Pliy;sics of
' Plasmas

Influence of continuous spectrum on ballooning instabilities in plasmas with
shear-flow
J. B. Taylor

Citation: Phys. Plasmas 6, 2425 (1999); doi: 10.1063/1.873514
View online: http://dx.doi.org/10.1063/1.873514

View Table of Contents: http://pop.aip.org/resource/1/PHPAEN/v6/i6
Published by the American Institute of Physics.

Related Articles

Head-on-collision of modulated dust acoustic waves in strongly coupled dusty plasma
Phys. Plasmas 19, 103708 (2012)

Effects of laser energy fluence on the onset and growth of the Rayleigh—Taylor instabilities and its influence on
the topography of the Fe thin film grown in pulsed laser deposition facility
Phys. Plasmas 19, 103504 (2012)

Halo formation and self-pinching of an electron beam undergoing the Weibel instability
Phys. Plasmas 19, 103106 (2012)

Energy dynamics in a simulation of LAPD turbulence
Phys. Plasmas 19, 102307 (2012)

Free boundary ballooning mode representation
Phys. Plasmas 19, 102506 (2012)

Additional information on Phys. Plasmas

Journal Homepage: http://pop.aip.org/

Journal Information: http://pop.aip.org/about/about_the_journal
Top downloads: http://pop.aip.org/features/most_downloaded
Information for Authors: http://pop.aip.org/authors

ADVERTISEMENT

AIP nces © : . ‘,f

Special Topic Section:

PHYSICS OF CANCER

Why cancer? Why physics?  viw articles Now

Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http:/pop.aip.org/about/rights_and_permissions


http://pop.aip.org/?ver=pdfcov
http://aipadvances.aip.org/resource/1/aaidbi/v2/i1?&section=special-topic-physics-of-cancer&page=1
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=J. B. Taylor&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.873514?ver=pdfcov
http://pop.aip.org/resource/1/PHPAEN/v6/i6?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4762847?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4763555?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4759263?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4759010?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4759012?ver=pdfcov
http://pop.aip.org/?ver=pdfcov
http://pop.aip.org/about/about_the_journal?ver=pdfcov
http://pop.aip.org/features/most_downloaded?ver=pdfcov
http://pop.aip.org/authors?ver=pdfcov

PHYSICS OF PLASMAS VOLUME 6, NUMBER 6 JUNE 1999

Influence of continuous spectrum on ballooning instabilities
in plasmas with shear-flow

J. B. Taylor
EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon,
Oxon OX14 3DB, United Kingdom

(Received 17 November 1998; accepted 22 February)1999

The influence of shear-flow on stability of plasma ballooning modes is important for Tokamak
experiments. In a static plasma, the growth rate of ballooning modes is readily determined using the
“ballooning transformation,” but this is ineffective for plasmas with flow. One then has only the
guasi-static approximation. This gives the growth rate in the limit that shear velotit0, but no

other information on the effect of shear-flow. Furthermore, it is invalid in typical cases because of
the intervention of the stable magnetohydrodynamic continuum. In this paper, a simple model is
used to investigate the influence of shear-flow on ballooning modes. This shows that the
intervention of the continuum leads to a reduction in the growth rate proportion@! ftéor small

Q'. This is in accord with some numerical simulations—but contrary to #é)% variation
expected from a perturbation expansion. In fact, since the effect is nonanalf}ic incannot be
obtained from a perturbation expansion{¥ and an alternative formalism is first developed for
dealing with this problem.S1070-664X99)00406-1

I. INTRODUCTION includes a stable continuum, as well as any discrete unstable

. eigenvalued. In a typical case, there is a single unstable
The effect O_f shear-ﬂov_v on the sFab|I|ty O_f short wave- eigenvalue over part of the range lofbut for the remainder

length perturbation¢ballooning modekin a toroidal plasma there is only the stable continuurfWWe will refer to this as

is an important factor in tokamak experiments. In the ab'the unstable eigenvalue “merging with the continuum”kas
sence of shear-flow, the stability of ballooning modes can b%hanges)

calculated uls_igg the  well-known  “ballooning As shown in the full theory(including corrections of
transformation™ > However this method is not effective for .. 1h),2 the stability of ballooning modes instationary
problems that involve significant shear-flGw’ plasma is determined by the maximum pfk,) so that

