
27

A New Foundation for Control Dependence
and Slicing for Modern Program Structures

VENKATESH PRASAD RANGANATH, TORBEN AMTOFT,
ANINDYA BANERJEE, and JOHN HATCLIFF

Kansas State University

and

MATTHEW B. DWYER

University of Nebraska

The notion of control dependence underlies many program analysis and transformation tech-
niques. Despite being widely used, existing definitions and approaches to calculating control de-
pendence are difficult to apply directly to modern program structures because these make sub-
stantial use of exception processing and increasingly support reactive systems designed to run
indefinitely.

This article revisits foundational issues surrounding control dependence, and develops defini-
tions and algorithms for computing several variations of control dependence that can be directly
applied to modern program structures. To provide a foundation for slicing reactive systems, the
article proposes a notion of slicing correctness based on weak bisimulation, and proves that some
of these new definitions of control dependence generate slices that conform to this notion of cor-
rectness. This new framework of control dependence definitions, with corresponding correctness
results, is even able to support programs with irreducible control flow graphs. Finally, a variety
of properties show that the new definitions conservatively extend classic definitions. These new
definitions and algorithms form the basis of the Indus Java slicer, a publicly available program
slicer that has been implemented for full Java.

This work was supported in part by the US Army Research Office under DAAD190110564, by
the Air Force Office of Scientific Research under Contract FA9550-006-1-0223, by the DARPA/IXO
PCES Program under AFRL Contract F33615-00-C-3044, by the NSF under CCR-0306607, CCR-
0296182, CCR-0209205, ITR-0326577, and CCR-0444167, by Lockheed Martin, and by the Intel
Corporation.
Part of this work was published in the 2005 Proceedings of the European Symposium on Program-
ming (ESOP), Lecture Notes in Computer Science, vol. 3444, Springer.
Authors’ addresses: V. P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff, Department of Com-
puting and Information Sciences, Kansas State University, 234 Nichols Hall, Manhattan, KS
66506; email: {rvprasad,tamtoft,ab,hatcliff}@cis.ksu.edu; M. B. Dwyer, Department of Computer
Science and Engineering, University of Nebraska, 256 Avery Hall, Lincoln, NE 68588-0115; email:
dwyer@cse.unl.edu.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0164-0925/2007/08-ART27 $5.00 DOI 10.1145/1275497.1275502 http://doi.acm.org/
10.1145/1275497.1275502

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 2 • V. P. Ranganath et al.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; D.3.3 [Programming Languages]: Language Constructs and Features—
Control structures

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Nontermination, control dependence, order dependence,
program slicing, bisimulation, Indus

ACM Reference Format:
Ranganath, V. P., Amtoft, T., Banerjee, A., Hatcliff, J., and Dwyer, M. B. 2007. A new foundation
for control dependence and slicing for modern program structures. ACM Trans. Program. Lang.
Syst. 29, 5, Article 27 (August 2007), 43 pages. DOI = 10.1145/1275497.1275502 http://doi.acm.org/
10.1145/1275497.1275502

1. INTRODUCTION

The notion of control dependence underlies many program analysis and trans-
formation techniques that are used in numerous applications, including pro-
gram slicing applied for program understanding [Podgurski and Clarke 1990],
debugging [Francel and Rugaber 1999], partial evaluation [Andersen 1994],
and compiler optimizations such as global scheduling, loop fusion, and code
motion [Ferrante et al. 1987]. Intuitively, a program statement n1 is control
dependent on a statement n2 if n2 (typically, a conditional statement) controls
whether n1 will be executed or bypassed during an execution of the program.

While existing definitions and approaches to calculating control dependence
and slicing are widely applied (as cited previously) and have been used for
well over 20 years, there are several aspects of these definitions and associated
notions of correctness that prevent them from being applied cost effectively
to modern program structures, which rely significantly on exception processing
and increasingly support reactive systems that are designed to run indefinitely.

Classic Definitions of Control Dependence. These are stated in terms of pro-
gram control flow graphs (CFGs) in which the CFG has a unique end node;
they do not apply directly to program CFGs with: (a) multiple end nodes; or
(b) no end node. The first restriction implies that existing definitions cannot be
applied directly to programs/methods with multiple exit points—a restriction
that would be violated by any method that raises exceptions or includes multi-
ple returns. Similarly, and probably more damaging for practical applications,
restriction (b) implies that existing definitions cannot be applied directly to re-
active programs or to system models with control loops that are designed to run
indefinitely.

Restriction (a) is usually addressed by performing a preprocessing step that
transforms a CFG with multiple end nodes into a CFG with a single end node by
adding a new designated end node to the CFG and inserting arcs from all orig-
inal exit states to the new end node [Hatcliff et al. 1999; Podgurski and Clarke
1990]. Such a transformation actually has some benefits, like providing a single
node that contains the final values of global variables. Restriction (b) can also
be addressed in a similar fashion by, for example, selecting a single node within
the CFG to represent the end node. This case is significantly more problematic

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 3

than the preprocessing for restriction (a) because the criteria for selecting end
nodes that lead to the desired control dependence relation between program
nodes is often unclear (as illustrated in Section 3.2). This is particularly true
in threads such as event handlers, which have no explicit shut-down methods,
but are “shut down” by killing the thread (thus, there is no explicit exit point
in the thread’s control flow).

Existing Definitions of Slicing Correctness. These either apply to programs
with terminating execution traces, or often fail to state whether the slicing
transformation preserves the termination behavior of the program being
sliced. Thus, these definitions cannot be applied to reactive programs that are
designed to execute indefinitely. Such programs are used in numerous modern
applications such as event-processing modules in GUI systems, web services,
and real-time systems with autonomous components (e.g., data sensors, etc.).

Despite these difficulties, it appears that researchers and practitioners do
continue to apply slicing transformations to programs that fail to satisfy the
aformentioned restrictions. However, in reality the preprocessing transfor-
mations related to the first issue introduce extra overhead into the trans-
formation pipeline, clutter up program transformation and visualization fa-
cilities, necessitate the use/maintenance of mappings from the transformed
CFGs back to the original CFGs, and introduce extraneous structure with ad
hoc justifications that all downstream tools/transformations must interpret
and build on in a consistent manner. Moreover, regarding the second issue,
it will be infeasible to continue to ignore problems with termination, since
slicing is increasingly applied in high-assurance applications such as reduc-
ing models for verification [Hatcliff et al. 2000] and for reasoning about se-
curity issues where it is crucial that liveness/nontermination properties be
preserved.

Working on a larger project concerning slicing concurrent Java programs, we
have found it necessary to revisit basic issues surrounding control dependence,
and have sought to develop definitions that can be directly applied to modern
program structures such as those found in reactive systems. In this article,
we propose and justify the usefulness and correctness of simple definitions of
control-based dependence that overcome the problematic aspects of the clas-
sic definitions described earlier. The specific contributions of this work are as
follows.

—After reviewing and assessing classic definitions of control dependence in
Sections 2 and 3, we propose new definitions that are simple to state, easy to
calculate, and that apply directly to control flow graphs that may have no or
nonunique end nodes, thus avoiding troublesome preprocessing CFG trans-
formations. We formalize these definitions and also supplement the formal-
ization by providing equivalent definitions in computation tree logic (CTL)
(Section 4).

—To also enable slicing based on these new general definitions to preserve
semantics (particularly reduction order) for CFGs (with or without unique
end nodes) that are irreducible, we propose a new kind of control-based

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 4 • V. P. Ranganath et al.

dependence that captures the control-flow-imposed ordering relationships
between a CFG’s nodes (Section 4.4).

—We clarify the relationship between our new definitions and classic ones by
showing that ours represent a form of “conservative extension” of classic
definitions: When applied to CFGs that conform to the restriction of a sin-
gle end node, our new definitions correspond to classic ones; they neither
introduce additional dependences nor omit any (Section 4.5).

—We prove that some of the proposed definitions when applied to CFGs, yield
slices that are correct according to generalized notions of slicing correctness
based on a form of weak bisimulation that is appropriate for programs with
infinite execution traces (Section 5.1).

—We provide polynomial-time algorithms to calculate control and order depen-
dences according to the proposed definitions (Section 6).

Although we have developed our new control dependence definitions in the
context of slicing, they are applicable to other domains. For example, they also
seem useful for calculating control dependences for state machines, which often:
(a) do not conform to the unique end node restriction; and (b) have irreducible
control flow graphs.

The notions of control dependence proposed in this article have been imple-
mented in our Java slicer that is publicly available as part of project Indus
[SAnToS Laboratory 2007]. Our Java slicer can handle almost1 all features of
Java 1.4. We have successfully applied the slicer to Java applications consti-
tuting up to 10,000 lines of code. The slicer is also used by Kaveri [Jayaraman
et al. 2004], a plugin that contributes Java program slicing features to the
Eclipse platform. Besides the slicer’s application as a stand-alone program un-
derstanding, debugging, and code transformation tool, it is being used in the
next generation of our Bandera [Corbett et al. 2000] tool set for model-checking
concurrent Java systems.

