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Inverse Dynamics of a
Redundantly Actuated Four-Bar
Mechanism Using an Optimal
Control Formulation
This paper presents an approach to estimating joint torques in a four-bar closed-chain
mechanism with prescribed kinematics and redundant actuation, i.e., with more actuators
than degrees of freedom. This problem has several applications in industrial robots,
machine tools, and biomechanics. The inverse dynamics problem is formulated as an
optimal control problem (OCP). The dynamical equations are derived for an open-chain
mechanism, what keeps the formulation simple and straightforward. Sets of constraints
are explored to force the three-link open-chain to behave as a four-bar mechanism with a
crank rotating at a constant velocity. The controls calculated from the OCP are assumed
to be the input joint torques. The standard case with one torque actuator is solved and
compared to cases with two and three actuators. The case of two actuators presented the
smallest peak and mean torques, using one specific set of constraints. Such torques were
smaller than the solution obtained using an alternative method existing in literature that
solves the redundancy problem by means of the pseudo-inverse matrix. Comparison with
inverse dynamics solutions using well-established methods for the one-actuator closed-
loop four-bar were equal. Reconstructed kinematical trajectories from forward integra-
tion of the closed-loop mechanism with the OCP obtained torques were essentially simi-
lar. The results suggest that the adopted procedure is promising, giving solutions with
lower torque requirements than the regularly actuated case and redundantly actuated
computed with other approaches. The applicability of the method has been shown for the
four-bar mechanism. Other classes of redundantly actuated, closed-loop mechanisms
could be tested using a similar formulation. However, the numerical parameters of the
OCP must be chosen carefully to achieve convergence. [DOI: 10.1115/1.4004064]

1 Introduction

Closed-loop mechanisms comprised of rigid links connected by
hinge joints are frequently found in mechanical systems. In some
cases, the forces or torques needed to produce a particular move-
ment must be known after the mechanism has been designed or
constructed, and the kinematics has been measured. This is the
inverse dynamics analysis, which can be performed by well-
known methods (for example, that presented by Haug [1]) if the
number of degrees of freedom is equal to the number of actuators.
Such methods are not straightforwardly applied when the number
of actuators is smaller than the number of degrees of freedom, i.e.,
an under-actuated mechanism, or greater, a redundantly actuated
mechanism. In the second case, there are infinite possible torque
solutions that fit the kinematics, and some external a priori hy-
pothesis must be introduced to resolve the ambiguity.

One of the methods for resolving such ambiguities is to formu-
late the effort-sharing problem between the actuators as a static
optimization. This optimization can be performed by solving a
pseudoinverse matrix (see Ref. [2] for theory and Ref. [3] for
examples) or by other optimization procedures. In such formula-
tions, the choice of the optimization objective function deter-
mines, to a great extent, the shape of the torque solution. For the
pseudoinverse case, the objective function is the least-squares of
the solution vector at every single step. However, the torque found

by static optimization will only be optimal for a particular time
step and probably not for the entire motion.

Some more sophisticated approaches to solve this problem can
be found in the literature, see for example, Nakamura and Gho-
doussi [4] and Cheng et al. [3]. By using a Lagrange–D’Alembert
formulation, they demonstrated that the dynamic equations of
redundantly actuated parallel manipulators (which are actually a
class of closed-chain mechanisms) have a form similar to those of
a serial manipulator. Equations of motion in terms of the inde-
pendent generalized coordinates are found, and their right-hand
sides are the functions of generalized force or torque vectors. In
regularly actuated case, the system of equations is square, while in
redundantly actuated one, it is not. The resulting system can be
solved by using the Moore–Penrose pseudoinverse matrix [3,5],
which minimizes the Euclidean 2-norm of the actuator torques.
Ganovski et al. [6] use a different approach, which has been
proved to be strictly mathematically equivalent to a pseudoinverse
solution. Muller and Maisser [7] extended the pseudoinverse
approach in redundantly actuated parallel manipulators to intro-
duce prestress, i.e., internal forces that do not generate end effec-
tor wrenches.

Our group have solved the inverse dynamics of the same four-
bar mechanism [8] using the Haug [1] formalism. The generalized
force terms were changed to include the additional redundant tor-
ques, based on a variation of the Valasek transmission matrix [9].
Since the trajectories of the generalized coordinates are known,
the resultant system of differential algebraic equations (DAEs)
becomes a linear nonsquare system that is solved via the Moore–
Penrose pseudoinverse matrix. This solution will be compared in
Sec. 4.7 with the results presented here.
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This paper presents an alternative formulation, based on
optimal control theory, for solving the inverse dynamics of a
closed-loop redundantly actuated mechanism. The optimal control
variables are the torques that minimize an integral objective func-
tion. Mechanism dynamics is fit to a set of constraints, in the sense
of optimal control theory: multibody system equations are treated
as differential constraints, while closed-loop position equations
and the prescribed driving motion are formulated as trajectory
algebraic constraints. Actuator saturation limits can also be easily
included as control bounds.

