R g~k!dk. ~8!

Since it is independent ofV8, this quasi-static approximatio
gives no indication of how the growth rate varies with she
flow. As implied by the symmetry underV8→2V8, a per-
turbation expansion inV8 leads to a correction to the quas
static limit that is proportional toV2. However, a remarkable
feature of numerical simulations of ballooning modes14 is
that in some cases the growth rate decreaseslinearly with
velocity shear over a considerable range. Another limitat
of the quasi-static approximation is that it is valid only wh
the separation ofg(k) from other eigenvalues is large com
pared to the Floquet frequencyV8/q8 ~see Sec. III!. This
condition is clearly violated,even for smallV8, wheng(k)
merges into the continuum. Thus, the continuum is a ser
problem for any theory of ballooning modes in plasmas w
shear-flow.

This paper is an attempt to understand the effect of
locity shear and the continuum on ballooning modes. T
model is described in Sec. II. The analysis is restricted
small V8, but the problem is not amenable to a perturbat
expansion inV8 and an alternative formalism is, therefor
introduced in Sec. III. The application to ballooning modes
given in Sec. IV. It shows that merging of the unstable
genvalue with the continuum leads to a reduction in
growth rate that is nonanalytic in the flow parameterV8. An
interpretation of this result and some conclusions are p
sented in Sec. V.

II. THE s 2a MODEL

Thes2a model of ballooning modes was introduced
Ref. 1 and extended to include sheared plasma rotation
Miller et al.14 It represents an annular region of a lowb
toroidal plasma in which the magnetic surfaces are displa
circles,R5R01D(r )1r cosu. The plasma pressure gradie
is embodied in the parameter

a52rD9522
p

B2 q2R0

]

]r
log p, ~9!

and themagneticshear in the parameters5r ]q/q]r . Then,
after the ballooning transformation, instabilities of a sta
plasma are governed by

]

]h
~11h0

2!
]X

]h
1GX5

g2

gA
2 ~11h0

2!X, ~10!

where h05s(h1k)2a sinh, G5a(cosh1h0 sinh), gA

5B/r1/2Rq.
Equation~10! is equivalent to the general Eq.~3!. The

first term represents the effect of field line bending and
second includes the effect of both toroidal and geodesic
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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vature. Thus, despite the idealizations involved in thes2a
model, it does reproduce the main features of a more real
configuration.

In the extension of thes2a model by Milleret al.14 the
centrifugal effect of plasma flow is ignored, but the cruc
effect of velocity shear in the annulus is included. Mill
et al. discussed a compressible plasma, but we simplify
problem further by assuming the perturbation is incompre
ible. Then the model equation for ballooning modes in
plasma with shear-flow becomes

]

]h
~11h2!

]X

]h
1GX5

1

gA
2

]

]t
~11h2!

]X

]t
, ~11!

where now h5(s(h1k)2svt2a sinh), G5a(cosh
1hsinh), and sv is the velocity shear parameter,sv
5r ]V/q]r . Equation~11! is equivalent to the general Eq
~6! and reduces to Eq.~10! in the static case.

It is convenient to putt5svt and s5sv /gA ; then Eq.
~11! becomes

LX5s2
]

]t
M

]X

]t
, ~12!

where

L5S ]

]h
~11h2!

]

]h
1G D , M5~11h2!, ~13!

h5s~h1k!2t2a sinh, G5a~cosh1h sinh!.
~14!

The operatorsL, M are self-adjoint and in this form the Flo
quet period~52p! is independent of the velocity shear—
which appears only through the parameters. Equation~12!
forms the basis for the remainder of our discussion.

III. FORMALISM

We have already mentioned the quasi-static approxim
tion. This can be obtained by writing

X~ t !5j expS 1

s E t

l~ t8!dt8D , ~15!

and expandingj for small s. Then in lowest order, Eq.~12!
gives

L~ t !j~0!5l2M ~ t !j~0!, ~16!

confirming thatl(t) is just the instantaneous growth rate in
static plasma at ballooning phase anglek2V8t/q8, andj (0)

is the corresponding eigenfunction. However, this does
yet determineX(t) because, since Eq.~16! is linear,j (0) may
be multiplied by an arbitrary function of time. This indete
minacy is resolved in next order which, after annihilation
j (1), gives

d

dt
^j~0!~ t !M ~ t !j~0!~ t !&50, ~17!

where the angle bracket signifies integration over2`
,h,`.
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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To improve on the quasi-static approximation, and
incorporate the continuum, one might try to expandX(t) in
the full set of instantaneous eigenfunctionsXn of Eq. ~12!,
i.e.