In the ideal magnetohydrodynam®HD) model, linear o ing of the unstable eigenvalue with the continuum does
perturbations of an axi-symmetric toroidal plasma, with not pose any particular problem.

sheared toroidal rotatiof¥(y), are described by an equation Unfortunately, the situation is quite different in the pres-

of the forn? ence of shear-flow. If the eikon8lis to be slowly varying, it
o 1o 14 9 . must then satisfy botB-VS=0 and~*2
L 'ﬂ,@,ﬁ—mq,ﬁﬁ,ﬁ&—l/i,ﬁ—mﬂ =0, (1) 5
where the operatdt is periodic in the poloidal anglé, n is (Eﬂ) ' V)S: 0. @
the toroidal mode number, angd labels a magnetic surface For toroidal flow. this implies
with inverse rotational transform72y(#). The ballooning ' P
transformation replaces the periodic coordinatey an “ex- S=inqg[ 7+ S(¥)]— Q()t, (5)

tended poloidal coordinate; (—w<y<w). Then, when
Q'=0, a perturbation with large toroidal mode numberan
be expressed in an eikonal form

§=&exp(ing[7+S(¥) ]+ 1), )

whereB-VS=0 and ¢ and S vary slowly across magnetic

and in the limitn—c one obtains, in place of Eq3), a
partial differential equationPDE)

Lr (6)

J Jd
‘ﬁyﬂa%-q (77+k)_‘Q' t'ﬁ §(7],’[)=O

surfaces. In the limih—<o, this reduces EqJl) to anordi-
nary differential equationODE) on each magnetic surface

J
Ls l/f,n,%,q (n+k),y[§=0, ()
where the “ballooning phase anglk'=dSd.
The eigenfunctions df g are bounded ag— *<0 and the
eigenvalue is periodic ik, y(k+2)=y(k). For any phase
anglek, the spectrum of eigenvaluegk) on each surface

1070-664X/99/6(6)/2425/5/$15.00
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The operatoiLy is periodic int at fixed 7=(7—Q't/q")
and Eq.(6) has Floquet solutiofis'**?

E=f(nexput), )

with f periodic int. (These are not the eigenmodes of the
stationary flow problem, but the “Floquet growth rate!’is

the same as that of the eigenmode. The relation between the
Floquet and eigenmode solutions is described in Ref. 8 and
discussed in more detail in Ref. 13.

© 1999 American Institute of Physics
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At a fixedt, the “instantaneous” eigenvaluegt) of the  vature. Thus, despite the idealizations involved in $hea
operatorLi are those for a static plasma at a ballooningmodel, it does reproduce the main features of a more realistic
phase angl&—Q't/q’, andy(t) is thus periodic irt. Inthe  configuration.

“quasi-static” limit '—0, the growth rates is the average In the extension of the— & model by Milleret al* the
of y(t) over the Floquet periotf:*®or, equivalently, the av- centrifugal effect of plasma flow is ignored, but the crucial
erage ofy(k) over the phase angk i.e. effect of velocity shear in the annulus is included. Miller
1 et al. discussed a compressible plasma, but we simplify the
m=5 % y(k)dk. (8) problem further by assuming the perturbation is incompress-