This approach has some attractive features. The first is great
flexibility in the choice of objective functions: the torques, ener-
gies, powers, or any combination of them can be minimized.
These choices are not allowed when using the pseudoinverse ma-
trix to solve this problem. Optimality is achieved throughout the
entire span of movement, not step-by-step; the latter situation cor-
responds to solving the left-hand side of the equations of motion
from the measured or the calculated kinematics, setting it equal to
the sum of moments, and finding the moments through static
optimization.

The presented optimal control formulation is reasonably
simple and does not require special user skills to write down the
equations of the problem, as is the case in the more sophisticated
methods cited above. In contrast, there are numerical problems
associated with solving the optimal control problem (OCP). The
formulation is not unique, and the most suitable transcription of
the mechanism to the optimal control problem must be deter-
mined. Herein, we try to outline some steps to formulate a closed-
loop redundant mechanism through optimal control by solving a
particular case study, namely, the four-bar mechanism. It is not
possible to assert that the same choice of numerical parameters
will work for other classes of mechanisms, or what kind of torque
patterns could result. However, some useful starting suggestions
are provided. The solution of an optimal control problem is a
highly problem-dependent task. However, if a particular mecha-
nism can be assumed to be a serial manipulator with a restrained
end effector, the approach presented here will be applicable with
slight adjustments.

A number of possible problem formulations of the particular
case study were tested, considering different numbers of actuators
and constraint configurations. The number of actuators is directly
related to diverse degrees of actuation redundancy, which are
described comparatively. Results suggest that a significant reduc-
tion in torque demands can be obtained under one particular set of
conditions with two actuators when compared to the single actua-
tor case as well as to the redundantly actuated solution using a
classical optimization method.

2 Optimal Control

Optimal control theory offers an interesting perspective on the
solution of closed-loop redundantly actuated mechanisms. Differ-
ent trajectories and controls can be obtained for different choices
of the cost function, e.g., minimum torque, minimum torque varia-
tions, minimum trajectory deviation from equilibrium, minimum
energy etc. When using optimal control to solve the inverse dy-
namics problem, the trajectory should be introduced in the formu-
lation as a constraint, and different cost functions will result
in different control input patterns. The generated kinematic trajec-
tories will be approximately the same if suitable kinematic
constraints are formulated. Important aspects related to the kine-
matics-following accuracy are the constraint violation tolerance of
the optimization algorithm and the way in which constraints are
formulated within the optimal control problem.

Although optimal control theory has been well-established
since the 1960s, its popularity has increased due to the availability
of computer packages such as RIOTS [10], MISER3 [11], TOMP [12],
and SOCS [13]. Such software packages are able to numerically
solve large-scale problems in a straightforward manner, using so-
called direct integration methods. The system is formulated as a

discretized dynamic optimization problem, and an associated
static optimization is solved by off-the-shelf algorithms, such as
SQP (sequential quadratic programming). Direct integration meth-
ods begin with an initial guess of the control history vectors,
numerically integrate the differential equations (e.g., by the
Runge–Kutta method) and solve a static optimization problem,
resulting in a set of spline coefficients that minimize an aug-
mented cost function accounting for some of the constraints for
the entire time of motion.

These methods can address a broad class of highly complex
nonlinear problems, which are usually intractable by indirect
methods. However, some subtle numerical problems often arise in
the discretization and optimization algorithms. The integration-
optimization interactions are likely to converge if the control
guess is good and if the dynamics integrated with this control
does not fall out of the “basin of attraction” of a stable solution. In
addition, convergence is easier with a few penalties (i.e., fewer
constraints in the formulation) and if the cost function is simpler.

Lee et al. [14] presented an optimal-control-based approach to
formulate and solve equations of motion for mechanical systems.
It included mechanisms with redundant closed-chains and solved
the forward dynamics of the resulting optimal control problem in
a numerically efficient way. These authors use a very complex
and specific formulation to fit mechanism inverse dynamics into
the optimal control problem, based on the theory of Lie groups.

In this paper, a simpler optimal control formulation is proposed
to find actuator torques that represent the “optimal controls”
(u�ðtÞ) for a prescribed mechanism’s kinematics. The MATLAB

toolbox RIOTS, developed by Schwartz [15], was used to solve the
OCP in the context of Consistent Approximations Theory. This
software uses a generic formulation of the OCP, offering several
numerical algorithms to solve different classes of problems.