In this foundational work, we shall address only intraprocedural control
dependences, and also assume that all data resides in variables. Although
we addressed a number of challenging issues, including heap-allocated data,
exceptions, and concurrency, while exploring the proposed theory in Indus,
in this work, we focus closely on foundational issues of intraprocedural con-
trol dependences in a setting that excludes concurrency, exceptions, and heap-
allocated data. Extending our theory to formally justify the slicing of programs
in richer settings (as described earlier and as done by our tools (compare with
the preceding)) is an exciting topic for future work, but outside the scope of this
article.

Extensions to the Conference Version. This document extends its ESOP’05
predecessor [Ranganath et al. 2005] with a new notion of control-based de-
pendence that is necessary to correctly handle irreducible CFGs with no end
nodes. A detailed correctness proof for slicing both reducible and irreducible
CFGs is presented; it relies on the proposed notion of dependences. We also

1With the exception of handling reflection, native methods, and dynamic class loading.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 5

provide algorithms to calculate four forms of control-based dependences, along
with their proof of correctness.

2. STANDARD DEFINITIONS

2.1 Control Flow Graphs

When dealing with foundational issues of control dependence, researchers often
cast their work in terms of a simple imperative language phrased in terms of
control flow graphs. We follow that practice here and base our presentation on
a definition of the control flow graph adapted from Ball and Horwitz [1993].

Definition 1 (Control Flow Graphs). A control flow graph G = (N, E, n0) is
a labeled directed graph in which:

—N is a set of nodes that represent statements in a program;
—N is partitioned into two subsets NS and NP, where NS are statement nodes

with each ns ∈ NS having at most one successor, and where NP are predicate
nodes with each np ∈ NP having two distinct successors;

—NE ⊆ NS denotes the nodes in NS that have no successors, namely, the end
nodes of G;

— E is a set of labeled edges that represent the control flow between graph
nodes; and

—the start node n0 has no incoming edges, and all nodes in N are reachable
from n0.

If NE contains exactly one element, and this element is reachable from all other
nodes of G, we say that G satisfies the unique end node property.

As stated earlier, existing presentations of slicing require that each CFG G
satisfies the unique end node property. We shall present alternative definitions
that do not rely on that property, but which are equivalent to existing definitions
for CFGs that do have a unique end node.

It is easy to see how to translate a procedure (method) body into a CFG. To
relate a CFG with the program that it represents, we use the function code to
map a CFG node n to the code for the program statement that corresponds to
that node. The function def maps each node to the set of variables defined (i.e.,
assigned to) at that node (always a singleton or empty set), and ref maps each
node to the set of variables referenced at that node. Specifically, an assignment
statement x := E is represented as a node ns ∈ NS with code(ns) = (x := E),
def(ns) = {x}, and ref(ns) = fv(E) (the free variables of E). A goto statement (or
break statement) is represented as a node ns ∈ NS with def(ns) = ref(ns) = ∅,
and a branching statement is represented as a node np ∈ NP with def(ns) = ∅,
but ref(ns) �= ∅.

A CFG path π from ni to nk is a sequence of nodes ni, ni+1, . . . , nk such that
for every consecutive pair of nodes (nj, nj+1) in the path, there is an edge from
nj to nj+1. A path between nodes ni and nk can also be denoted as [ni..nk]. When
the meaning is clear from the context, we will use π to denote the set of nodes

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 6 • V. P. Ranganath et al.

contained in π and we write n ∈ π when n occurs in the sequence π . Path π is
nontrivial if it contains at least two nodes. A path is maximal if it is infinite or
terminates in an end node.

The following definitions describe relationships between graph nodes, and
are expressed using the distinguished start node, or (if such exists) the distin-
guished end node [Muchnick 1997]. Node n dominates node m in G (written
dom(n, m)) if every path from the start node s to m passes through n (note that
this makes the dominates relation reflexive). For a CFG G with unique end
node ne, node n postdominates node m in G (written post-dom(n, m)) if every
path from node m to ne passes through n. Node n strictly postdominates node
m in G if post-dom(n, m) and n �= m. Node n is the immediate postdominator of
node m if n �= m and n is the first postdominator on every path from m to the
end node ne; it is easy to see that all nodes but the end node have a (necessarily
unique) immediate postdominator. Node n strongly postdominates node m in
G if n postdominates m and there is an integer k ≥ 1 such that every path
from node m of length ≥ k passes through n [Podgurski and Clarke 1990]. The
difference between strong postdomination and the earlier simple definition of
postdomination is that even though node n occurs on every path from m to ne

(and thus n postdominates m), it may be the case that n does not strongly
postdominate m due to a loop in the CFG between m and n that admits
an infinite path beginning at m and not containing n. Hence, strong post-
domination is sensitive to the possibility of nontermination along paths from
m to n.

A CFG G of the form (N, E, n0) is reducible if E can be partitioned into disjoint
sets E f (the forward edge set) and Eb (the back edge set) such that (N, E f) forms
a DAG in which each node can be reached from the start node n0 and for all edges
e ∈ Eb, the target of e dominates the source of e. All “well-structured” programs,
including those of Java, give rise to reducible control flow graphs. A CFG that
is not reducible is referred to as an irreducible CFG. The Java virtual machine
bytecode language allows for the construction of programs whose corresponding
control flow graphs are irreducible. In this article, we shall present definitions
and correctness results that apply to both reducible and irreducible control flow
graphs.

2.2 Program Execution

The execution semantics of program CFGs is phrased in terms of transitions
on program states (n, σ), where n is a CFG node and σ is a store mapping the
corresponding program’s variables to values. A series of transitions gives an
execution trace through p’s statement-level control flow graph. It is important
to note that when execution is in state (ni, σi), the code at node ni has not yet
been executed. Intuitively, the code at ni is executed on the transition from
(ni, σi) to successor state (ni+1, σi+1). Execution begins at the start node (n0, σo),
and the execution of each node possibly updates the store and transfers control
to an appropriate successor node. Execution of a node ne ∈ NE produces a
final state (halt, σ) where the control point is indicated by a special label halt—
this indicates a normal termination of program execution. The presentation of

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 7

slicing in Section 5 involves arbitrary finite and infinite nonempty sequences
of states written � = s1 , s2,

2.3 Notions of Dependence and Slicing

A program slice consists of the parts of a program p that (potentially) affect
the variable values that are referenced at some program points of interest
[Tip 1995]. Traditionally, the “program points of interest” are called the slic-
ing criterion. A slicing criterion C for a program p is a nonempty set of nodes
{n1, . . . , nk}, where each ni is a node in p’s CFG.

The definitions to follow are the classic ones of the two basic notions of de-
pendence that appear in slicing of sequential programs: data dependence and
control dependence [Tip 1995].

Data dependence captures the notion that a variable reference is dependent
upon any variable definition that “reaches” the reference.

Definition 2 (Data Dependence). Node n is data dependent on m in program

p (written m
dd→ n with the arrow pointing in the direction of data flow) if there

is a variable v such that:

(1) v ∈ def(m) ∩ ref(n); and
(2) there exists a nontrivial path π in p’s CFG from m to n such that for every

node m′ ∈ π − {m, n}, v /∈ def(m′).

Control dependence information identifies the conditionals that may affect
execution of a node in the slice. Intuitively, node n is control dependent on a
predicate node m if m directly determines whether n is executed or “bypassed.”

Definition 3 (Standard Control-Dependence). Node n is control dependent

on m in program p (written m
cd→ n) if:

(1) There exists a nontrivial path π from m to n in p’s CFG such that every
node m′ ∈ π − {m, n} is postdominated by n; and

(2) m is not strictly postdominated by n.

For a node n to be control dependent on predicate m, there must be two
paths that connect m with the unique end node ne such that one contains n and
the other does not. There are a number of slightly different notions of control
dependence appearing in the literature, and we will consider several of these
variants as well as relations between them in the rest of the article. Here we
simply note that the preceding definition is standard and widely used (e.g., see
Muchnick [1997]).

We write m
d→ n when either m

dd→ n or m
cd→ n. The algorithm for con-

structing a program slice proceeds by finding the set of CFG nodes SC (called
the slice set) from which the nodes in C are reachable via

d→.

Definition 4 (Slice Set). Let C be a slicing criterion for program p. Then
the slice set SC of p with respect to C is defined as follows:

SC = {m | ∃n . n ∈ C and m
d

→∗ n}
ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 8 • V. P. Ranganath et al.

Fig. 1. (a) A simple CFG; (b) illustration of how a CFG that does not have a unique exit node
reachable from all nodes can be augmented to have such; (c) a CFG with multiple control sinks of
different sorts.

