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ABSTRACT 

The development of socially assistive robots for health 
care applications can provide measurable improvements in 
patient safety, quality of care, and operational efficiencies by 
playing an increasingly important role in patient care in the fast 
pace of crowded clinics, hospitals and nursing/veterans homes. 
However, there are a number of research issues that need to be 
addressed in order to design such robots. In this paper, we 
address two main limitations to the development of intelligent 
socially assistive robots: (i) identification of human body 
language via a non-contact sensory system and categorization 
of these gestures for determining the accessibility level of a 
person during human-robot interaction, and (ii) decision 
making control architecture design for determining the 
learning-based task-driven behavior of the robot during 
assistive interaction. Preliminary experiments presented show 
the potential of the integration of the aforementioned 
techniques into the overall design of such robots intended for 
assistive scenarios. 
 
1. INTRODUCTION 

As baby boomers approach retirement age, most countries 
are unprepared to meet the social and economic needs of this 
increasing elderly population. For example, 20-32% of the 
population of Italy, Germany, Japan and the U.S. will be 
elderly in the next few decades [1,2]. Billions of dollars will 
need to be invested to accommodate and care for this 
population in hospitals, nursing, veterans and private homes.  
In addition, what makes this reality even more difficult to 
ps://proceedings.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use
address is that according to the World Health Organization, 
health care professionals such as nurses, pharmacists, doctors, 
therapists and other related professions are experiencing a 
significant shortage in their work force [3].  

To meet these challenges, healthcare organizations need to 
implement the use of advanced technologies in their patient 
care process. In particular, the development of innovative 
assistive robots can help reduce the threat of health care 
professional shortages, and provide improvements in patient 
safety, quality of care and operational efficiencies.  

Assistive robotics is a growing research area. Assistive 
robots can be classified into two types: (i) contact or (ii) non-
contact. The former group of robots includes surgical and 
active assistant physical therapy robots, for which the robots 
make physical contact with the respective patient. The non-
contact group of assistive robots consists of robots that are 
designed to have minimal or no physical contact with the 
patient. This group includes robots that are utilized to deliver 
medication to patients, medical records to nurses, surgical tools 
to doctors and help the patient with non-physical contact 
therapy, i.e., accompany patient on daily walking exercises, or 
repetitive muscle exercises.  

In recent years a handful of attempts have been made to 
develop socially assistive robots for human care in hospitals, 
medical and rehabilitation centers and as assistants for physical 
therapy. For example, Paro is a toy-like interactive robot 
modeled after a baby seal, having fur, whiskers, moving eyes 
and flippers. Paro responds to touch, sound, sight, and 
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temperature [4]. Studies directly involving Paro have shown 
that introducing the seal-like robot to the elderly has the 
potential of improving their moods, reducing their dependency 
on the nursing staff and decreasing Burnout scores for the 
nursing staff. Similarly, Kaspar (Kinesics and Synchronization 
in Personal Assistant Robotics) is a child sized humanoid robot 
designed to encourage basic social interaction skills in children 
with Autism using turn-taking and imitation games [5]. Pearl is 
a socially assistive robot that was designed to be used to remind 
elderly people about their daily activities [6]. Pearl has a 
cartoon-like face with moving eyes and eyebrows that allow 
her to express emotions and a touch screen monitor for 
communication. Other robots include CLARA [7], Patrol robot 
[8] and SIRA [9], each of which consist of a wheeled vehicle 
carrying a computer monitor projecting an image of a software 
agent or human. Typically, the majority of these robots have 
been unable to engage in intelligent emotion-based bi-
directional interactions. To address this limitation, this work 
focuses on the investigation of socially assistive robots, with 
human-like demeanors, and high level affect recognition and 
identification and decision making abilities, capable of natural 
and believable social interaction via verbal and non-verbal 
communication.  
 The social interaction, guidance and support that a socially 
assistive robot capable of bi-directional interaction can provide 
a person can be very beneficial in elderly care. However, there 
are a number of difficulties that must be addressed in designing 
such socially assistive robots. In particular, two main 
limitations include: (i) recognition and identification of human 
gesticulation as a source of determining the affective state of a 
person, and (ii) the robotic control architecture design and 
implementation with explicit social and assistive task 
functionalities. Our work consists of the development of a 
unique intelligent task-driven non-contact socially assistive 
robot consisting of a human-like demeanor for utilization in 
hospital wards, nursing and veteran homes and to study its role 
and impact on the quality of elderly care. The robot is an 
embodied entity that will participate in hands-off non-contact 
social interaction with a person during the convalescence, 
rehabilitation or end-of-life care stage. In particular, the robot 
is capable of quantitatively interpreting human body language 
and in turn, effectively responding via task-driven behavior 
during assistive social interaction. In this paper, the design of a 
novel gesture recognition, identification and classification 
technique capable of tracking and interpreting human gestures 
as semantically meaningful commands for input into a unique 
multi-layer decision making control architecture is proposed. 
Depth and thermal images from a 3D camera and a thermal 
camera are used for visual perception and characterization of 
gestures. The learning-based control architecture is utilized to 
determine the effective and appropriate behavior of the 
assistive robot. Preliminary experiments show the potential of 
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the proposed intelligent robotic system for autonomous 
interactions with people. 