ible. Then the model equation for ballooning modes in a
Since it is independent @', this quasi-static approximation Pplasma with shear-flow becomes
gives no indication of how the growth rate varies with shear- aX 1 9 aX
flow. As implied by the symmetry unde®’——Q', a per- —(1+h?) —+T'X=— —(1+h?) —, (12)
turbation expansion i)’ leads to a correction to the quasi- a7 97 Ya Ot Jt
static limit that is proportional t622. However, a remarkable \where now h=(s(p+k)—s,t—asiny), I'=a(cosy
feature of numerical simulations of ballooning mofes 4+ sin 7), and s, is the velocity shear parameters,
that in some cases the growth rate decredisesrly with =150 /qar. Equation(11) is equivalent to the general Eq.
velocity shear over a considerable range. Another limitatione) and reduces to Eq10) in the static case.
of the quaSi'StatiC apprOXimation is that it is valid Only when It is convenient to pub—: Svt ando= S, /7A1 then Eq
the separation of/(k) from other eigenvalues is large com- (11) becomes
pared to the Floquet frequendy’/q’ (see Sec. I). This
condition is clearly violatedeven for small}’, when y(k) LX=aZiM % (12
merges into the continuum. Thus, the continuum is a serious at gt
problem for any theory of ballooning modes in plasmas with
shear-flow.

This paper is an attempt to understand the effect of ve-
locity shear and the continuum on ballooning modes. The
model is described in Sec. Il. The analysis is restricted to
small Q’, but the problem is not amenable to a perturbation ~h=s(n+k)—7—asiny, I'=a(cosy+hsing).
expansion inQ)’ and an alternative formalism is, therefore, (14)

in_trodu_ced in Sec. Ill. The application_to ballooning modes i_SThe operatord, M are self-adjoint and in this form the Flo-
given in Sec. IV. It shows that merging of the unstable ei-quet period(=2m) is independent of the velocity shear—
genvalue with the continuum leads to a reduction in theyhich appears only through the parameterEquation(12)

growth rate that is nonanalytic in the flow paramefr An forms the basis for the remainder of our discussion.
interpretation of this result and some conclusions are pre-

sented in Sec. V.

where

d d
L=|—(1+h?)—+T|, M=(1+h?), (13
an an

lll. FORMALISM

l. THE 5—a MODEL We have already mentioned the quasi-static approxima-

The s— a model of ballooning modes was introduced in tion. This can be obtained by writing
Ref. 1 and extended to include sheared plasma rotation by 1 [t
Miller et all® It represents an annular region of a lg8v X(t)zfex;{—j )\(t’)dt’),
toroidal plasma in which the magnetic surfaces are displaced 7
circles,R=Ry+A(r) +r cosé. The plasma pressure gradient and expanding for small o. Then in lowest order, Eq12)
is embodied in the parameter gives

L(HEP=N*M(1) &, (16)

confirming that\ (t) is just the instantaneous growth rate in a
and themagneticshear in the parametse=rgq/gdr. Then, static plasma at ballooning phase anigleQ2't/q’, and£©
after the ballooning transformation, instabilities of a staticis the corresponding eigenfunction. However, this does not

(15

" p 2 J
a=—rTA Z—ZFQ Roﬁlogp, 9

plasma are governed by yet determineX(t) because, since E(L6) is linear,£©) may
9 JX . bg multi_plied by an_arbitrary function of time. Thi_s _ino!eter-
—(1+h2) —+TX= 5 (1+h3)X, (10  Mminacy is resolved in next order which, after annihilation of
an an A D) gives

where ho=s(n+k)—asiny, I'=a(cosy+hgsiny), vya d

=B/p**Rq, a(é(o)(t)l\/l(t)§<°’(t)>=0, 17
Equation(10) is equivalent to the general E(). The

first term represents the effect of field line bending and thavhere the angle bracket signifies integration overe

second includes the effect of both toroidal and geodesic cur<n<ce.
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To improve on the quasi-static approximation, and toEq. (23), wn=w§. The two-component eigenfunctions
incorporate the continuum, one might try to expatd) in qbn,(z); of G andG' can be expressed in terms of the scalar
the full set of instantaneous eigenfunctiads of Eq. (12),  eigenfunctionsX,,(#) of L as
ie.

1
' Pn= ( )xn ) 27
Xt)=> (fin(t)xn(t)ex;J(iftw”(t )dt’), (18) oM
7 + [lopM
where én=| 1 |*%n (28)
L(t)Xn(t)=— 02M (1) Xy (1), (19) It follows from Eq.(23) that ¢! and ¢, are orthogonal, i.e.

f _ .
- =0, and it can be shown using Eq&
and the continuum has been rendered discrete, but close wg(zg”zéftm¢”> g Edg7)

spaced, by confining; to a large but finite intervat-1<z
<I. [The density of stateg|N(w)/dw, in the continuum is (h bn)={ Pmdpt) = 2i 0 (XaMXp) S - (29
~I/7.]