The four-bar mechanism was chosen for its simplicity as a case
study. Several different formulations were tested using this simple
mechanism, to find the most appropriate way to write the con-
straint equations. In addition, the most suitable numerical algo-
rithms among those available in the RIOTS package were found.
Other problems are also addressed by this paper: (i) finding the
optimal control torque functions for an exactly actuated closed-
loop mechanism (one-actuation, for the four-bar mechanism) and
comparing with a classic inverse dynamics analysis to check the
solution; (ii) finding the four-bar optimal torques with two and
three actuators; (iii) suggesting some OCP formulations and nu-
merical guidelines for solving more complex problems, and (iv)
verifying whether the redundantly actuated four-bar mechanism
presents smaller maximum torques than the exactly actuated
mechanism, allowing smaller actuators in practical applications.
Actuator size is an important factor in determining the dynamic
performance and payload characteristics of robots powered by
redundant actuation systems [5].

3 Methods

3.1 Generic Optimal Control Formulation. A general OCP
can be formulated [16–18] to determine the optimal states x�, the
optimal controls u�, and the final time T (if it is left open) that mini-
mize a cost function Go [Eq. (1a)]. The minimization problem is
subjected to the state equations (or dynamic constraints) Eq. (1b)
that describes the dynamics of the system and various possible
additional constraints as required by the problem at hand: initial
and final boundary conditions. Eq. (1c) and Eq. (1d), control upper
and lower bounds Eq. (1e), and trajectory constraints Eq. (1f).

min: Goðx;u; tÞ ¼ goðx; u; tÞ

þ
ðT

0

foðxðtÞ;uðtÞ; tÞdt
(1a)

_xðtÞ ¼ fðx; u; tÞ (1b)
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xð0Þ ¼ x0 (1c)

xðTÞ ¼ xT (1d)

umin � uðtÞ � umax (1e)

xmin � xðtÞ � xmax (1f)

Schwartz and Polak [19] and Polak [20] formulated the OCP as an
approximation problem, using Runge–Kutta integration to discre-
tize system dynamics, considering that the initial conditions and
an estimation of the control vector are given. A subspace of the
discretized control space is used to express the control samples as
spline coefficients. Specific formulas were introduced by the
authors to guarantee the mathematical equivalence of the internal
product and norm operations between the defined functional and
the Euclidean spaces. Through these transformations, off-the-shelf
static optimization algorithms can be used efficiently to solve the
equivalent nonlinear optimization problem.

The algorithms briefly described above were implemented by
their authors [10] in the MATLAB Toolbox RIOTS (Recursive Integra-
tion Optimal Trajectory Solver). This software allows using first
to fourth order fixed step-size Runge-Kutta integrator and first to
fourth order splines. The LSODA [21] variable step-size integra-
tor can be also used. The optimization problem is solved with a
class of conjugate-gradient techniques [19] or an SQP solver NPSOL

[22]. User-defined cost and constraint functions, as well as their
symbolic derivatives, are written in ANSI C code and dynamically
linked to RIOTS. This paper seeks to address the following ques-
tion: how can this generic formulation be fit into a multibody,
closed-loop, redundant-actuator inverse dynamics problem?

3.2 Dynamical Model. State Eq. (1b) are derived from the
planar open-chain manipulator equations of motion, with friction-
less pin-joints and driven by joint torque actuators. Thus, the
closed-loop mechanism is modeled as if it was an open-loop kine-
matic chain, which derivation is more straightforward. In addition,
closed-chain mechanisms require the algebraic position analysis
constraints to be solved together with the equations of motion,
which leads to a system of DAEs [23]. This class of equations is
susceptible to constraint stabilization problems [24,25].

To keep the end effector linked to its support, effectively simu-
lating a four-bar mechanism, external spring and damper forces
are introduced at the most distal extremity, as depicted in Fig. 1.
If K and/or C are large enough, then external horizontal and verti-
cal reaction forces will keep Point D approximately fixed. Two
planar DOFs of the system are mechanically restricted. These ele-
ments work as an approximation of the hinge joint that really
exists in a four-bar mechanism. They allow for simulation of the

weight and dynamic load supporting roles of the joint but retain
the multibody equations of the open-chain manipulator. This strat-
egy is frequently used in optimal control studies of human gait
[26–28], to model the double-support phase. In this situation, the
heel of one foot and the toes of the contralateral one are simulta-
neously in contact with the ground, forming a closed-loop five-bar
mechanism. The contact of the foot to ground is thus modeled as a
nonlinear spring and damper.