X~ t !5( an~ t !Xn~ t !expS i E t vn~ t8!

s
dt8D , ~18!

where

L~ t !Xn~ t !52vn
2M ~ t !Xn~ t !, ~19!

and the continuum has been rendered discrete, but clo
spaced, by confiningh to a large but finite interval2 l ,h
, l . @The density of states,dN(v)/dv, in the continuum is
; l /p.#

Unfortunately, even if theXn are assumed to be com
plete, there is no unique correspondence betweenX(t) and
the coefficientsan . In fact, there are two coefficientsan for
each Xn , one associated with positive frequency and o
with negative frequency. This is because Eq.~12! involves
the second time derivative so that two independent functi
must be specified to determine a solution—and hence
also required to determine thean .

To overcome this difficulty, it is convenient to introduc
a two-component representation for Eq.~12!. That is we de-
fine

G5S 0 1/M

L 0 D , f5S X
YD . ~20!

Then Eq.~12! is equivalent to

Gf5s
]f

]t
. ~21!

The operatorG is not self-adjoint~although its elementsL
and 1/M are each self-adjoint inh space!. Consequently, we
introduce an adjoint operator

G†5S 0 L

1/M 0D , ~22!

such that

^cGf&5^fG†c&. ~23!

We also introduce the time-dependent adjoint equation

G†f†52s
]f†

]t
. ~24!

Then if f1 andf2
† areany solutions of Eqs.~21! and ~24!,

respectively,~i.e. not necessarily related—this depends
their initial conditions!

d

dt
^f2

†f1&50. ~25!

We define the eigenfunctions ofG andG† by

Gfn5 ivnfn , G†fn
†5 ivn

†fn
† , ~26!

corresponding tofn;exp(1ivnt/s) and fn
†;exp(2ivn

†t/s).
Eachfn is thus associated with a single frequency and, us
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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Eq. ~23!, vn5vn
† . The two-component eigenfunction

fn ,fn
† of G andG† can be expressed in terms of the sca

eigenfunctionsXn(h) of L as

fn5S 1
ivnM DXn , ~27!

fn
†5S ivnM

1 DXn . ~28!

It follows from Eq. ~23! that fm
† andfn are orthogonal, i.e.

(vm2vn)^fm
† fn&50, and it can be shown using Eqs.~27!

and ~28! that

^fm
† fn&5^fmfn

†&52ivn^XnMXn&dm,n . ~29!

If we expand the two-component vectorf in the eigenfunc-
tions of G

f5(
m

amfm , ~30!

the coefficientsam are now unique and

am5^fm
† f&/^fm

† fm&. ~31!

IV. CALCULATION

Following the formalism of the previous section, we e
pand the solutionf(t) of Eq. ~21! in the instantaneous
eigenfunctionsfm

f~h,t !5(
m

amfm expS i E
0

t vm~ t8!

s Ddt8D , ~32!

then theam satisfy

ȧm1(
n

Rmnan expS i E
0

t ~vn2vm!

s
dt8D 50, ~33!

with

Rmn5^fm
† ḟn&/^fm

† fm&. ~34!

An important feature of Eq.~32! is that the velocity shea
appears only in the exponential factors. Ass→0 these fac-
tors oscillate rapidly so that the effective coupling betwe
theam is small. In effect they become adiabatic invariants.
the same way, the quasi-static approximation becomes v
whens is smaller than the separation of an unstable eig
value from the continuum.

Now consider the situation in which a single unstab
eigenmode exists for part of the Floquet cycle but mer
into the continuum for the remainder. This is shown sch
matically in Fig. 1.~We assume there is symmetry about t
mid-point of the cycle.! If s is small then, while the unstabl
eigenvalue is well separated from the continuum, the m
evolves slowly; its amplitude increases according to
quasi-static expression~15!, and its coupling to the con
tinuum is weak. However, as it merges into the continuum
changes form rapidly and is strongly coupled to t
continuum—so that a spectrum of continuum modes is
cited. When the unstable mode re-emerges it has the s
form as before it merged into the continuum, and again f
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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lows the quasi-static approximation—but its amplitude is
duced because some energy remains in the contin
modes.

To assess the reduction in amplitude, suppose that be
merging into the continuum the perturbation follows t
quasi-static approximation with instantaneous unsta
eigenfunctionC0 . After it merges with the continuum, th
perturbation becomescF(t)—a combination of many con
tinuum modes. Then, after a timeT, the unstable instanta
neous eigenmode reappears. At this point the expansio
cF(T) in instantaneous eigenfunctions will include both t
unstable modeC0 and the continuum, i.e.cF(T)5aC0

1( amfm , and, according to Eq.~31!, the coefficienta is

a5
^C0

†cF~T!&

^C0
†C0&

. ~35!