The aforementioned notion of slicing is referred to as “backward static slic-
ing” because the algorithm starts at the criterion nodes and looks backward
through the program’s control flow graph to find other program statements
that influence the execution at the criterion nodes. In this article we consider
only backward slices, but our definitions of control dependence can be applied
when computing forward slices as well.

In many cases in the slicing literature, the desired correspondence between
source program and slice is not formalized because the emphasis is often on
applications rather than foundations, and this also leads to subtle differences
between presentations. When a notion of “correct slice” is given, it is often stated
using the notion of projection [Weiser 1984]. Informally, given an arbitrary trace
� of p and an analogous trace �s of ps, one will say that ps is a correct slice
of p if projecting out the nodes in criterion C (and the variables referenced at
those nodes) for both � and �s yields identical state sequences. We will consider
slicing correctness requirements in greater detail in Section 5.1.

3. ASSESSMENT OF EXISTING DEFINITIONS

3.1 Variations in Existing Control Dependence Definitions

Although the definition of control dependence that we stated in Section 2 is
widely used, there are a number of (sometimes subtle) variations appearing
in the literature. One dimension of variation is whether the particular defi-
nition captures only direct control dependence, or also admits indirect control
dependences. For example, consider the CFG in Figure 1(a): Using the charac-
terization of control dependence in Definition 3, we can conclude that a

cd→ f
and f

cd→ g , but a
cd→ g does not hold because g does not postdominate f.

The fact that a and g are indirectly related (a does play a role in determining
whether g is executed or bypassed) is not captured in the definition of control
dependence itself, but in the transitive closure used in the slice-set construction
(Definition 4). However, as we will illustrate later, some definitions of control
dependence [Podgurski and Clarke 1990] directly incorporate this notion of
transitivity.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 9

Another dimension of variation is whether the particular definition is sen-
sitive to nontermination. Consider again Figure 1(a), where node c represents
a posttest that controls a loop which may be infinite (one cannot tell by simply
looking at the CFG). According to Definition 3, a

cd→ d holds but c
cd→ d does

not (because d postdominates c), even though c may determine whether d exe-
cutes or never gets to (due to an infinite loop that postpones d forever). Thus,
Definition 3 is non-termination insensitive.

We now further illustrate these dimensions by recalling the definitions of
strong and weak control dependence given by Podgurski and Clarke [1990] and
used in numerous efforts, including the study of control dependence by Bilardi
and Pingali [1996].

Definition 5 (Podgurski-Clarke Strong Control Dependence). n2 is strongly
control dependent on n1 (n1

scd→ n2) if there is a path2 from n1 to n2 that does not
contain the immediate postdominator of n1.

The notion of strong control dependence is almost identical to control depen-
dence in Definition 3, except that strong control dependence is indirect whereas
the control dependence in Definition 3 is direct. For example, in Figure 1(a), in
contrast to Definition 3, we have a

scd→ g because there is a path afg which does
not contain e, the immediate postdominator of a. However, given the directness
difference between these variants, it is not surprising that when used in the
context of Definition 4 (which computes the transitive closure of dependences),
the two definitions give rise to the same slices.3

Definition 6 (Podgurski-Clarke Weak Control Dependence). n2 is weakly
control dependent on n1 (n1

wcd→ n2) if n2 strongly postdominates n′
1, which is a

successor of n1, but does not strongly postdominate n′′
1, another successor of n1.

The notion of weak control dependence captures dependences between nodes
induced by nontermination, hence, is nontermination sensitive. Note that in
Figure 1(a), c

wcd→ d because d is a successor of c and strongly postdominates it-
self, and d does not strongly postdominate b: The presence of the loop controlled
by c guarantees that there does not exist a k such that every path from node b
of length ≥ k passes through d. Also, in contrast to the notion of strong control

2We could specify that this path should be nontrivial, as otherwise it will hold for all n1 that
n1

scd→ n1, but since such spurious dependences do not contribute to the slice set, we shall not bother
about that.
3To see this, first assume that m

cd→ n with m �= n, that is, n does not postdominate m, and there
exists a path π from m to n such that n postdominates all nodes in π except for m. We shall prove
that π is a witness that m

scd→ n does hold, and do so by contradiction; we thus assume that π contains
a node u which is the immediate postdominator of m. Since u �= m, it holds that n postdominates
u. As postdomination is transitive, n postdominates m, yielding the desired contradiction.

Conversely, assume that m
scd→ n with m �= n, that is, with u as the immediate postdominator of

m, there exists a path π from m to n that does not contain u. We shall prove that m
cd→∗ n does hold,

by induction on the length of π . Since n does not postdominate m (as otherwise π would contain u)
but does postdominate itself, there exists n1 ∈ π such that n does not postdominate n1, but does
postdominate all nodes after n1 in π . This shows that n1

cd→ n. If m = n1, we are done. Otherwise,
since clearly m

scd→ n1, the induction hypothesis yields the claim.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 10 • V. P. Ranganath et al.

Table I. Various Control Dependences Existing in the Graph in Figure 1(a)

Nodes
cd→ scd→ wcd→ ntscd→ nticd→

a b, c, d , f , h b, c, d , f , g , h b, c, f , h, e b, c, f , h, e b, c, d , f , h
c b, c b, c b, c, d , e b, c, d , e b, c
f g g g g g

Control dependences denoted by
ntscd→ and

nticd→ will be introduced in the following pages.

dependence, the notion of weak control dependence is direct. For instance, in
Figure 1(a), we do not have a

wcd→ g . Hence, n1
scd→ n2 does not imply n1

wcd→ n2,
but n1

scd→ n2 does imply4 n1
wcd→

∗
n2.

In assessing the aforementioned variants of control dependence in the con-
text of program slicing, it is important to note that slicing based on strong
control dependence (Definition 5, or equivalently, Definition 3) can transform
a nonterminating program into a terminating one (i.e., nontermination is not
preserved in the slice). In Figure 1(a), assume that the loop controlled by c is
infinite. Using the slice criterion C = {d}, slicing using strong control depen-
dence would generate a slice that includes a, but not b and c (we assume no
data dependence between d and either b or c). Thus, in the sliced program, one
would be able to observe an execution of d, but such an observation is not pos-
sible in the original program because execution diverges before d is reached.
This shows that there is a profound difference between strong and weak control
dependence. In contrast, the difference between direct and indirect statements
of control dependence seems to amount to a largely technical stylistic decision
in how the definitions are stated. Table I shows the control dependences that
arise in the CFG of Figure 1(a) for various notions of control dependence that
we are considering in this work.

Very few efforts consider the nontermination-sensitive notion of weak control
dependence described earlier. We conjecture that there are at least two reasons
for this. First, although it bears the qualifier “weak,” weak control dependence
produces a larger transitive closure and will thus include more nodes in the
slice.5 Second, many applications of slicing focus on debugging, program visual-
ization, and understanding, and as such, in these applications having slices that
preserve nontermination is less important than having smaller slices. However,
slicing is increasingly used in security applications and as a model-reduction
technique for software model-checking. In these applications, it is quite impor-
tant to consider variants of control dependence that preserve nontermination
properties, since failure to do so could allow inferences to be made that compro-
mise security policies, for instance, invalidating checks of liveness properties
[Hatcliff et al. 2000]. Our definitions of control dependence and slicing, to be
presented later in this work, are motivated by careful consideration of nonter-
minating program behaviors.

4As can actually be shown by combining results presented later in this article:
scd→ implies (see

Footnote 3)
cd→∗ implies (Theorem 1)

nticd→ ∗ implies (Theorem 4)
ntscd→ ∗ implies (Theorem 3)

wcd→∗.
5In Figure 1(a), the transitive closure of strong and weak control dependence starting from d are
{a} and {a, c}, respectively.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 11

3.2 Unique End Node Restriction on CFGs

All definitions of control dependences of which we are aware require that CFGs
satisfy the unique end node requirement, but many software systems fail to sat-
isfy this property. Existing works simply require that CFGs have this property,
or suggest that CFGs can be augmented to achieve such, for example, by using
the following steps: (1) Insert a new node e into the CFG, (2) add an edge from
each exit node (other than e) to e, (3) pick an arbitrary node n in each nontermi-
nating loop and add an edge from n to e. In our experience, such augmentations
complicate the system being analyzed in several ways. Nondestructive aug-
mentation performed by cloning the CFG and augmenting the clone would cost
time and space. Destructive augmentation performed by directly augmenting
the CFG may clash with the requirements of other clients of the CFG, thus
necessitating reversal of the augmentation before subsequent clients use the
CFG. Otherwise, graph and analysis algorithms should be made to operate on
the actual CFG embedded in the augmented version.