Unfortunately, even if theX,, are assumed to be com-
plete, there is no unique correspondence betwegh and
the coefficientsa,,. In fact, there are two coefficients, for
each X,, one associated with positive frequency and one ¢:%‘4 am®m, (30
with negative frequency. This is because EtR) involves
the second time derivative so that two independent functionthe coefficientsa,, are now unique and
must be specified to determine a solution—and hence are ot +
also required to determine tlzs, . An=(SmP)/(Smbm)- (31)

To overcome this difficulty, it is convenient to introduce
a two-component representation for Efj2). That is we de-

fine
(0 1/M) X
o[ M) e}

If we expand the two-component vecterin the eigenfunc-
tions of G

IV. CALCULATION

Following the formalism of the previous section, we ex-
pand the solutiong(t) of Eq. (21) in the instantaneous
(200  eigenfunctionsp,,

L O Y
; : [ton(t)
Then Eq.(12) is equivalent to ¢(,7,t):2 amdmex ,f - dt’ |, (32
m 0
ap .
Gd):a'ﬁ. (21)  then thea,, satisfy
The operatoiG is not self-adjoint(although its elements ant+S R, exp{ i ftwdt,) -0, (33)
and 1M are each self-adjoint iy space. Consequently, we n 0 o
introduce an adjoint operator with
0O L :
Gt= ( M 0) , (22 Rmn:<¢$1¢n>/<¢:n¢m>' (34)

An important feature of Eq(32) is that the velocity shear
such that appears only in the exponential factors. &s-0 these fac-
_ T tors oscillate rapidly so that the effective coupling between
(9G4)=(¢G ¥). 23 thea,, is small. In effect they become adiabatic invariants. In
We also introduce the time-dependent adjoint equation the same way, the quasi-static approximation becomes valid
sat when ¢ is smaller than the separation of an unstable eigen-
Gt ¢ _ (24) value from the continuum.
ot Now consider the situation in which a single unstable

Then if ¢, and ¢; areany solutions of Eqs(21) and (24), eigenmode exists for part of the Floquet cycle but merges

respectively,(i.e. not necessarily related—this depends onNt_the continuum for the remainder. This is shown sche-
their initial conditions matically in Fig. 1.(We assume there is symmetry about the

mid-point of the cycle.If ¢ is small then, while the unstable

d t eigenvalue is well separated from the continuum, the mode
m<¢2¢1> =0. (29 evolves slowly; its amplitude increases according to the

. . ) ‘ quasi-static expressiofil5), and its coupling to the con-
We define the eigenfunctions &f andG' by tinuum is weak. However, as it merges into the continuum, it
Ghn=iwndn, Glol=iols!, (26) changes form rapidly and is strongly coupled to the

continuum—so that a spectrum of continuum modes is ex-
corresponding tap,~exp(+iw,t/o) and ¢>x~exp(—iw;§t/a). cited. When the unstable mode re-emerges it has the same
Eachd¢,, is thus associated with a single frequency and, usingorm as before it merged into the continuum, and again fol-
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and the “final” condition
bin(T) = (¥ Y/ bmebr) = 8 0), (40
' [In Q. (39), Ryn={ bmdm)/( $mb})=Rmn-]
Then
LT
0 k e 2 an(TI2)bn(T/2)exp(i [qwm/ o) @D
2 an(0)by(T)
Because of symmetry about the mid-point of the Floquet

cycle, wn(t) = on(T—1t) and Ry(t) = —Rnn(T—1t). Thus,
FIG. 1. Spectrum of instantaneous eigenvalues as function of baIIooniné;f p=T-t, b(t)=b(p) we have

phase anglé. ~
LS Y Rmn(p>6n<p>exr(ifop("’%“’m)dt')=o,

dp
. . L . . . (42
lows the quasi-static approximation—but its amplitude is re-

duced because some energy remains in the continuugng Bm(pzo):am(o)_ Therefore,f)m satisfies the same

modes. equation and initial condition aa,,, so thatb,(t)=a,(T
To assess the reduction in amplitude, suppose that beforet) and o becomes

merging into the continuum the perturbation follows the ) -
quasi-static approximation with instantaneous unstable  Z(am(T/2))%exp(ifowm/odt’)
eigenfunction¥,. After it merges with the continuum, the - > (ap(0))?