Thereafter, the perturbation again follows the quasi-static
proximation, but with preexponential factoraC0 instead of
C0 .

We must now expressa in a more useful form. To do so
we note that just ascF(t) is the vector that developsfrom
C0 at t50, so we may introducecR

†(t) as the vector tha
developsinto C0

† at t5T. Then, sincê cR
†cF& is constant

@Eq. ~25!#, the coefficienta may be written

a5^cR
†~ t !cF~ t !&/^C0

†C0&, ~36!

where t is any time between entry and exit from the co
tinuum. In order to exploit symmetry, we taket5T/2 and
write a as

a5^cR
†~T/2!cF~T/2!&/^cR

†~T!cF~0!&. ~37!

The forward functioncF(t) can be expanded in instanta
neous eigenfunctions as in Eq.~32!, with the am satisfying
Eq. ~33! and the initial condition am(0)5^fm

† C0&/
^fm

† fm&. Similarly the reverse functioncR
†(t) can be ex-

panded as

cR
†~ t !5(

m
bmfm

† expS 2 i E
T

t vm~ t8!

s
dt8D , ~38!

with the bm satisfying

ḃm1(
m

bnR̂mn expS 2 i E
T

t ~vn2vm!

s
dt8D 50, ~39!

FIG. 1. Spectrum of instantaneous eigenvalues as function of balloo
phase anglek.
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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and the ‘‘final’’ condition

bm~T!5^fmC†&/^fmfm
† &5am~0!, ~40!

@In Eq. ~39!, R̂mn5^fmḟn
†&/^fmfm

† &5Rmn .#
Then

a5
( am~T/2!bm~T/2!exp~ i *0

Tvm /s!

( am~0!bm~T!
. ~41!

Because of symmetry about the mid-point of the Floq
cycle, vm(t)5vm(T2t) and Rmn(t)52Rmn(T2t). Thus,
if p5T2t, b(t)5b̂(p) we have

db̂m~p!

dp
1(

n
Rmn~p!b̂n~p!expS i E

0

p ~vn2vm!

s
dt8D 50,

~42!

and b̂m(p50)5am(0). Therefore, b̂m satisfies the same
equation and initial condition asam , so thatbm(t)5am(T
2t) anda becomes

a5
(~am~T/2!!2exp~ i *0

Tvm /sdt8!

(~am~0!!2 . ~43!

We now need only to estimate the spectrumam
2 of excited

modes. As noted earlier, the exponential factor in Eq.~33!
oscillates rapidly ass→0 and the effective coupling betwee
modes is therefore small, unless their frequency differe
(vm2vn) is itself &s. Consequently, as the unstable mo
merges with the continuum it excites only modes withvm

&s. More specifically, if we ignore the variation of factor
other than the rapid exponential, the amplitude of the exc
modes is of order

am
2

a0
2 ;

s2Rm0
2

vm
2 . ~44!

Of course this is correct only when the change in the driv
mode amplitudea0

2 can be ignored and whenam
2 ,a0

2, but it
shows that the excitation of continuum modes is large~i.e.,
independent ofs ass→0! in a frequency bandvm&s and
small ~i.e.,→0 ass→0! outside this band.

Interaction between modes within the continuum do
not appreciably alter this picture. The change in amplitude
one mode due to interaction with another is of order

dam
2

an
2 ;

s2Rmn
2

~vm2vn!2 , ~45!

which is again small unless (vm2vn)&s. However, be-
cause of the orthogonality of continuum modes, the ma
elementRmn vanishes asm→n and consequently asvm

→vn . Hence

dam
2

an
2 ;s2~Rmn8 !2, ~46!

which is small ass→0 irrespectiveof the frequency differ-
ence between the interacting modes.

From this discussion we see that the spectrum of c
tinuum modes atT/2 is largely determined by excitation a

g
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the unstable mode merges into the continuum and it exte
over a frequency range 0,v&s. Equation~44! suggests tha
the spectrum has the form

am
2 ;

R2

~11vm
2 /s2!

, ~47!

but the only property we need is thatam
2 is a function of

s/vm and is small whenvm /s@1.)
Incorporating these features into Eq.~43! and replacing

the summation by integration,

a5
* am

2 ~v/s!exp~ i rv/s!dv

* am
2 ~v/s!dv

, ~48!

which is independent ofs. Thus,the effect of the continuum
is to reduce the amplitude of ballooning modes by a cons
factor per Floquet period.