Many systems have threads where the main control loop has no exit; the
loop is “exited” simply by killing the thread. For example, in the Xt library,
most applications create widgets, register callbacks, and call XtAppMainLoop()
to enter an infinite loop that manages the dispatching of events to the widgets
in the application. In PalmOS, applications are designed so as to start upon
receiving a start code, execute a loop, and terminate upon receiving a stop code.
However, the application may choose to ignore the stop code during execution.
Hence, the application may not terminate, except when explicitly killed. In
such cases, a node in the loop must be picked as the loop exit node for the
purpose of augmenting the CFG of the application. But this can disrupt the
control dependence calculations. In Figure 1(b), we would intuitively expect
e,b,c, and d to be control dependent on a in the unaugmented CFG. However,
a

wcd→ {e, b, c} and c
wcd→ {b, c, d , f } in the augmented CFG. It is trivial to prune

dependences involving f. However, now there are new dependences c
wcd→ {b, c, d }

which did not exist in the unaugmented CFG. From the given example, one may
be tempted to believe that a solution would be to delete any dependence on c, but
this would fail if there exists a node g that is a successor of c and a predecessor
of d. Also, a

wcd→ d exists in the unaugmented CFG but not in the augmented
one, and it is not obvious how to recover this dependence.

We address these issues head-on by considering alternate definitions of con-
trol dependence that do not impose the unique end node restriction.

4. NEW DEPENDENCE DEFINITIONS

In previous definitions, a control dependence relationship where nj is depen-
dent on ni is specified by considering paths from ni and nj to a unique CFG
end node; essentially, ni and the end node delimit the path segments that are
considered. Since we aim for definitions that apply when CFGs do not have an
end node or have more than one, we aim to instead to specify that nj is control
dependent on ni by focusing on paths between ni and nj. Specifically, we focus
on path segments that are delimited by ni at both ends, intuitively correspond-
ing to the situation in a reactive program where rather than reaching an end

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 12 • V. P. Ranganath et al.

node, a program’s behavior begins to repeat itself by returning again to ni. At a
high level, the intuition behind control dependence remains the same as in, for
instance, Definition 3: Executing one branch of ni always leads to nj, whereas
executing another branch of ni can cause nj to be bypassed. The additional con-
straints (e.g., nj always occurs before any occurrence of ni) limit the region in
which nj is seen or bypassed to segments leading up to the next occurrence of
ni, ensuring that ni is indeed controlling nj.

Road map. We shall propose in Definition 7 a general notion of control de-
pendence which is sensitive to nontermination, called

ntscd→ ; it turns out that
ntscd→

can be given an equivalent (Lemma 2) but simpler formulation (Definition 16).
This new notion (Theorem 3) is a conservative extension of weak control depen-
dence (compare with Definition 6) in that they agree on CFGs with the unique
end node property.

Similarly, we propose in Definition 10 a general notion of control dependence
which is insensitive to nontermination, called

nticd→ . As expected,
nticd→ produces

(Theorem 4) a slice set which, in general, is a subset of what is produced by
ntscd→ .

This new notion (Theorem 1) is a conservative extension of standard control
dependence (compare with Definition 3) in that they agree on CFGs with the
unique end node property.

In Theorem 6 we state the correctness of slicing; the formulation is based
on bisimulation and therefore particularly requires slicing to preserve termi-
nation. For that to be the case, we must demand the slice set to be closed, not
just under

nticd→ (as well as under
dd→), but even under

ntscd→ . Furthermore, for
irreducible graphs we must in addition demand the slice set to be closed un-
der “decisive order dependence” (Definition 12), a requirement which is void
(Lemma 3) for reducible CFGs.

If the slice set is only closed under
nticd→ but not under

ntscd→ , then loops may be
sliced away so that the sliced program terminates more often than the original.
In that case, we can aim for no more than “partial correctness,” as will be
established in a forthcoming paper by some of the authors.

Additional variations of control dependence are proposed that we be-
lieve will prove useful in specialized settings: (1) decisive control dependence
(Definition 11) is a variant of

ntscd→ which is relevant in identifying control fron-
tiers ideal in control flow graphs with high branching (as in the case of excep-
tions); and (2) several variants (strong (Definition 13), weak (Definition 14),
data-sensitive (Definition 15)) of order dependence relevant in reasoning about
the influence of control flow in programs with irreducible control flow graphs.

4.1 Nontermination-Sensitive Control Dependence

The next definition considers maximal (which includes infinite) paths and thus
is sensitive to nontermination.

Definition 7 (ni
ntscd→ nj). In a CFG, nj is (directly) nontermination-sensitive

control dependent on node ni iff ni has at least two successors, nk and nl, such
that:

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 13

(1) For all maximal paths π from nk, nj always occurs in π and either ni = nj

or nj strictly (nj �= ni) precedes any occurrence of ni in π ; and
(2) there exists a maximal path π0 from nl on which either nj does not occur, or

ni strictly precedes any occurrence of nj in π0.

Remark 1. When we, as earlier, write “nj strictly precedes any occurrence
of ni in π ,” we mean that: (a) nj occurs in π ; and either (b1) ni does not occur in
π ; or (b2) the first occurrence of nj in π is earlier than the first occurrence of ni.

We supplement6 a traditional presentation of dependence definitions with
definitions given as formulas in computation tree logic (CTL) [Clarke et al.
1999]. CTL is a logic for describing the structure of sets of paths in a graph,
making it a natural language for expressing control dependences. Informally,
CTL includes two path quantifiers, E and A, which indicate whether a path
from a given node with a given structure exists, or if all paths from that node
have the given structure. The structure of a path is defined using one of five
modal operators (we refer to a node satisfying the CTL formula φ as a φ-node):
Xφ states that the successor node is a φ-node, Fφ states the existence of a
φ-node in the path, Gφ states that a path consists entirely of φ-nodes, φ Uψ

states the existence of a ψ-node and that the subpath leading up to that node
consists of φ-nodes, and finally, the φ Wψ operator is a variation on U that
relaxes the requirement that a ψ-node exists (if not, all nodes in the path must
be φ-nodes). In a CTL formula, path quantifiers and modal operators occur in
pairs, for example, AFφ says that on all paths from a node, the φ node occurs.
A formal definition of CTL can be found in Clarke et al. [1999].

The following CTL formula captures the previous definition of control
dependence.

ni
ntscd→ nj = (G, ni) |= EX(A[¬ni Unj]) ∧ EX(E[¬nj W(¬nj ∧ ni)])

Here, (G, ni) |= expresses the fact that the CTL formula is checked against the
graph G at node ni. The two conjuncts are essentially a direct transliteration
of the aforementioned natural language.

We have formulated the preceding definition to apply to execution traces
instead of CFG paths. In this setting, one needs to bound relevant segments by
ni, as discussed before. However, when working on CFG paths, the conditions
in Definition 7 can actually be simplified to read as follows: (1) For all maximal
paths from nk, nj always occurs; and (2) there exists a maximal path from nl on
which nj does not occur. The corresponding CTL formula would be

ni
ntscd→ nj = (G, ni) |= EX(AF(nj) ∧ EX(EG(¬nj)).

See Section 4.5 (Lemma 2 and Theorem 2) for the proof that Definition 7 and
its simplification are equivalent on CFGs.

6The development in this article is based on traditional path reasoning (even the proof of Theorem 2,
which states the equivalence between two CTL formulas). The reason for rephrasing our defini-
tions into CTL is to encourage exploration of a model-checking approach to computing control
dependences.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 14 • V. P. Ranganath et al.

Examples. To see that Definition 7 is nontermination sensitive, note that
c

ntscd→ d in Figure 1(a), since there exists a maximal path (i.e., an infinite loop
between b and c) where d never occurs. Moreover, the definition corresponds
to our intuition in Section 3.2 in that, in the unaugmented part of Figure 1(b),
a

ntscd→ e because there is an infinite loop through b, c, d that does not contain
e, and a

ntscd→ {b, c, d } because there is maximal path ending in e that does not
contain b, c, or d .

In Figure 1(c), we have a
ntscd→ b, as the first execution of b depends on the

choice made at a. Likewise, a
ntscd→ c, a

ntscd→ f , a
ntscd→ h, a

ntscd→ e, and f
ntscd→ g .

On the other hand, f �ntscd→ h, since, independent of the choice made at f, the
control will always reach h. We have c

ntscd→ b, c
ntscd→ c, and also c

ntscd→ d , since
if b → c → b is an infinite loop, control will never reach d. Note that d

ntscd→ i
because there is an infinite path from j (cycle on j d j) on which i does not occur
(though it is also possible that that the control will bypass i in one iteration,
while reaching i in a subsequent iteration, depending on the choice made at d).

4.2 Nontermination-Insensitive Control Dependence

We now turn to constructing a nontermination-insensitive version of control
dependence. The earlier described nontermination-sensitive definition consid-
ered all paths leading out of a conditional. Now, we need to limit the reasoning
to finite paths that reach a terminal region of the graph. To handle this in the
context of CFGs that do not have the unique end node property, we generalize
the concept of end node to control sink: a set of nodes such that each in the set
is reachable from every other in the set and there is no path leading out of the
set. More precisely,

Definition 8 (Control Sink). A control sink κ is a set of CFG nodes that form
a strongly connected component such that for each n ∈ κ, each successor of n is
also in κ.