The rest of the paper is organized as follows. Section 2 
describes the proposed gesture recognition and identification 
system. In Section 3, the control architecture is introduced. 
Experimental results are presented in Section 4. Lastly, 
concluding remarks are presented in Section 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: System Overview. 
 

 
2. GESTURE IDENTIFICATION AND RECOGNITION 
 In this section the robot's ability to identify and judge the 
affective state of the human it is interacting with is analyzed. In 
particular, a gesture identification scheme is proposed that uses 
nonverbal communication techniques for gesture recognition.  
Non-verbal communication has been deemed to be more 
meaningful than verbal content, especially in demonstrating 
changes in mood/emotional state [10].  The use of non verbal 
communication for detecting human emotional states typically 
involves the use of vision based gesture recognition systems 
[11,12].  In this work, we present the first application of a 
sensory system consisting of a 3D camera and a thermal camera 
for 3D gesture recognition and characterization, Fig 1. The 
main advantages of this sensory system over current methods 
are that it can directly provide 3D pose information and human 
body thermal information: (i) in a non-contact manner without 
restricting the human, and (ii) in real-time to assist in 
minimizing computational complexity. Real-time 3D, 2D and 
thermal information will be utilized from our sensory system as 
inputs into our 3D model-based gesture recognition algorithms.  
 
3D MODEL 
 The model developed is a volumetric 11 degrees-of-
freedom (DOF) model consisting of simple geometric shapes 
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(i.e., cubes, cones and cylinders) in order to minimize the 
number of model parameters, Fig. 2.  The DOF for each body 
part are defined by the gestures that need to be recognized. 
Each of DOF has a lower and higher value limit that can be 
determined from static biomechanical constraints and gesture 
design constraints. Table 1 outlines the DOF for each body 
part. 

 The motion of each body part can be represented by a 
combination of translational, tl, and rotational, Rl, movements, 
as defined in Table 1, to be utilized to determine appropriate 
gestures that the human makes during interaction. This motion 
can be represented with respect to the local frame of the body 
part Mli (tl,Rl) and, in general, to the global frame of the overall 
model as Mmi (tm,Rm), defined as the coordinate frame of the 
lower trunk.  
 

Table 1: DOF for Body Parts. 
Body Part  # DOF Description of Motion 
Head  3 3 rotational DOF for head tilt up and 

down, tilt left and right, and turn away. 
Upper Trunk  3 3 rotational DOF for lean forward or 

back, tilt left or right, and turn away. 
Lower 
Trunk 

1 1 rotation DOF for turn away. 

Upper Arm 3 1 rotation DOF for swing and 1 rotation 
DOF for lift up and down and 1 rotation 
for lift laterally.  

Lower Arm 1 1 rotation DOF for turn towards or away 
(i.e., bow). 

 
 
 
 
 
 
 
 
            
 
 
 
 
 
 

Fig 2: 3D Model. 
 