V. CONCLUSIONS

In a stationary toroidal plasma, ballooning modes
described by a simple ODE in which the eigenvalueg(k) is
a periodic function of the phase anglek and stability is de-
termined by maxg(k). In a plasma with sheared toroidal ro
tation, ballooning modes are described by a more comp
PDE in which the phase angle increases linearly with time
a rate proportional to the velocity shearV8. WhenV8→0 the
growth rate is equal to the average of the~periodic! instan-
taneous eigenvalueg(k(t)), i.e.,

m5
1

2p R g~k!dk. ~49!

However, this ‘‘quasi-static’’ approximation is inadequate
the typical case that the stationary plasma is stable for pa
the range of phase anglek @so thatg(k) merges into the
stable continuum#. We have shown that in this case there is
form of ‘‘continuum damping’’ that reduces the mode am
plitude by a constant factor per cycle ofg(t), irrespective of
the rate~or sign! of the velocity shear. Since the number
cycles per second is proportional to velocity shearV8, the
true growth rate becomes

m5
1

2p R g~k!dk2k1uV8u, ~50!

wherek1; log(1/a) and is independent ofV8.
The constant reduction in amplitude per cycle can

understood as follows. When the velocity shear is increa
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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a wider spectrum of continuum modes is excited—but
time spent in the continuum is correspondingly reduc
Consequently, the total phase variation across the exc
spectrum is unchanged. It is this overall phase dispersion
controls the continuum damping.

Equation~50! shows that the effect of velocity shear an
the continuum is nonanalytic in the shear velocityV8 and
cannot be obtained from a perturbation expansion inV8. As
noted earlier, such an expansion would give a contribution
the growth rate;k2(V8)2, which for smallV8 is negligible
compared tok1uV8u. This may explain the otherwise puz
zling observation@as in Fig. 9 of Ref. 14# of a ballooning
mode growth rate that decreases linearly with shear veloc
It may also be relevant that where this linear dependenc
absent@as in Fig.~10! of Ref. 14# the values ofa ands are
very small. In such a case, the growth rateg(k) is almost
independent ofk and an unstable mode may not run into t
continuum.

ACKNOWLEDGMENTS

I would like to thank H. R. Wilson, R. L. Miller, J.
Hastie, and J. W. Connor for helpful discussions. This wo
is jointly funded by the UK Department of Trade and Indu
try and by EURATOM.

1J. W. Connor, R. J. Hastie, and J. B. Taylor, Phys. Rev. Lett.40, 396
~1978!.

2J. W. Connor, R. J. Hastie, and J. B. Taylor, Proc. R. Soc. London, Se
365, 1 ~1979!.

3Y. C. Lee and J. W. Van Dam, inProceedings of the Finite Beta Theor
Workshop, edited by B. Coppi and W. Sadowski~U.S. Department of
Energy, Washington, DC, 1979!, p. 93.

4A. H. Glasser in Ref. 3, p. 55.
5F. Pegoraro and T. J. Schep, Phys. Fluids24, 478 ~1981!.
6A. Bhattacharjee, inTheory of Fusion Plasmas, Proceedings of the
Varenna Workshop, edited by A. Bondeson, E. Sindoni and F. Tro
~Editrice Compositori, Bologna, Italy, 1988!, p. 47.

7A. Bhattacharjee, R. Iacono, J. L. Milovich, and C. Paranicas, Phys. Fl
B 1, 2207~1989!.

8F. L. Waelbroeck and L. Chen, Phys. Fluids B3, 601 ~1991!.
9E. Hameiri and S. T. Chun, Phys. Rev. A41, 1186~1990!.

10W. A. Cooper, Plasma Phys. Controlled Fusion30, 1805~1988!.
11K. Grassie and N. Krech, Phys. Fluids B2, 536 ~1990!.
12F. Pegoraro, Phys. Lett. A142, 384 ~1989!.
13J. B. Taylor and H. R. Wilson, Plasma Phys. Controlled Fusion38, 1999

~1996!.
14R. L. Miller, F. L. Waelbroeck, A. B. Hassam, and R. E. Waltz, Phy

Plasmas2, 3676~1995!.
15J. W. Connor, J. B. Taylor, and H. R. Wilson, Phys. Rev. Lett.70, 1803

~1993!.
ense or copyright; see http://pop.aip.org/about/rights_and_permissions