Observe that each end node forms a control sink, as does each loop without
any exit edges in the graph. For example, {e} and {b, c, d } are control sinks in
Figure 1(b) unaugmented, and {e} and {d , i, j } are control sinks in Figure 1(c).

Definition 9 (Sink-Bounded Path). The set of sink-bounded paths from nk

(denoted SinkPaths(nk)) contains all maximal paths π from nk with the property
that there exists a control sink κ such that:

—π contains a node ns from κ (hence, all nodes following ns in π will also belong
to κ); and

—if π is infinite, then all nodes in κ will occur in π infinitely often.

We shall discuss the latter requirement later in this section. Note that for a
CFG with unique end node ne, a path is sink bounded iff it ends in ne; also note
that if π1 is a suffix of π2, then π1 is sink bounded iff π2 is sink bounded. Given
a control flow graph, the minor formed by contracting the strongly connected
components of the control flow graph will be a DAG with the control sinks
contracted into leaf nodes. This shows

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 15

Table II. Various Control Dependences
(based on new definitions) Existing in

the Graph in Figure 1(c)

Nodes
ntscd→ nticd→

a b, c, f , h, e b, c, d , i, j , f , h, e
c b, c, d , j b, c
d i −
f g g

LEMMA 1. All finite paths can be extended into sink-bounded paths.

Existing definitions [Ball and Horwitz 1993; Podgurski and Clarke 1990;
Bilardi and Pingali 1996] of nontermination-insensitive control dependence
rely on reasoning about paths from the conditional to the end node. We gener-
alize this to reason about paths from a conditional to control sinks.

Definition 10 (ni
nticd→ nj). In a CFG, nj is (directly) nontermination-

insensitive control dependent on ni iff ni has at least two successors, nk and
nl, such that:

(1) For all paths π ∈ SinkPaths(nk), nj ∈ π ; and
(2) there exists a path π ∈ SinkPaths(nl) such that nj �∈ π .

This definition is expressed in CTL as

ni
nticd→ nj = (G, ni) |= EX(ÂF(nj)) ∧ EX(ÊG(¬nj)),

where Â and Ê represent quantification over sink-bounded paths only; note
the similarity to the simplified formula for

ntscd→ mentioned earlier.

Examples. To see that this definition is nontermination insensitive, note
that c �nticd→ d in Figure 1(a), since there does not exist a path from b to a control
sink ({e} is the only control sink) that does not contain d . Again, in Figure 1(b),
unaugmented, a

nticd→ e because there is a path from b to the control sink {b, c, d }
and neither the path nor the sink contains e, and a

nticd→ {b, c, d } because there
is a path ending in control sink {e} that does not contain b, c, or d .

The dependences of Figure 1(c) are listed in Table II. Most of the
nontermination-sensitive control dependences also hold in the nontermination-
insensitive case, except for three, explained next. First observe that in a
nontermination-insensitive setting, loops are assumed to be terminating, pro-
vided that the loop has an exit node. Therefore we have c �nticd→ d , since the loop
b → c → b is assumed terminating because it has an exit edge c → d . Also, we

have c �nticd→ j , as j belongs to the control sink that terminates all sink-bounded
paths from c.

Finally, we have d �nticd→ i, even though {d , i, j } is a control sink and there
is a maximal path from d that avoids i (by choosing j over i each time), but
this path is not sink bounded, thanks to the last requirement in Definition 9,
which requires i to occur infinitely often. This “fairness” requirement has as

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 16 • V. P. Ranganath et al.

Fig. 2. More control flow graphs.

the consequence that even though there may be control structures inside of a
control sink, they will not give rise to any control dependences. In applications
where one desires to detect such dependences, one may apply the definition to
control sinks in isolation with back edges removed, or use order dependence
(described to follow in Definition 14).

Alternatively, we might drop the fairness requirement. That would make no
difference for a CFG with a unique end node. For a CFG without a unique end
node, the relation ni

nticd→ nj might change, but would still satisfy the properties
listed later in this work (e.g., Theorem 4). We leave this to further experiments,
particularly when conducted in a concurrent context, to decide the respective
merits of the two definitions.

4.3 Decisive Dependence

In languages like Java, exception-based control flow paths give rise to control
flow graphs with shapes similar to that in Figure 2(a). In this CFG, b

cd→ c, b
cd→

d , and c
cd→ d . In the case of b

cd→ d , it is possible for the control to reach d
even if the control flows along b → c. Hence, b does not decisively determine
whether control can bypass d. However, in case of c

cd→ d , c does decisively
determine whether control can bypass d. The decisiveness stems from the fact
that the choice at the control point (c), which prevents the control from reaching
the given program point (d), is final. Hence, the decisive control dependence
relation can be defined as follows.

Definition 11 (ni
dcd→ nj). In a CFG, nj is (directly) decisively control depen-

dent on node ni iff ni has at least two successors, nk and nl, such that:

(1) For all maximal paths from nk, nj always occurs and either nj = ni or nj

strictly precedes ni; and
(2) for all maximal paths from nl, nj does not occur or is strictly preceded

by ni.

For Figure 2(a), we do indeed have c
dcd→ d and b �dcd→ d .

Although Definitions 7 and 11 are almost identical, they differ in quantifica-
tion in the second clause. Hence, the previous definition implies Definition 7.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 17

Decisive control dependence is useful to answer the question “which is the
control point beyond which the control cannot reach the given program point?”
This information is useful when trying to understand procedures with multiple
exit points that are embedded in a nested control structure.

4.4 Order Dependence

Programs written in unstructured languages such as JVM bytecode can give
rise to irreducible CFGs for which previous definitions prove to be insufficient
to capture dependences. For example, in Figure 2(b), b and c cannot be related
to a by any of the aforementioned dependences, as, given the shape of the CFG,
the control will reach b and c once it enters the control sink {b, c}. However, a
does influence whether b or c will be executed first. In other words, the order in
which b and c are executed within the control sink is determined by a. To capture
ordering relationships between nodes such as a, b, and c in irreducible regions
of a CFG, we propose a new notion of dependence called order dependence.

Definition 12 (n1
dod→ n2 � n3). Let n1, n2, n3 be distinct nodes. The pair of

nodes n2 and n3 are strongly order-dependent on n1, written n1
dod→ n2 � n3, if:

(1) All maximal paths from n1 contain both n2 and n3;
(2) n1 has a successor from which all maximal paths7 contain n2 before any

occurrence of n3; and
(3) n1 has a successor from which all maximal paths contain n3 before any

occurrence of n2.

We shall use decisive order dependence in our exposition about slicing and
the associated correctness proofs.

Observe that the preceding definition is decisive, as it requires that n1 be
the final control point to decide the execution order between n2 and n3. By
relaxing this requirement, we can arrive at a relatively weaker relation which
we shall refer to as strong order dependence. As given in the following definition,
universal quantification on maximal paths is required for one of n2 and n3, the
successor nodes of n1.

Definition 13 (n1
sod→ n2 � n3). Let n1, n2, n3 be distinct nodes. Both n2 and

n3 are strongly order-dependent on n1, written n1
sod→ n2 � n3, if:

(1) All maximal paths from n1 contain both n2 and n3;
(2) there exists a maximal path from n1 where n2 occurs before any occurrence

of n3;
(3) there exists a maximal path from n1 where n3 occurs before any occurrence

of n2; and
(4) n1 has a successor n4 such that either:

(a) All maximal paths from n4 contain n2 before any occurrence of n3; or
(b) all maximal paths from n4 contain n3 before any occurrence of n2.

7which will contain both n2 and n3, thanks to clause (1).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 18 • V. P. Ranganath et al.

The strong order dependence definition can be further generalized to cap-
ture control dependence, hence, applicable to reducible regions of the CFG. The
generalization is achieved by removing clause (1) from Definition 13, as done
in the following definition.

Definition 14 (n1
wod→ n2 � nk). In a CFG, nodes n2 and n3 (n2 �= n3) are

weakly order dependent on n1 iff:

—There exists a maximal path from n1 where n2 strictly precedes any occur-
rence of n3;

—there exists a maximal path from n1 where n3 strictly precedes any occurrence
of n2; and

—n1 has a successor nl such that either:
—On all maximal paths from nl, n2 strictly precedes any occurrence of n3; or
—on all maximal paths from nl, n3 strictly precedes any occurrence of n2.

Although order dependence captures the ordering on nodes imposed by con-
trol flow, it is overly conservative in cases where such ordering is required only
to preserve the data values observed during execution. In other words, if there
is no variable that is used (defined) in b and defined (used) in c, then the data
values observed during execution of b and c are independent of the order in
which b and c are executed. In such cases, the execution order imposed by a
on b and c is uninteresting if observed only by changes to the variables used
in b and c, and not by the order of program points encountered during exe-
cution. This data-sensitive order relation is captured by data-sensitive order
dependence, a stronger form of order dependence.