The left hand side of manipulator equations of motion can be
easily derived by means of Lagrange equations [Eq. (2)]. The cen-
ter of mass positions of each bar are described as a function of the
independent angular coordinates uj, j ¼ 1; 2; 3, as well as the
potential and kinetic energies of the whole system

d

dt

@L

@ _uj

� @L

@uj

¼ Qj (2)

The resulting system of equations takes the form of Eq. (3), where
½A� is the mass matrix, ½B� is the centripetal terms matrix, ½C� is the
vector of gravitational terms, ½D� is a matrix of ones and zeros that
relates the torque actuators to the coordinates that they act upon,
and ½E� is a vector that includes the spring and damper forces. The
right hand side of Eq. (3) is equal to Q in Eq. (2) and is usually
referred to as the “Generalized Force Vector”. Different versions
of matrix ½D� are used depending on the case under consideration
and are shown in Table 2. Additionally, to be used in the optimal
control formulation, Eq. (3) was transformed into state space form

A

2
4

3
5 €u1

€u2

€u3

2
4

3
5þ B

2
4

3
5 _u2

1

_u2
2

_u2
3

2
4

3
5þ C

2
4

3
5¼ D

2
4

3
5 u1

u2

u3

2
4

3
5þ E

2
4
3
5

(3)

3.3 Specific Optimal Control Formulation. As shown in
previous works [29], a careful choice of the objective function
and constraints in the formulation of the OCP is important for nu-
merical convergence of the solution. The controls and state-trajec-
tory patterns obtained are also closely related to the chosen

Fig. 1 Dynamical model diagram

Table 1 Overview of studied cases

Restricted by

Number of Actuators Unrestricted Spring SpringþDamper

1 — Case C Case D
2 — — Case E
3 Case A Case B Case F
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objective function. Herein, the minimization of the sum of squared
actuator torques, as shown in Eq. (4), was chosen to be the cost
function. By choosing this particular cost function, the Euclidean
norm of the torque vector is minimized, although other functions
could be proposed. This function has the additional advantage of
being convex and simple, which also eases convergence.

Another important issue is the formulation of the OCP constraints.
The most noticeable point is that the 3-DOF planar manipulator must
comply with the position loop equations of the four-bar mechanism.
Different constraint formulations were attempted, for instance mak-
ing b or c equal to zero in Eq. (6) but better convergence properties
were achieved using a ¼ 1ðadimensionalÞ, b ¼ 1ðs:m�1: rad�1Þ,
and c ¼ 1ðs=radÞ. The dimensions of parameters a, b, and c were set
to make Eq. (6) dimensionally consistent. Equations (7a)–(7e) repre-
sent the mechanism position loop equations, their derivatives and an
additional equation to make _u1 constant, imposing a fixed crank
angular velocity. Such conditions were transformed into one single
trajectory inequality constraint, by squaring and summing all terms
into a single equation [Eq. (6)] that must be smaller than a small nu-
merical tolerance EPSNEQ. Thus, the specific optimal control for-
mulation for this problem is to find the control vector u which mini-
mizes the cost function Eq. (4), subject to equations of motion is
state-space form Eq. (5), and the trajectory inequality constraints Eq.
(6), whose terms are defined in Eqs. (7a)–(7e).

f ðuÞ ¼
ðtf

0

w1u2
1 þ w2u2

2 þ w3u2
3dt (4)

subject to
_xf g ¼ gðx;uÞ (5)

a2ðf 2
1 ðxÞþ f 2

2 ðxÞÞþb2ðf 2
3 ðxÞþ f 2

4 ðxÞÞþ c2f 2
5 ðxÞ�EPSNEQ (6)

where

f1ðxÞ ¼ L1 cosðu1Þ þ L2 cosðu2Þ þ L3 cosðu3Þ � L4 (7a)

f2ðxÞ ¼ L1 sinðu1Þ þ L2 sinðu2Þ þ L3 sinðu3Þ (7b)

f3ðxÞ ¼�L1 _u1 sinðu1Þ�L2 _u2 sinðu2Þ�L3 _u3 sinðu3Þ (7c)

f4ðxÞ ¼ �L1 _u1 cosðu1Þ þ L2 _u2 cosðu2Þ þ L3 _u3 cosðu3Þ (7d)

f5ðxÞ ¼ _u1 � 2p (7e)

The direct integration algorithm requires an initial guess for the
control vector, which feeds the state equations to be simultane-
ously integrated and discretized. It is essential to have a “good
quality” [29] initial control guess. If the kinematics resulting from
the numerical integrated dynamics, with such control as input,
falls into a “basin of attraction” related to a locally stabilizable so-
lution, then the integration-optimization interactions are likely to
converge. The solution can escape out of this basin when the con-
straints, introduced in the cost function as penalties, cause an
excessively large update in the optimized control. In some instan-
ces, this can lead to a case in which partial solutions, obtained
from using wider constraints, are used as the initial guess for the
next trial using tighter constraints [29].