perturbation becomegg(t)—a combination of many con- ) .
tinuum modes. Then, after a tinf the unstable instanta- W& now need only to estimate the spgctraﬁp of excited
neous eigenmode reappears. At this point the expansion §fodes. As noted earlier, the exponential factor in E§)
#=(T) in instantaneous eigenfunctions will include both theScillates rapidly as—0 and the effective coupling between
unstable mode¥, and the continuum, i.ege(T)=a¥, modes is therefore small, unless their frequency difference

+3 aném, and, according to Eq31), the coefficient is wn— w,) is itself <o. Consequently, as the unstable mode
merges with the continuum it excites only modes wiih

(43

_ (Woie(T)) (35 <o. More specifically, if we ignore the variation of factors
“ (oo - other than the rapid exponential, the amplitude of the excited

. . . . __modes is of order
Thereatfter, the perturbation again follows the quasi-static ap-

proximation, but with preexponential factar¥ instead of a2 o?R%,
Vo. 2T 7 - (44)
ao Wm

We must now express in a more useful form. To do so
we note that just ag(t) is the vector that developsom  Of course this is correct only when the change in the driving
¥, att=0, so we may introducef/g{(t) as the vector that mode amplitudaﬁ can be ignored and whelﬁ]<a3, but it
developsinto W at t=T. Then, since(yLie) is constant  shows that the excitation of continuum modes is lafige,
[Eq. (25)], the coefficiente may be written independent otr as 0—0) in a frequency band <o and

small (i.e., —0 aso—0) outside this band.
a=<¢;(t)'pF(t)>/<q’8q,°>’ (36) Interaction between modes within the continuum does
wheret is any time between entry and exit from the con- not appreciably alter this picture. The change in amplitude of
tinuum. In order to exploit symmetry, we take=T/2 and one mode due to interaction with another is of order
write « as

oa%  o?R%,
a=(UiR(TI2)Ye(TI))CUR(T) e (0)). (37) 2 (oman?’ (45)

The forward functiong(t) can be expanded in instanta-
neous eigenfunctions as in E@Q2), with the a,,, satisfying
Eq. (33 and the initial condition a,(0)=(p W)/
(¢} bmy. Similarly the reverse functiony(t) can be ex-

which is again small unlessw(,— w,)<o. However, be-
cause of the orthogonality of continuum modes, the matrix
elementR,,, vanishes asn—n and consequently a&,,
—w,. Hence

panded as
' 532
t t m ’
AGEDS bm¢Lex;{—if n )dt’), (38) ?Wz(Rmn)z, (46)
m T O n
with the by, satisfying which is small ass—0 irrespectiveof the frequency differ-
ence between the interacting modes.
b +2 b.R. exd —i Jt(“’n_“’m) dt’) -0 (39) From this discussion we see that the spectrum of con-
mo4y onrmn T o ' tinuum modes af/2 is largely determined by excitation as
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the unstable mode merges into the continuum and it extends wider spectrum of continuum modes is excited—but the
over a frequency range<Qv=<o. Equation(44) suggests that time spent in the continuum is correspondingly reduced.
the spectrum has the form Consequently, the total phase variation across the excited
spectrum is unchanged. It is this overall phase dispersion that

2
ar2n~ R—22 47 controls the continuum damping.