Definition 15 (n1
dsod→ n2 � n3). In a CFG, nodes n2 and n3 (n2 �= n3) are

data-sensitive order dependent on n1 iff:

(1) n1
sod→ n2 � n3; and

(2) either n2
dd→ n3 or n3

dd→ n2.

Examples. In Figure 2(b), b and c are decisively order dependent on a (a
dod→

b � c), and also strongly (a
sod→ b � c) and weakly (a

wod→ b � c) order dependent
on a. Hence, b

dd→ c or c
dd→ b implies a

dsod→ b � c. In Figure 1(c), i and j are
weakly order dependent on d (d

wod→ i � j), but neither strongly or decisively
order dependent on d, as there exists a maximal path from d not containing
i. In Figure 3(a), both c and d are strongly as well as weakly order dependent
on both b and a. However, c and d are decisively order dependent only on b.
In Figure 3(b), c and d are weakly order dependent on b as well as on b′, but
neither strongly nor decisively order dependent on any of b, b′, and a due to the
absence of edges c → d and d → c.

Given the definition of various forms of order dependences and the fact8 that
every cycle in a reducible CFG has one node that dominates all others of the
cycle, it is tempting to conclude that there can be no order dependences of any

8Definition (f) in the abstract of Hecht and Ullman [1974].

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 19

Fig. 3. Control flow graphs specific to order dependence.

form between ni, nj, and nk, provided that they are distinct and occur in a re-
ducible CFG. This is true (as proved in Lemma 3) in cases of decisive and strong
variants of order dependence. However, it is not true in the case of weak order
dependence. As an example, observe that b and c are weakly (but not strongly)
order dependent on a (a

wod→ b � c) in the reducible graph of Figure 2(c). We
conjecture that in a reducible CFG, a

wod→ b � c =⇒ a
ntscd→ b ∨ a

ntscd→ c.

4.5 Properties of the Dependence Relations

Conservative extension. We begin by showing that the new definitions of
control dependence conservatively extend classic ones: When we consider our
definitions in the original setting with CFGs having unique end nodes, they
coincide with the classic definitions (as already suggested by the examples in
Table I).

THEOREM 1 (COINCIDENCE PROPERTIES, I). For all CFGs with the unique end

node property, and for all nodes ni, nj ∈ N, ni
cd→ nj if and only if ni

nticd→ nj .

PROOF. First notice that for any n and m, m postdominates n if and only if
every sink-bounded path from n contains m.

We shall first prove “only if”: So let ni
cd→ nj . There thus exists a nontrivial

path π from ni to nj such that every node in π except ni is postdominated by nj .
Let π take the form ni, nk , . . . , nj ; we can assume that if nj �= ni, then nk �= ni.
Here nk may equal nj , but in any case it will hold that nk is postdominated
by nj .

Also, we know from ni
cd→ nj that ni is not strictly postdominated by nj .

Therefore either ni = nj or ni is not postdominated by nj . In either case, since
the end node is reachable from all nodes, we infer that ni has a successor nl

which is not postdominated by nj .
We have thus found nk and nl , namely successors of ni, such that all sink-

bounded paths from nk contain nj , and such that there exists a sink-bounded
path from nl not containing nj . This shows ni

nticd→ nj .
Next we prove “if”: So let ni

nticd→ nj . Thus ni has (at least) two successors, nk

and nl , such that: (i) All sink-bounded paths from nk contain nj ; and (ii) there
exists a sink-bounded path from nl not containing nj . From (ii), we infer that

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 20 • V. P. Ranganath et al.

either ni = nj or ni is not postdominated by nj ; in either case, ni is not strictly
postdominated by nj .

Since the end node ne is reachable from all nodes, we know from (i) that there
exists a path from nk to nj ; let π be a shortest such path. In order to show that
ni

cd→ nj , it suffices to show that all nodes in π are postdominated by nj . But
this clearly follows from (i).

Before we prove the coincidence property between weak control dependence
and the nontermination-sensitive control dependence, we prove the equiva-
lence between the original and simplified definitions of the latter. For read-
ability, we restate the simplified definition of nontermination-sensitive control
dependence.

Definition 16. In a CFG, nj is nontermination-sensitive control dependent
on ni iff:

(a) ni has at least two successors nk and nl ;
(b) on all maximal paths from nk , nj occurs; and
(c) there exists a maximal path from nl on which nj does not occur.

LEMMA 2. For a CFG, Definition 16 is equivalent to the original definition
of nontermination-sensitive control dependence, Definition 7.

PROOF. First, we restate the definition of directly nontermination-sensitive

control dependence (i.e., Definition 7); we have ni
ntscd→ nj iff:

—ntscd(i) ni has at least two successors, nk and nl ;
—ntscd(ii) for all maximal paths from nk , nj always occurs and either equals

ni or occurs before any occurrence of ni; and
—ntscd(iii) there exists a maximal path from nl on which either nj does not

occur, or nj is strictly preceded by ni.

Since ntscd(ii) implies (b), and (c) implies ntscd(iii), we are left to show
two implications:

—First, we show that (b) implies ntscd(ii): Let π be a maximal path from nk .
By (b), nj occurs there. Now assume towards a contradiction that in π , ni

occurs strictly before any occurrence of nj . Since there is an edge from ni to
nk , this means that the graph has a cycle containing nk , but not containing
nj . But then we can find a maximal path from nk where nj does not occur,
contradicting (b).

—Next, we show that ntscd(iii) implies (c): Let π be a maximal path from nl

on which ni occurs strictly before the first (if any) occurrence of nj . If π does
not contain nj , we are done. So assume that π does contain nj , but that ni

occurs strictly before. But since there is an edge from ni to nl , this means
that the graph has a cycle containing nl but not containing nj . Then we can
find a maximal path from nl where nj does not occur, as desired.

This concludes the proof of Lemma 2. Note that we have not assumed the
unique end node property.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 21

As can be expected, we have a similar result relating the corresponding CTL
formulaes.

THEOREM 2 (SIMPLIFIED NTSCD CTL EQUIVALENCE). The expression of
NTSCD as a CTL formula over CFG paths (φCFG), namely,

ni
ntscd→ nj = (G, ni) |= EX(AF(nj)) ∧ EX(EG(¬nj)),

is equivalent to the CTL formula over execution traces (φtrace), namely,

ni
ntscd→ nj = (G, ni) |= EX(A[¬ni Unj]) ∧ EX(E[¬nj W(¬nj ∧ ni)]).

PROOF. We shall use regular expressions over CFG node names to describe
the structure of CFG paths. In this context, negation, that is, ¬nj, is used to
denote the absence of a particular control point nj.

It suffices to prove that the pairs of subformulas under the E X operators in
the two formulas are equivalent.

We prove that φCFG implies φtrace in two steps:

(1) EG(¬nj) implies E[¬nj W(¬nj ∧ ni)]:
The definition of EW requires its left operand to be true until the right
operand holds. Thus, if the left operand holds throughout the trace, by the
definition of EG(¬nj), then ¬nj must hold until ¬nj ∧ ni.

(2) AF(nj) implies A[¬ni Unj]):
The AU operator requires that a nj state is reached, which holds by the
definition of AF(nj), and that all prefixes of traces ending in nj must be free
of ni states.

Every path from a CFG node ni either has a prefix that is cyclic in ni,
namely ni(¬ni)∗ni, or is a path that is acyclic in ni, namely ni(¬ni)∗. All
proper suffixes of paths that are acyclic in ni are free of ni by definition. If
there exists a path with a prefix that is cyclic in ni, then there must exist
a CFG path of the form (ni(¬ni)∗ni)∗. If AF(nj) holds on such a path, then
it must be the case that nj appears in the body of the cycle (¬ni)∗. Thus, all
paths that satisfy AF(nj) and begin with a prefix that is cyclic in ni must
begin with a prefix of the form ni(¬ni)∗nj.
Thus φCFG implies φtrace.

We prove that φtrace implies φCFG in two steps:

(1) A[¬ni Unj]) implies AF(nj):
The AU operator requires that eventually its right operand nj becomes
true, which is the definition of AF(nj).

(2) E[¬nj W(¬nj ∧ ni)] implies EG(¬nj):
If the right operand of the EW never becomes true in a trace, then ¬nj must
hold throughout the trace, which is equivalent to enforcing EG(¬nj).

The EW operator, however, only requires ¬nj to hold up along the trace
to the point where ni holds. For the implication to hold we must show that
¬nj will persist through the rest of the path.

Consider a CFG path from ni that is free of nj up to the first occurrence of
ni; this satisfies the aforementioned EW. This path has a prefix of the form

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 22 • V. P. Ranganath et al.

ni(¬nj)∗ni and by iterating that prefix we can construct a path (ni(¬nj)∗ni)∗

that satisfies EG(¬nj).