One cycle of a four-bar mechanism working in a steady-state
regimen was simulated in all trials, with a constant crank angular
velocity of 2p rad/s. To complete 1 cycle, it was necessary that
tf ¼ 1:0ðsÞ of simulation, with the following chosen initial con-

ditions: u10
¼ 1:0472ðradÞ½60:0ð�Þ�, u20

¼ 0:2907ðradÞ½16:5ð�Þ�,
u30
¼ 4:5513ðradÞ½260:7ð�Þ�, _u10

¼ 6:2832ðrad=sÞ½360:0ð�=sÞ�,
_u20
¼ �1:3760ðrad=sÞ½78:8ð�=sÞ�, and _u30

¼ 3:4240ðrad=sÞ½196:1
ð�=sÞ�. A medium-size (200 point) time discretization mesh was
adopted. The solution to the optimal control problem is repre-
sented by a finite dimensional B-spline and has 200þq� 1 break-
points (see Ref. [15] for details). Cubic spline interpolation
(q¼ 4) was used in all cases. The geometric/mass parameters
used were L1 ¼ 0:5ðmÞ, L2 ¼ 0:9ðmÞ, L3 ¼ 0:7ðmÞ, L4 ¼ 1:0ðmÞ,
m1 ¼ 6:59ðkgÞ, m2 ¼ 11:55ðkgÞ, m3 ¼ 9:07ðkgÞ. The centers of
mass were located in the middle of each bar, and their respective

moments of inertia were computed by I¼ 1
12

mL2. The tolerance

EPSNEQ typically varied from 10�1 to 10�3.

Table 2 Model parameters and outputs (½D�: Eq. (3) matrix; K: Stiffness factor; C: Damping factor; dD
max: Point D maximum displace-

ment; F D
max: Point D maximum force; OFV: Objective Function Value; t: CPU processing time; OFWP: Objective Function Weighting

Parameters, see Eq.(4))

D½ � K (N/m) C (N.s/m) dD
max (m) FD

max (N) OF t [min] OFWP

Case A

1 �1 0

0 1 �1

0 0 1

2
4

3
5 0.00 0.00 8:95 � 10�4 0.00 7:51 � 104 46.7

w1 ¼ 1

w2 ¼ 1

w3 ¼ 1

Case B Idem Case A 1:00 � 103 0.00 9:50 � 10�3 9:50 � 100 4:36 � 104 43.9

w1 ¼ 1

w2 ¼ 1

w3 ¼ 1

Case C

1 0 0

0 0 0

0 0 0

2
4

3
5 1:00 � 107 0.00 1:36 � 10�4 1:36 � 103 — 301.0

w1 ¼ 1

w2 ¼ 0

w3 ¼ 0

Case D Idem Case C 5:00 � 106 1:00 � 106 5:22 � 10�5 7:82 � 102 9:69 � 103 14.3

w1 ¼ 1

w2 ¼ 0

w3 ¼ 0

Case E

1 �1 0

0 1 0

0 0 0

2
4

3
5 5:00 � 107 1:00 � 107 5:05 � 10�3 7:00 � 102 4:27 � 103 67.1

w1 ¼ 1

w2 ¼ 1

w3 ¼ 0

Case F Idem Case A 1:00 � 105 1:00 � 104 2:77 � 10�3 2:81 � 102 3:34 � 104 192.6

w1 ¼ 1

w2 ¼ 1

w3 ¼ 1

Ref. Case — — — 0.00 7:48 � 1021 1:01 � 104 0.11

w1 ¼ 1

w2 ¼ 0

w3 ¼ 0
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3.4 Characterization of Studied Cases. Six different config-
urations of the problem were proposed and can be classified into
two main groups: Unrestricted and Restricted. In the Unrestricted
group, the manipulator has no force acting on point D, behaving
as a moving robotic arm while the end effector keeps still. This
case has a limited relationship to four-bar mechanism dynamics
and was studied only for numerical testing proposes.

In the restricted group, linear springs or spring and damper
reaction forces act to keep point D fixed (in the context of the for-
mulation presented in this paper, the term “restricted” does not
refer to a kinematic constraint but to a set of reaction forces
caused by a support with large but finite stiffness). The first simu-
lation trials included only the reaction springs, and the dampers
were introduced later in an attempt to reduce end-point vibrations
observed in the simulations.

As summarized in Table 1, the manipulator has three torque
actuators, one for each joint and no restriction forces in case A. In
case B, springs are introduced in the horizontal and vertical direc-
tions in order to restrict the manipulator. In case C, it remains re-
stricted with springs but with only one actuator at joint A. Case D
differs from case C in that a damper force is introduced. The
mechanism with two actuators is studied in case E, with springs
and dampers. Finally, in case F, three actuators, springs, and
dampers are present. The different cases are labeled according to
the order in which the simulations were performed. By maintain-
ing this ordering scheme, it is possible to follow the way that
simulation parameters were selected to achieve numerical conver-
gence in Sec. 4. The parameters w1;w2;w3 are ones or zeros that
fit the objective function into each case studied, as shown in Table 2.
The criterion used to choose the “best” solution was based on four
aspects, listed in order of importance: (i) RIOTS normal termina-
tion; (ii) correspondence between the expected and obtained kine-
matics, (iii) absence of high torque peaks, and (iv) control curve
smoothness.