3D MODEL MATCHING 
The proposed 3D model-based gesture recognition technique is 
presented in the following five steps: 
 
1. Initialization of Model:  

At the start of the human robot interaction, prior to 
commencement of any gesture recognition, the 3D model is 
calibrated to the person of interest. In particular, the model is 
initialized within the depth image of the person and verified by 
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utilizing information from the 2D image provided by the 3D 
camera, where any necessary scaling will take place. Any 
coordinate transformations of the model from hereon will be 
with respect to this original relaxed pose of the person.  
 
2. Human Body Silhouette Identification  
 A binary-based background subtraction method is utilized 
to quickly and effectively determine and extract the boundaries 
of potential humans in the scene. The advantage of utilizing 
this method is that continuous boundaries of objects can be 
easily defined. Background subtraction, [13], regenerates the 
3D grayscale image into a binary image in which 1 represents 
the foreground objects and the background is represented by 0. 
A threshold depth value can be set to separate these objects 
from the background in the 3D image. Once the potential 
foreground human, Fig. 3(a), has been determined based on 
depth information, an edge detection method is implemented to 
effectively identify the human silhouette, Fig. 3(b). The Canny-
Deriche edge detection algorithm is used in our work to 
determine potential boundaries by identifying edge pixels via 
gradient intensity [14].  
 
3. Lower Arms and Head Identification  
 Human skin can be distinguished in thermal images due to 
the thermal properties of the body. By using thermal images, 
Fig. 3(c), the exposed lower arms and head of a human can be 
identified and consequently the transformation of these body 
parts can be estimated. This transformation can be utilized to 
identify the body gestures of the person. Since the 3D image 
does not provide enough information to directly detect the arms 
and head locations, we propose the use of thermal images to 
assist in identifying the arms and head locations. This is done 
by extracting arm and head positions by performing 
temperature-based segmentation on the thermal image, Fig. 
3(d). 
 Since there is a calibrated correspondence between the 
thermal and 3D images, the identified location of the lower 
arms and head in the thermal images can be utilized to identify 
their location in the 3D depth images.  
 
Body Part Transformation 
 3D data information is then extracted from regions of 
interest along the arms in order to determine their pose during a 
particular gesture. Within these regions n points are sampled, 
where n>5. The n sampled points define vectors along each 
forearm (mainly from the elbow to the fingers) which are then 
tracked as the person displays various gestures. The vector 
fitting within this area is generated via a skeleton-based 
approach. The transformation of the vector as each body part 
moves in 3D space is estimated to represent the rigid 
transformation of the corresponding body part: T(α, β, γ, X, Y, 
Z). This allows for tracking of the arms from the relaxed pose 
to other poses during human-robot interaction.  
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4. Upper Arms and Upper Trunk Identification  
 Once the location of the lower arms and head are 
estimated, via thermal images, the location of the upper trunk 
and upper arms can then be estimated by using the 3D model. 
The articulated 3D model is fit to the 3D range information for 
which the silhouette and the location of the lower arms and 
head have been identified. The model is then used to identify 
the location of the upper trunk and upper arms. More detailed 
3D data information extracted from regions of interest on the 
3D images can be utilized to better approximate the 
corresponding 3D model. In particular, these regions of interest 
include areas around potential joints and around the central 
axis/axes of the body parts to detect change in depth along the 
body part. The central axis can be defined as an axis about 
which orientation occurs. Hence, with the utilization of the 3D 
depth information, we can approximate the location of the 
occluded and non-occluded body parts and approximate the 
appropriate 3D model, Fig. 2(e). In particular, since the motion 
parameters to be determined can be within a large range, a 
rough estimation is only needed to approximate the model. In 
summary, by using depth segmentation and knowledge-based 
algorithms, the remaining body parts can be identified and their 
corresponding transformations, T, estimated.  
 

 
Fig. 3: (a) 3D image, (b) silhouette from 3D image, (c) thermal 
image, (d) temperature-based segmentation from thermal 
image, and (e) 3D model matching to 3D image. 
   