Thus φtrace implies φCFG.

THEOREM 3 (COINCIDENCE PROPERTIES, II). For all CFGs with the unique end
node property, and for all nodes ni, nj ∈ N, ni

wcd→ nj if and only if ni
ntscd→ nj .

PROOF. By Lemma 2, we can prove the equivalence by showing that
Podgurski-Clarke’s weak control dependence from Definition 6 is equivalent
to Definition 16.

For readability, we restate Podgurski-Clarke’s definition of weak control de-
pendence; we have ni

wcd→ nj iff:

—pcwcd(i) ni has at least two successors, nk and nl ;
—pcwcd(ii) nj strongly postdominates nk ; and
—pcwcd(iii) nj does not strongly postdominate nl .

There are four steps.

(1) pcwcd(ii) implies (b): Let π be a maximal path from nk . We must show
that nj occurs in π . There are two possibilities.
—π is finite: The last node of π must be an end node. Since nj postdominates

nk , this shows that nj occurs in π ; or
—π is infinite: We know that there exists q such that all paths from nk longer

than q contain nj ; in particular, π will contain nj since π is infinite, hence
longer than q.

(2) (b) implies pcwcd(ii): First let us show that nj postdominates nk ; so let π

be a path from nk to an end node. We must show that π contains nj , but
this follows from (b), since π is maximal.

Next we must find a q such that all paths from nk longer than q contain
nj ; we claim that we can choose q to be one more than the number of nodes
in the CFG. Let π be a path from nk longer than q: It contains a repetition,
so if nj does not occur in π , we can construct a maximal path from nk with
nj not occurring, yielding a contradiction.

(3) pcwcd(iii) implies (c): Here we have two cases.
—nj does not postdominate nl : Then there exists a path π from nl to an end

node such that nj does not occur in π . The claim now follows, since π is
maximal; or

—For all q, there exists a path from nl longer than q where nj does not
occur: With q the number of nodes in the CFG, we infer that there exists
a path from nl containing repetitions, but not containing nj ; this shows
that we can construct a maximal (infinite) path from nl on which nj does
not occur.

(4) (c) implies pcwcd(iii): Our assumption is that there exists a maximal path
π from nl with nj not occurring in π . Now there are two cases:

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 23

—π is finite, with the last node being an end node: However, then nj does
not postdominate nl ; in particular, nj does not strongly postdominate nl ;
or

—π is infinite: But then for any q, π will be a path from nl of length q not
containing nj , again showing that nj does not strongly postdominate nl .

This concludes the proof of Theorem 3.

Nontermination sensitivity relates more nodes. For an arbitrary CFG, di-
rect nontermination-insensitive control dependence (Definition 10) implies the
transitive closure of direct nontermination-sensitive control dependence.

THEOREM 4. For all CFGs (with or without the unique end node property),

and for all nodes ni, nj ∈ N, ni
nticd→ nj implies ni

ntscd→
∗

nj .

Note that this result is supported by the examples in Tables I and II. For
example, in Figure 1(a), a

nticd→ d holds but a
ntscd→ d does not. Nonetheless,

a
ntscd→

∗
d holds, as both a

ntscd→ c and c
ntscd→ d hold.

PROOF. Our assumption is that ni has successors nk , nl such that: (i) nj

occurs on all sink-bounded paths from nk ; and (ii) there exists a sink-bounded
path from nl on which nj does not occur.

Now consider a sink-bounded path π from ni via nk (there exists such a path,
by Lemma 1). We can write π = [u0, u1, . . . , um, . . .], where m ≥ 1, u0 = ni,
u1 = nk , um = nj , up �= nj for 1 ≤ p < m. Observe that for all p ∈ {1 . . . m}, nj

occurs on all sink-bounded paths from up (otherwise (i) would be contradicted).
So, if all sink-bounded paths from nl would contain up, all sink-bounded paths
from nl would contain nj , contradicting (ii). Thus for all p ∈ {1 . . . m}, there
exists a sink-bounded path from nl not containing up.

Now define predicates Q p such that Q p(r) holds iff 0 ≤ r ≤ p ≤ m and
all maximal paths from ur contain up. Observe that if Q p(r) does not hold but
Q p(r + 1) does, then ur

ntscd→ up (compare with Definition 16). Also observe
that Q p(p) holds for all p ≤ m, but if up �= u0, then Q p(0) does not hold
(for if all maximal paths from u0 contain up, then all maximal paths from nl

contain up so also all sink-bounded paths from nl contain up, contradicting the
aforementioned).

Now we are ready for the construction: If um = u0, we are done. Otherwise,
we can find p1 such that Qm(p1) does not hold but Qm(p1 + 1) does, showing
that up1

ntscd→ um. If up1 = u0, we are done. Otherwise, since Q p1 (p1) holds but
Q p1 (0) does not, we can find p2 such that Q p1 (p2) does not hold but Q p1 (p2 + 1)
does, showing that up2

ntscd→ up1 . Now we can repeat as desired.

Order dependency is relevant for irreducible graphs only.

LEMMA 3. For a reducible CFG, the relations
dod→ and

sod→ are empty.

PROOF. Assume that n1
sod→ n2 � n3, or n1

dod→ n2 � n3. Thus n1,n2,n3 are
distinct, and:

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 24 • V. P. Ranganath et al.

—od(i) All maximal paths from n1 contain both n2 and n3;
—od(ii) in one maximal path from n1, n2 occurs before the first occurrence of

n3; and
—od(iii) in one maximal path from n1, n3 occurs before the first occurrence of

n2.

We shall show that from these assumptions, a contradiction can be derived
when the CFG is reducible. First observe that

n1 is reachable from neither n2 nor n3, (*1)

for otherwise, we could assume without loss of generally that there is a path
from n2 to n1 not containing n3, which, by od(ii), entails that there exists a
maximal path from n1 not containing n3, contradicting od(i).

Since the CFG is assumed reducible, its edges E can be partitioned into for-
ward edges E f and back edges Eb. Here E f forms an acyclic graph, so without
loss of generality, we can assume that n2 is not reachable in E f from n3. Since
by od(iii) and od(i), n2 is reachable in E from n3, there exists a node n4 and

in E f , a path [n3..n4] not containing n2. (*2)

and a back edge

n4 → n5, where n5 dominates n4. (*3)

With n0 the start node of the CFG, due to (*1) there exists

a path [n0..n1] not containing n2. (*4)

Also, by assumption od(iii), there exists

a path [n1..n3] not containing n2. (*5)

From (*4), (*5), and (*2), we see that there is

a path [n0..n4] containing n1 but not containing n2. (*6)

By (*3) we infer that n5 is on that path, and that there is a path from n4 to n4 not
containing n2. Thus we can construct a maximal path from n1 not containing
n2, contradicting od(i).

Observables. For the (bisimulation-based) correctness proof in Section 5.1,
we shall need a few results about slice sets, the members of which are termed
“observable.” Typically, these results require slice sets � to be closed under
nontermination-sensitive control dependency, that is, if n1

ntscd→ n2 and n2 ∈ �,
then also n1 ∈ �. For certain weaker results, it is sufficient to demand that
� is closed under nontermination-insensitive control dependency, that is, if
n1

nticd→ n2 and n2 ∈ �, then also n1 ∈ � (by Theorem 4, the latter closedness
property is weaker than the former). For the main result (i.e., Theorem 5), we
shall also demand � to be closed under (decisive) order dependency, namely, if
ni

dod→ nj � nk with nj, nk ∈ �, then also ni ∈ �.
A key feature of our development is the notion of “first observable,” where

we now present a “may” definition.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 25

Definition 17. For a node n, obs1
may(n) is the set of nodes n′ ∈ � with the

property that there exists a path [n..n′], where all nodes except n′ are not in �.

Clearly, if n ∈ �, then obs1
may(n) = {n}. Next, we present a “must” definition

of “subsequent observable.”

Definition 18. For a node n, obs∗
must(n) is the set of nodes n′ ∈ � with the

property that all maximal paths from n contain n′.

A crucial property of a slice set is that “may” implies “must,” that is, the first
observable on any path will be encountered sooner or later on all other paths.

LEMMA 4. Assume the node set � is closed under
ntscd→ . Then for all nodes n,

obs1
may(n) ⊆ obs∗

must(n).

PROOF. Assume, in order to arrive at a contradiction, that there exists a
node n0 such that obs1

may(n0) is not a subset of obs∗
must(n0); thus, there exists

n1 ∈ � with n1 ∈ obs1
may(n0), but n1 /∈ obs∗

must(n0). The situation is that there is a
path π from n0 to n1 where all nodes except n1 do not belong to �. We infer that
n0 /∈ �, as otherwise we would have n1 = n0, contradicting n1 /∈ obs∗

must(n0). We
define a predicate Q such that

Q(n) holds iff n1 ∈ obs∗
must(n).