4 RESULTS

To provide a well-established reference point to compare with
the proposed method, a regular kinematic and inverse dynamics
analysis was performed [8] for the four-bar mechanism, according
to the theory presented by Ref. [1] for a single actuator (Haug
case). The trajectories of the angular coordinates and velocities are
shown in Figs. 2(a) and 2(b). All simulations were performed on an
Intel Core 2 Duo E6600, 2.40 GHz desktop computer. The associ-
ated computational times for each case are shown in Table 2.

4.1 Case A. In case A, the open-chain manipulator with three
torque actuators was expected to model the kinematics of a four-
bar mechanism, without any mechanical restriction at point D.
This situation could be interpreted as the movement of a three-
link planar robotic arm in which the first link performs a complete
revolution, while its end effector remains fixed. As has already
been pointed out, this was not a four-bar linkage and was imple-
mented only for numerical testing.

It was not possible to obtain numerical convergence in a single
OCP solution run. Following a strategy used in previous works
[29], the gravitational acceleration value was decreased to
g ¼ 4:0ðm=s

2Þ in the simulations, and the final time was reduced
to tf ¼ 0:8ðsÞ(enough time to complete about 80% of the cycle),
in an attempt to achieve a normal numerical termination. A vector
of zeros was used as the initial guess for the optimal control. The
solution obtained with tf ¼ 0:8ðsÞ was used as the initial guess for
the next simulation, with tf ¼ 0:9ðsÞ. This process was repeated
once more, with tf ¼ 1:0ðsÞ and g ¼ 4:0ðm=s

2Þ fixed. Next, the
same iterative strategy was used to vary the gravitational accelera-
tion, increasing g by 1:0ðm=s

2Þ at time, up to g ¼ 9:81ðm=s
2Þ.

The value of EPSNEQ is a measure of the violation of the con-
straint [Eq. (6)] that forces the restricted manipulator to behave as
a four-bar mechanism and was initially set to 10�3. A final simula-
tion was performed with ESPNEQ ¼ 10�5, in which the solution
of a simulation with ESPNEQ ¼ 10�3 and g ¼ 9:81ðm=s

2Þ was
used as the initial control guess. The state variables trajectories
calculated in case A perfectly match the trajectories calculated
with regular kinematic analysis of the mechanism, as can be seen
in Fig. 2. The error calculated as e ¼ jjOCPi � KAijj=jjKAijj,
where OCP and KA refer to the methods and subscript i refers to
the state variable, was below 0.002 for all variables.

4.2 Case B. In this case, horizontal and vertical springs were
introduced, as shown in Fig. 1(b). It should be expected that the
inclusion of the spring would play the role of bearing part of the
bar weight and should relieve the torque actuators from part of the
support against gravity. This hypothesis is confirmed by comparing
Figs. 3(a) and 3(b). The peaks in all torque curves of case B were
smaller than in case A, and the value of the objective function in
case B was almost 42% smaller than in case A. In fact, the objec-
tive function in case A was the highest of all cases studied.

4.3 Case C. In case C, springs were introduced at point D
and the restricted manipulator was driven by only one torque

Fig. 2 Comparison between optimal control obtained trajectories for case A with kinematic analysis of four-bar mechanism.
(OCP: optimal control problem solution, KA: expected trajectory from kinematic analysis).
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actuator at joint A. With a stiff spring, the behavior of the 3-
DOF system is assumed to be approximately that of the
closed-loop, 1 DOF four-bar linkage. In this situation, the
optimal control solution can be compared to the regular
inverse dynamics analysis.

In this case, RIOTS did not converge [Fig. 3(c)]. The strategy of
starting the simulation sequence with lower gravitational accel-
eration and smaller final time, as in case A, did not work. The ki-
nematics was reasonably reproduced, but control forces were
excessively high.

Fig. 3 Optimal controls from the best trials of each case
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4.4 Case D. The experience of case C suggested that the sim-
ulations were probably not converging due to the high-frequency
excitation force introduced by the undamped spring. Therefore, a
damper was introduced in parallel with the springs in case D, and
this new element facilitated numerical convergence. By changing
the integrator from a fixed step-size fourth-order Runge-Kutta to
LSODA (variable step-size, see details in Ref. [10]), successful
results could be obtained with a zero initial guess control vector
and tf ¼ 1:0ðsÞ. Figure 3(d) shows that the optimal control solu-
tion was similar to the torque calculated by the regular inverse dy-
namics analysis (Ref. case).