(1+ wp/o®) Equation(50) shows that the effect of velocity shear and
but the only property we need is thaf, is a function of the continuum is nonanalytic in the shear velodity and
olwy, and is small wheno,,,/o>1.) cannot be obtained from a perturbation expansiofinAs

Incorporating these features into E¢3) and replacing Noted earlier, such an expansion would give a contribution to
the summation by integration, the growth rate~ x,(Q")?, which for smallQ)’ is negligible
5 _ compared tox,|Q’|. This may explain the otherwise puz-
- Jap(wlo)expifw/o)dw (48) zling observatiorfas in Fig. 9 of Ref. 1} of a ballooning

faﬁ](wla)dw ’

which is independent aof. Thus,the effect of the continuum
is to reduce the amplitude of ballooning modes by a consta
factor per Floquet period

mode growth rate that decreases linearly with shear velocity.
It may also be relevant that where this linear dependence is
nz?bsent[as in Fig.(10) of Ref. 14 the values ofx ands are
very small. In such a case, the growth ratgk) is almost
independent ok and an unstable mode may not run into the
V. CONCLUSIONS continuum.

In. a stationgry toroidal plasma, ballopning modgs arey cKNOWLEDGMENTS
described by a simple ODE in which the eigenvaiy&) is
a periodic function of the phase andteand stability is de- I would like to thank H. R. Wilson, R. L. Miller, J.
termined by max/(k). In a plasma with sheared toroidal ro- Hastie, and J. W. Connor for helpful discussions. This work
tation, ballooning modes are described by a more complejé jointly funded by the UK Department of Trade and Indus-
PDE in which the phase angle increases linearly with time atry and by EURATOM.
a rate proportional to the velocity she@t. When)'—0 the

growth rate is equal to the average of ftperiodio instan- 13, W. Connor, R. J. Hastie, and J. B. Taylor, Phys. Rev. 14t.396

taneous eigenvalug(k(t)), i.e., (1978.
2J. W. Connor, R. J. Hastie, and J. B. Taylor, Proc. R. Soc. London, Ser. A
1 365, 1 (1979.
m= ﬁ ¥( k)dk. (49 3Y. C. Lee and J. W. Van Dam, iRroceedings of the Finite Beta Theory

Workshop edited by B. Coppi and W. SadowskKU.S. Department of
However, this “quasi-static” approximation is inadequate in Energy, Washington, DC, 19¥%. 93.

; ; ; A. H. Glasser in Ref. 3, p. 55.
the typical case that the stationary plasma is stable for part oiF. Pegoraro and T J. Schep, Phys. Fiuds478 (1981,

the range _Of phase angle [50 that V(k_) mgrges Into thQ SA. Bhattacharjee, inTheory of Fusion PlasmasProceedings of the
stable continuurh We have shown that in this case there is a varenna Workshop, edited by A. Bondeson, E. Sindoni and F. Troyon

form of “continuum damping” that reduces the mode am- _(Editrice Compositori, Bologna, Italy, 1988p. 47.

; ; ; "A. Bhattacharjee, R. lacono, J. L. Milovich, and C. Paranicas, Phys. Fluids
plitude by a constant factor per cycle ft), irrespective of B 1, 2207(1989.

the rate(or sign of the velocity shear. Since the number of sg | \aelbroeck and L. Chen, Phys. Fluids3B601 (1991).
cycles per second is proportional to velocity sh€Hdy the °E. Hameiri and S. T. Chun, Phys. Rev.44, 1186(1990.
true growth rate becomes 1w, A. Cooper, Plasma Phys. Controlled Fus&g) 1805(1988.
1K, Grassie and N. Krech, Phys. FluidsZB536(1990.
12F, pegoraro, Phys. Lett. A42 384 (1989.
=5 y(K)dk—k4|Q], (50 133, B. Taylor and H. R. Wilson, Plasma Phys. Controlled Fug§ign1999
(1996.
where i, ~log(L/e) and is independent dd’. 1R, L. Miller, F. L. Waelbroeck, A. B. Hassam, and R. E. Waltz, Phys.

. . . Plasmas?, 3676(1995.
The constant reduction in amplitude per cycle can bes; . connor, J. B. Taylor, and H. R. Wilson, Phys. Rev. Le@, 1803

understood as follows. When the velocity shear is increased,(1993.

Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