 
3. CONTROL ARCHITECTURE 
 The proposed control architecture as presented in [15] is 
adapted and extended from the Cognition and Affect (Cogaff) 
information processing architecture. In particular, the reactive 
and deliberative layers from the CogAff architecture are 
utilized, in which the reactive layer is used mainly for 
interaction situations that require an immediate response, 
whereas the deliberative layer contains decision making 
capabilities that analyze scenarios. The remaining modules of 
the architecture consist of the drives module and a robot 
emotional state module, which are utilized to identify the tasks 
the robot needs to complete and to assist in behavior selection, 
Fig. 4.  
 Herein, robot behaviors are considered either emotional or 
non emotional, based on the situation the robot is in. The robot 
control architecture proposed in this work can be explained as 
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follows. The inputs to the control system includes the affective 
state of the person interacting with the robot (as defined herein 
by gestures and classified by the Human Mood Classifier 
Module) and the robot’s internal/external sensory information. 
The robot’s tasks are stored in the long term memory module, 
Fig. 4. Once the robot identifies the person it is interacting 
with, tasks specific to that person will be sent to the drives 
module. Since the focus of this research work is on non-contact 
socially assistive robots, the defined tasks that the robot will 
accomplish during interaction may include monitoring, and 
providing companionship and reminders to patients. The drives 
module will also consist of drives directly related to the robot’s 
health (i.e., power, operation of motors) as updated from the 
robot’s sensors. Dominant drives will then be utilized to assist 
in determining the robot’s emotional state via the robot 
emotional state module, and the output behavior via the 
reactive or deliberative layer. The emotional state is stored in 
the short term memory.  The priority module decides the final 
behavior of the robot based on the precedence of information 
regarding robot and human health and safety during interaction.  
  There are two main reasons why the current emotional 
state of the robot should be known during the decision making 
process: (i) the task to be completed does not match the current 
emotion of the robot, i.e., the robot needs to provide 
companionship, the robot should not do so in a distress or 
angry manner, and (ii) the emotional state of the robot is failing 
to complete the required task. For example, the robot needs to 
monitor a resident in a nursing home, if a resident refuses to 
answer the robot’s inquires, the robot must change its emotion 
accordingly in order to complete its task.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 4: Proposed Control Architecture [15]. 

 
 Although there have been a number of emotional behavior 
architectures proposed in the literature [i.e., 16,17], few have 
been the subject of extensive implementation and analysis. The 
type of processing mechanisms to be utilized in each layer of 
the control architecture is usually left as the responsibility of 
the designer of the agent/robot. In this work, we investigate and 
evaluate the utilization of processing mechanisms in the 
context of task-driven socially assistive robots for our proposed 
architecture. The overall proposed architecture will be 
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integrated and tested on Brian, the expressive human-like 
socially assistive robot capable of HRI, developed by Nejat et 
al. [18], Fig. 1. 
   An assistive robot’s behavior should reflect the task it 
needs to complete and its emotional state should result in the 
robot completing the task, unless the robot is physically 
incapable (e.g, not enough battery power). Hence, the objective 
is not to have the robot mimic human emotions, but to use 
emotions to assist in determining the behavior necessary for the 
robot to accomplish its tasks. In this paper, we present the 
design of the mood classifier and the deliberative layer. 
 
HUMAN MOOD CLASSIFIER 

The gestures that will be identified via our proposed 
gesture recognition technique are derived and modified 
accordingly to the Davis Nonverbal States Scale (DNSS) [19]. 
DNSS is a coding method designed to analyze the 
gesticulations displayed by a person in a one-on-one 
conversation. Within the DNSS, we utilize and adapt the 
Nonverbal Interaction and States Analysis (NISA) scale to code 
the recognized gestures into a person’s position accessibility 
level. The scale consists of 4 levels of accessibility ranging 
from Level I (least accessible) to Level 4 (most accessible), 
which are categorized by the body trunk and arms patterns such 
as towards (T), neutral (N) or away (A) from the robot. For 
example, trunk orientation is defined as: Towards- where the 
person is oriented facing the robot; Neutral- where the trunk is 
facing slightly away from the robot by 3 to 15 degrees, and 
Away-where the trunk is oriented more than 15 degrees from 
the robot. There can be a great variety of possibilities for the 
gestures, i.e., further arm arrangements and hand placements, 
however, the scale can be justified by the fact that most people 
display a limited range of positions during interactions and will 
repeat these gestures during the course of the interaction.  
  