4.5 Case E. The introduction of the spring and damper pro-
duced the configuration that best represented a single actuated
four-bar mechanism. In case E, this strategy was used with two
actuators, at joints A and B. The same successful numerical condi-
tions used in the previous cases were maintained in the first trial
of case E, leading to a normal termination, employing the follow-
ing set of parameters: g ¼ 9:81ðm=s

2Þ, tf ¼ 1:0ðsÞ,
K ¼ 5:0� 104, C ¼ 1:0� 104, EPSNEQ ¼ 10�1, the LSODA in-
tegrator and a zero initial guess control vector. A smoother curve
was obtained using higher stiffness and damping constants (shown
in Table 2).

Fig. 4 Torque profiles obtained by a classical solution (DAE) and by proposed
optimal control approach (OCP), for case D
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Figure 3(e) shows that the maximum torque values were signifi-
cantly smaller than in case D, although their curves were less
smooth. This finding is consistent with the objective function
value shown in Table 2. It suggests that a four-bar mechanism
with two actuators could use smaller motors than the single actua-
tor and obtain the same kinematics.

4.6 Case F. In case F, the three-actuator configuration was
revisited, including both the spring and damper that led to good
results in cases D and E. Numerical convergence was easily
achieved with either a fixed or variable step-size integrator, with
no intermediate simulations needed. The torque curves shown in
Fig. 3(f) were less smooth than cases A and B. However, smaller
maximum torques and objective values were obtained than in case
B.

4.7 Comparison With a Classical Solution. The same prob-
lem has been solved by the authors [8] using a DAE approach.
The joint torques for the two- and three-actuator cases are shown
in Fig. 4 and 5, respectively. For the three-actuator case, the
resulting maximum joint torque requirements are comparable.
However, a significant torque reduction was observed in the OCP
solution for two actuators.

Table 2 shows the reaction forces and maximum displacements
at point D. The reaction forces were calculated by multiplying the

displacements and velocities by stiffness and damping values,
respectively. The maximum reaction forces were comparable to
those obtained in the classical solution. On the other hand, the
maximum displacements at point D were not negligible. To verify
the extent to which the solutions obtained with the optimal control
might diverge from the classical solutions due to such joint dis-
placements, the mechanism dynamics were newly integrated. The
control inputs obtained by the optimal control solution were used
to drive a forward dynamics simulation in the closed-loop mecha-
nism model (not the three-link manipulator with restrains). A
comparison of the trajectories obtained by the OCP solution and
those from the integration of the mechanism model with the OCP
controls for case D is shown in Fig. 6. This test was repeated for
all cases, and similar results were obtained.

5 Discussion

The proposed optimal control approach to solve the four-bar
inverse dynamics problem went through the following steps: The
first attempt was to control the unrestrained but fixed-endpoint
manipulator with three actuators, case A. In case B, a pair of
springs in the x and y directions was introduced. In the next step,
case C, an attempt was made to force the manipulator to behave
as a regular closed-loop four-bar mechanism, with a single actua-
tor, keeping the springs at the endpoint. However, the elastic
reaction force made the problem numerically stiff, forcing the

Fig. 5 Torque profiles obtained by a classical solution (DAE) and by proposed optimal control approach (OCP), for case E
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fourth-order Runge-Kutta fixed-step numerical integrator to be
changed to the variable-step integrator LSODA. In addition, the
oscillatory nature of the spring force with no damping produced a
nonsmooth control curve. In the next step, case D, a damper was
added and the LSODA integrator was used again. This strategy
was successful and the resulting control curve matched that
obtained using the usual inverse dynamics analysis (Fig. 3(d)).
Finally, in the last two cases, with two and three actuators—cases
E and F, respectively—were explored with the same strategy used
in case D.

Some displacement of the bar tip where the spring and damper
are connected was observed. However, only marginal differences
in the resulting kinematics were observed when the controls were
used to drive the classical four-bar closed-loop model, (Fig. 6),
especially in the accelerations.

5.1 Objective Function. From Table 2, it is possible to es-
tablish a relation between the objective function [Eq. (4)] value
and the number of actuators. The six cases studied, listed in order
of descending cost function, are: A, B, F, Ref, D, and E. Case C
was excluded, since no numerical convergence was achieved. In
the first three cases (A, B, and F), the system was driven by three
actuators. In case A, the high cost function observed may be
attributed to the absence of the support provided by the springs
and dampers, since the actuators had to bear all of the weight of
the bars. The fourth- and fifth-highest values of the objective func-
tion were observed in the cases with only one actuator. Finally,

the smallest value was achieved when the system was driven by
two actuators, case E.