DELIBERATIVE LAYER  
   In interactive situations, it is difficult to model and predict 
the potential events that will occur between humans and robots. 
In such situations it is important that the robot be able to learn 
from its own experiences during interaction. Within the 
proposed architecture, the deliberative layer will act as the 
main decision making module to allow for task-driven 
behavior. Our work focuses on the utilization and integration of 
reinforcement learning (RL) for robot intelligence. RL has been 
tested in many simulated environments and real-world 
scenarios [i.e., 20-22], but has yet to be applied and adapted to 
the field of human-like task driven socially assistive robots. RL 
has a number of advantages when compared to other robot 
learning and control techniques: (i) a priori information about 
the environment is not needed, and (ii) the learning process is 
on-line. In particular, in this work, we investigate the utilization 
of Q-learning.  
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Q-learning 
 In Q-learning a mapping is learned from a state-action pair 
to a value called Q. The mapping represents the reward of 
performing an action in a state. A controller then measures the 
state, chooses the action with the highest Q value and executes 
it [23]. The advantage of this approach is that it is model-less 
and can be exploration insensitive (Q values will converge to 
optimal values, independent of robot behavior during data 
collection) [23]. 
 Since human actions can be unpredictable when interacting 
with the robot, a nondeterministic Q-learning scheme is 
investigated for task-driven socially assistive robots, where 
rewards are represented by probability distributions, Fig. 5. 
Each state is defined by the accessibility level yHi of the person, 
the robot’s emotional state yRi and the drive di that needs to be 
satisfied. The assistive robot starts in an current state: i.e., 
s0(yHi, yRi, di), and will perform an action (which results in the 
maximum Q value) that will lead it to satisfy its dominant 
drive, di. For our Q-learning approach, each state has 4 actions 
that can be implemented. Due to the uncertainty of the 
interaction, the drive may or may not be satisfied. If Action 1, 
denoted by 1a in Fig. 5, is implemented and the drive is 
satisfied, the robot will reach state s1, ready to perform a new 
set of tasks. s1 will consist of updated information regarding the 
robot’s emotional state, the person’s accessibility level and the 
next drive that needs to be satisfied (i.e., yHi+1, yRi+1, di+1).  If 
the drive is unsatisfied, the robot will move into state s2, where 
it will attempt to continue to satisfy its current drive, by 
updating its emotional state and the accessibility level of the 
human. For our nondeterministic environment, Q can be 
determined by [24]: 

( , ) ( , ) ( , ) max ( , )n ns a
Q s a r s a P s s a Q s aγ

′ ′
′ ′ ′= + ∑ ,    (1)     

where r(s,a) is the immediate reward function and is 
determined by r(s,a)=w*rdi. Where w is a weight determined 
from the accessibility level of the person and rdi is a reward 
represented by the drive that needs to be satisfied. The value of 
rdi increases as the robot approaches its final drive. γ is the 
discount factor and is set between 0 and 1 (γ expresses 
preference for future awards, i.e., a higher value places more 
emphasis on future awards), s′  is the state resulting from 
applying action a  to state s, and a′  are the actions 
applicable to the new state. ),( assP ′  is the probability of the 
resultant state based on the performed action.  

The training rule we utilize to assure convergence of Q
∧

 
(learner’s approximation) to Q is defined by: 

1 1( , ) (1 ) ( , ) [ ( , ) max ( ', ')]n n n n na
Q s a Q s a r s a Q s aα α γ
∧ ∧ ∧

− −′
← − + +

                     ,  (2)    
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where,  
    1

1 ( , )n
nvisits s a

α =
+

 .                              (3)

       
visits(s,a) in Equation (3) represents the number of times action 
a  has been selected while the robot is in state s. αn is a 
learning rate which decreases after time to allow for 
convergence.  
 
 
       

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Learning-Based Model. 
 
4. EXPERIMENTS 

Our experiments consisted of the robot, Brian, and a 
human interacting in a one-on-one conversation standing 
approximately 1m apart, Fig. 6. Brian consists of a human-like 
demeanor having similar functionalities to a human from the 
waist up. The robot is able to communicate via: (i) a unique 
human-like face, (ii) a 3 degrees-of-freedom (DOF) neck 
capable of expressing head gestures, and (iii) an upper torso 
consisting of a 2 DOF waist and two 4 DOF arms designed to 
mimic human-like body language. The robot is also able to 
communicate verbally using commercial interactive 
conversation software.  

In total, 30 human subjects participated in the experiments 
ranging in age from 17 to 68 years. Each human was asked to 
implement a number of predefined gestures for perception, 
identification and categorization into appropriate accessibility 
levels by the human mood classifier. These accessibility levels 
were utilized as inputs into the deliberative layer in order to 
identify the robot’s behavior. 

 
ROBOT PERCEPTION 
In these experiments, the human was asked to implement a 
number of predetermined gestures for the robot to perceive. In 
order for the thermal camera to clearly identify the location of 
the arms, all subjects either wore short sleeves or sleeves that 
were rolled above their elbows. 3D and thermal images of the 
human were taken, and analyzed using the proposed gesture 
identification technique. Fig. 7 presents five typical gestures of 
a person in a: (i) towards position (with respect to the robot) 
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where the body is upright and the arms are to the sides of the 
trunk, (ii) leaning forward with arms to the side of the trunk, 
(iii) leaning forward with arms crossed, (iv) towards position 
with arms up, and (v) towards position with arms in an X 
configuration. The human body silhouette was identified using 
background subtraction on the 3D depth images. Then the 
location of the lower arms and head in the 3D images were 
determined via thermal-based segmentation in the thermal 
images. Vectors of depth points were identified on the forearms 
of each person and were tracked during gesticulation. These 
vectors were utilized to identify the transformation of each arm 
from the relaxed towards position, i.e., Fig. 7(a), with respect to 
the global coordinate frame. The transformation results for the 
gestures depicted in Fig. 7 are presented in Tables 2 and 3.  
 Once the location of the head and lower arms are identified 
in the 3D images, an approximate articulated 3D model was fit 
to each 3D image and was utilized to estimate the pose of the 
upper trunk via sampling of points in interest regions and 
around the central axis/axes of the body parts to detect change 
in depth along each body part, i.e. Fig. 8. This depth 
information was utilized to identify the appropriate 
transformations of the upper trunk and hence, to better 
approximate the corresponding 3D model. Transformation 
results for the two different trunk poses depicted in Fig. 7 are 
presented in Table 4. 
 In addition to the towards and lean forward positions, two 
more poses which consisted of the orientation of the person’s 
upper body to be away from the robot were also tested to verify 
the proposed technique, Fig. 9. The determined transformations 
for these two poses are presented in Table 5. 
 The accessibility levels for all the identified gestures 
presented in Figs. 7 and 9 were determined and shown in Table 
6. These accessibility levels were then utilized as inputs into 
our deliberative layer. 
 
 

 
 

Fig. 6: One-on one interaction scenario with the robot Brian 
and a human. 
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Fig 7: (a) Towards Position, (b) Lean Forward Position, (c) 
Lean Forward with Arms Crossed, (d) Towards Position with 
Arms Up, and (e) Towards Position with Arms in an X 
Configuration.  
 
 
 
Table 2: Transformations of Left Arm from Towards Position to 
the other 4 Identified Positions in Fig. 7. 

 Fig. 7(b)  Fig. 7(c)  Fig. 7(d) Fig. 
7(e) 

α (deg.) -9.73 -97.91 -173.46 -133.88 
β (deg.) -4.47 5.25 -4.16 13.55 
γ (deg.) -7.70 -7.87 -21.44 -8.32 
∆X (cm) 10.48 11.57 10.91 38.66 
∆Y (cm) -30.08 36.92 50.09 38.12 
∆Z (cm) -5.84 -11.79 -5.15 -8.87 

 

(b) (e) (d) (c) (a) 
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Table 3: Transformations of Right Arm from Towards Position 
to the other 4 Identified Positions in Fig. 7. 

 Fig. 7(b) Fig. 7(c)  Fig. 7(d) Fig. 
7(e) 

α (deg.) 5.02 82.16 160.74 118.9 
β (deg.) -0.65 3.09 23.70 9.25 
γ (deg.) -1.93 -14.04 -17.23 -1.75 
∆X (cm) 1.32 4.20 18.02 -33.59 
∆Y (cm) -8.42 15.17 19.62 -12.68 
∆Z (cm) -1.41 -7.72 -1.27 -13.77 

 
 

 
 

Fig. 8: (a) Areas of Interest; (b) and (c) Areas of Interest and 
Central Axis of Body Part. 