5.2 Maximum Torque. If the number of actuators increases,
is it possible to choose those with smaller maximum torque specifi-
cations, which are therefore more lightweight? Table 3 shows the
maximum and minimum torques expected from each actuator, for
all cases analyzed. Case Ref. shows that it would be necessary to
select a motor with a maximum absolute torque greater than
232:0ðNmÞ for driving the mechanism to perform the prescribed ki-
nematics. When three actuators are used, maximum absolute torque
of the most requested actuator is 654.7(Nm) for case A, for 497.5
Nm case B or 433,5 Nm for case F, i.e., two to three times greater
than Ref. case.

When using two actuators, the maximum torque was only
93:0ðNmÞ, which is actually less than a half of the maximum
reached in case Ref. Thus, the solution of the redundant actuation
inverse dynamics problem with the OCP approach has shown that it
would be virtually possible to drive this four-bar mechanism using
two actuators and using much smaller actuators than the traditional
single-actuated case. This result is coherent with Ganovski et al. [6],
who also found maximum torque reduction when comparing
redundant and nonredundant pick-and-place six-bar planar paral-
lel manipulators. In a real implementation, the existence of motors
on the moving links would inevitably alter some of the properties
of the links, such as mass and inertia. This effect was not included
in the present conceptual study, since actuator specification
depends strongly on the particular application of the linkage. In
addition, torque could be delivered to the joints, in some cases, by
some kind of low-inertia transmission, like belts and chains.

6 Conclusions

An approach to solving the inverse dynamics of a redundantly
actuated four-bar mechanism formulated as an optimal control
problem has been presented. It permits the closed kinematic chain
to be modeled as an open one. However, a pair of high-stiffness
virtual springs and dampers should be included at the tip of the
chain. Therefore the resulting OCP can be formulated and solved
by correctly choosing the appropriate constraint formulation, ini-
tial control guess, and numerical algorithms. The most relevant
suggestions are including both springs and dampers, using a

Fig. 6 Cartesian trajectories, velocities and accelerations of joints 1, 2 and 3. Dotted line is OCP trajectory solution from case
D, i.e., using the restricted three-link manipulator model. Continuous line is the forward dynamics of the closed-loop four-bar
mechanism using optimal control curves from case D as external forces.

Table 3 Maximum and minimum actuator torques in a com-
plete crank cycle. Torque values in N.m

u1 u2 u3

max min max min max min
Case A 654.7 �160.4 391.1 �188.5 50.3 �72.1
Case B 497.5 �243.2 319.8 �214.9 34.0 �57.5
Case D 188.9 �199.4 — — — —
Case E 80.9 �93.0 82.2 �92.1 — —
Case F 433.5 �330.9 278.5 �264.4 41.4 �63.3
Ref. Case 203.0 �232.0 — — — —
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variable step-size integration algorithm, appropriate for stiff sys-
tems, and writing the OCP constraints as suggested in Sec. 3.3.
The main advantage is the relatively easy and straightforward
manner in which the dynamical problem can be analytically for-
mulated as an open-loop chain. Optimal control allows for a great
deal of flexibility in the formulation of objective functions, hence
different torque patterns can therefore be obtained for the same ki-
nematics. In biomechanics, finding the “most physiological” opti-
mization function is a challenging problem, and in the robotic
manipulators field, exploring this flexibility is an interesting
research topic. It should be emphasized that the solution is optimal
throughout the entire time span of the motion, not just in every sin-
gle step as in static optimization.

Regarding the case of the four-bar mechanism with the specific
geometry, mass distribution and kinematics used in this work, it
can be stated that using two actuators (case E) presented smaller
maximum torques to perform the same kinematical task than its
one-actuated (case D) or three-actuated (cases A and B) counter-
parts. It is not possible to exclude the hypothesis that some optimi-
zation solutions corresponded to local minima. This question could
be addressed adequately by using hybrid optimization algorithms,
which perform a global search, using particle swarm or genetic
algorithms, for example, and subsequently a local, more accurate
search based on gradient methods [30]. For the nonredundant one-
actuator case D, the results obtained through optimal control
closely matched those of conventional inverse dynamics analysis.

It does not seem possible to fully generalize the formulation to
a very large class of mechanisms without some trial and error
work because of the difficulties in selecting the appropriate nu-
merical algorithm, the sequence of simulations to find the initial
control guess, and the restriction support characteristics. However,
some guidelines have been presented here. Some suggestions for
future work include the following: testing the approach in a larger
class of mechanisms, such as those with drive singularities, and
studying the control patterns that could be obtained with other
cost function formulations. This approach is applicable in the bio-
mechanics field, as part of the solution to the muscular actuation
redundancy problem in closed-chain systems [31]. Another possi-
ble extension of the presented formulation is in considering active
actuators at the end chain tip, treating the reaction forces as con-
trol variables. It could open interesting perspectives on active con-
trol of vibrations in rotating machinery.
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