 
Table 4: Transformations of Upper Trunk from Towards 
Position to the other 2 Identified Positions in Fig. 7. 

 Fig. 7(b) Fig. 7(c)  
α (deg.) -3.05 -2.75 
β (deg.) -5.88 -7.25 
γ (deg.) -15.66 -15.42 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9: Away Orientation: (a) Orientation 1 and          
(b) Orientation 2. 

(a) 

(b) 
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Table 5. Transformations of Upper Trunk from Towards 
Position to the other 2 Identified Positions in Fig. 9. 

 Fig. 9(a) Fig. 9(b) 
α (deg.) -7.46 -7.62 
β (deg.) -39.99 -47.29 
γ (deg.) 5.19 -0.56 

 
 

Table 6. Accessibility Levels. 
Gestures Accessibility Levels 
Fig. 7(a) IV 
Fig. 7(b) IV 
Fig. 7(c) III 
Fig. 7(d) IV 
Fig. 7(e) III 
Fig. 9(a) I 
Fig. 9(b) I 

 

DELIBERATIVE LAYER 
The assistive drives for these experiments were chosen to 

mimic a real-world assistive environment. The robot’s drives 
were chosen so that the robot would provide the following 
activity reminders to the person: (i) when to go for a walk, (ii) 
take necessary medication and (iii) go to a doctor’s 
appointment. In addition, a companionship drive is also used in 
which the robot engages in a social interaction scenario with 
the person. For these experiments, the emotional states of the 
robot were defined as happy, neutral, sad and anger. These 
emotions were determined based on a priority look-up table. A 
database of four potential robot behavior actions for each state 
was also created. We utilized a discount factor of γ = 0.8. 
  In order to assess if the drive had been satisfied, each 
person was asked to verbally state “yes” after the robot’s action 
was implemented, at which time the robot would move to the 
next drive. If the drive was not satisfied, the person would say 
“no” and the robot would continue to try to satisfy the drive. 
Figs. 10-12 present our experimental results. 
 From Fig. 10 it can be seen that it took 2 to 3 iterations to 
satisfy the robot’s required drives. In general the robot was able 
to satisfy all four drives in the dominant emotional state of 
happy, Fig. 11.  The second most dominant emotional state 
was neutral followed by sad. What is interesting to note is that 
the robot was able to satisfy its drive, drive #3, only once (out 
of 26 times) when it was angry. When assessing the 
accessibility levels of a person during interaction with the 
robot, it can be deduced that when the person was in 
accessibility level IV, a greater number of drives were satisfied, 
Fig. 12. If the person was in a lower accessibility level such as 
accessibility level II, the robot was still able to satisfy the 
drives a significant number of times. 
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Fig. 10: Drive versus Iteration. 
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Fig. 11: Drives versus Robot’s Emotional State.  
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Fig. 12: Human’s Accessibility Level versus Robot Emotional 
State for: (a) Drive 1, (b) Drive 2, (c) Drive 3, and (d) Drive 4. 
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5. CONCLUSIONS 
  This work mainly focuses on developing a novel gesture 
recognition, identification and classification technique capable 
of tracking and interpreting human gestures and body language 
as semantically meaningful commands for input into a unique 
multi-layer decision making control architecture. Depth and 
thermal images from a 3D camera and a thermal camera are 
used for visual perception of gestures and characterization. A 
learning-based control architecture is presented in which the 
deliberative layer determines the effective and appropriate task-
driven behavior of the assistive robot. The categorized gestures 
are utilized by the control architecture to determine the 
affective state of the person during interaction. The preliminary 
experiments verified the potential of the proposed method in 
unknown assistive human-robot interaction environments. Our 
future work includes extending the proposed recognition 
technique to cluttered environments and developing processing 
mechanisms for the remaining modules in the control 
architecture and expanding the architecture to incorporate 
multi-modal inputs from the human, i.e., speech and facial 
expressions in addition to gestures.  
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