By our assumption, Q(n0) does not hold; clearly, Q(n1) holds. Therefore, π can
be written as [n0..n2n3..n1] where Q(n2) does not hold but Q(n3) does (i.e., there
is an edge from n2 to n3; note that n2 may equal n0 and that n3 may equal n1,
but we know that n1 �= n2).

We shall show that n2
ntscd→ n1; then from n1 ∈ � and from � being closed

under
ntscd→ , we get n2 ∈ �, which contradicts n1 being the only node in π that is

also in �.
Since Q(n2) does not hold, there exists a maximal path starting at n2 not

containing n1; that path has to have at least two elements (since n2 has an
outgoing edge) and the second element cannot be n3 (as Q(n3) holds). Therefore,
the second element is some node n4 with n3 �= n4, and there exists a maximal
path from n4 which does not contain n1. Our final obligation (compare with
Definition 16) is to prove that all maximal paths from n3 contain n1, which
follows since Q(n3) holds.

In a similar way we can show

LEMMA 5. Assume that � is closed under
nticd→ . Assume n1 ∈ obs1

may(n0). Then
all sink-bounded paths from n0 will contain n1.

As a consequence we have the following result, giving conditions to preclude
the existence of infinite unobservable paths.

LEMMA 6. Assume that n0 /∈ �, but that there is a path π starting at n0
which contains a node in �.

—If � is closed under nontermination-insensitive control dependency, then all
sink-bounded paths starting at n0 will reach �.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 26 • V. P. Ranganath et al.

—If � is also closed under nontermination-sensitive control dependency, then
all maximal paths starting at n0 will reach �.

Our main result, Theorem 5 given next, states that from a given node there
is a unique first observable. This does not hold without extra assumptions,
however, as demonstrated by the (irreducible) CFG in Figure 2(b), where � =
{b, c} is closed under nontermination-sensitive control dependency (since a �ntscd→ b
and a �ntscd→ c) and provides a with two possible first observables. Our remedy is
to demand that the slice set � be closed under decisive order dependency, as
defined in Definition 12. Recall (Lemma 3) that a reducible graph is vacuously
closed under decisive order dependency.

THEOREM 5. If � is closed under
ntscd→ and

dod→, then for all nodes n it holds
that obs1

may(n) is at most a singleton.

PROOF. Assume the contrary, and let n0 be such that |obs1
may(n0)| > 1, im-

plying (by Lemma 4) that |obs∗
must(n0)| > 1. Then there cannot exist a maximal

path π from n0 such that |obs1
may(n)| > 1 holds for all n occurring in π , for then π

would contain no nodes in �, contradicting that obs∗
must(n0) must be nonempty.

Thus, there exists a node n1 such that |obs1
may(n1)| > 1, and hence n1 /∈ �, but

for all n which are successors of n1, obs1
may(n) is (at most) a singleton. Since

|obs1
may(n1)| > 1, we can find n2, n3 ∈ obs1

may(n1) with n2 �= n3. Clearly, n1 has a
successor u2 with obs1

may(u2) = {n2}, and a successor u3 with obs1
may(u3) = {n3}.

We shall now argue that n1
dod→ n2 � n3, which, since � is closed under

dod→
and since n2, n3 ∈ �, will imply n1 ∈ �. This yields the desired contradiction.
Looking at Definition 12, we see that for reasons of symmetry, it is sufficient to
show the following items:

—From n1, all maximal paths contain n2. This follows since n2 ∈ obs1
may(n1) ⊆

obs∗
must(n1); and

—from a successor of n1, all maximal paths contain n2 before n3. Such a suc-
cessor is u2 since obs1

may(u2) = {n2}, so there is no way that a path from u2
can contain n3 before n2. �

5. SLICING

We now describe how to slice a CFG G with respect to a slice set SC, the smallest
set containing C which is closed under data dependence

dd→ and also under
ntscd→

and under
dod→.

Definition 19 (Slicing Transformation). The result of slicing is a program
with the same CFG as the original, but with the code map code1 replaced by
code2. Here for n ∈ SC, we have code2(n) = code1(n), and for n /∈ SC, we have:

—If n is a statement node, then code2(n) is the statement skip; and
—if n is a predicate node, then code2(n) is cskip, the semantics of which is that

it nondeterministically chooses one of its successors.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 27

The preceding definition is conceptually simple so as to facilitate the correct-
ness proofs. Of course, one would want to do some postprocessing, like elimi-
nating skip commands and cskip commands where the two successor nodes
are equal; we shall not address this issue further, but remark that most such
transformations are trivially meaning preserving.

5.1 Correctness Properties

The main intuition behind our notion of slicing correctness is that the nodes in
a slicing criterion C represent “observations” that one is making about a CFG
G under consideration. Specifically, for an n ∈ C, one can observe that n has
been executed and also observe the values of any variables referenced at n.
Execution of nodes not in C corresponds to silent moves, or nonobservable ac-
tions. The slicing transformation should preserve the behavior of the program
with respect to C-observations, but parts of the program that are irrelevant
with respect to computing C observations can be “sliced away.” The slice set
SC built according to Definition 4 represents the nodes that are relevant for
maintaining the observations C. Thus, to prove the correctness of slicing, we
will establish the stronger result that G will have the same SC-observations
with respect to the original code map code1 as with respect to the sliced code
map code2, and this will imply that they have the same C-observations.

The previous discussion suggests that appropriate notions of correctness for
slicing reactive programs can be derived from the notion of weak bisimulation
found in concurrency theory, where a transition may include a number of τ -
moves [Milner 1989]. Recall from Section 2.2 that a state s is a pair (n, σ),
where σ is a store mapping variables into values.

Definition 20. For i = 1, 2 we write:

—i � s → s′ to denote that with respect to code map codei, the program state s
rewrites in one step to s′;

—i � s
n�−→ s′ if i � s → s′ and n ∈ �, where s = (n, σ);

—i � s
τ�−→ s′ if i � s → s′ and n /∈ �, where s = (n, σ);

— τ=⇒ for the reflexive transitive closure of
τ�−→; and

—i � s n=⇒ s′ if there exists s1 such that s τ=⇒ s1 and s1
n�−→ s′.

Definition 21 (Weak Bisimulation). A binary relation φ is a weak bisimu-
lation if for all i ∈ {1, 2}, we have the following properties where j = 3 − i:

(1) If s1 φ s2 and i � si
τ�−→ s′

i, then there exists s′
j such that j � sj

τ=⇒ s′
j and

s′
1 φ s′

2.

(2) If s1 φ s2 and i � si
n�−→ s′

i, then there exists s′
j such that j � sj

n=⇒ s′
j and

s′
1 φ s′

2.

Remark 2. The notion of weak bisimulation just defined is slightly different
from what is mostly seen in the literature in that n=⇒ does not allow silent moves
after the observable action.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 28 • V. P. Ranganath et al.

Remark 3. If � is closed under
ntscd→ and

dod→, we know from Theorem 5
that for any node n, obs1

may(n) is either a singleton set or empty. With abuse of
notation, we shall write obs1

may(n) = n1 for obs1
may(n) = {n1}. Also, we know from

Lemma 4 that if obs1
may(n) = n1, then all maximal paths from n will contain n1.

Definition 22 (Relevant Variables). For each node n in G, we define relv(n),
namely the set of relevant variables at n, by stipulating that x is in relv(n) iff
there exists a node nk ∈ � and a path π from n to nk such that x ∈ ref(nk), but
for all nodes nj occurring before nk in π , x /∈ def(nj).

Strictly speaking, we should have defined (for i = 1,2) functions refi(n) to
return the variables referenced at node n with respect to code map codei, func-
tions defi(n) to return the variables defined at node n with respect to code map
codei, and functions relvi(n) and relation

dd→i parametrized with respect to refi
and defi. However, the following result shows that we can safely ignore the
subscripts, since the slicing transformation applied to SC yields a node set that
is also closed under data dependence and that has the same set of relevant
variables for each node.

LEMMA 7. Assume, with
dd→i etc., as defined just before, that � is closed under

dd→1. Then:

(1) � is closed also under
dd→2; and

(2) for all n, relv1(n) = relv2(n).

PROOF. To show item (1), assume the contrary; then there exists a path π

from nj /∈ � to nk ∈ � such that x ∈ ref2(nk) and x ∈ def2(nj), but for all n′

interior in π : x /∈ def2(n′). Observing that all variables in code2 also occur in
code1, we see that x ∈ ref1(nk) and x ∈ def1(nj). Since � is closed under

dd→1, we
can infer that there exists a node n′ interior in π with x ∈ def1(n′); let n1 be the
last such n′. Since � is closed under

dd→1, we infer that n1 ∈ � and therefore
code1(n1) = code2(n1). But since x ∈ def1(n1) and (compare with the preceding)
x /∈ def2(n1), this yields the desired contradiction.

To show item (2), assume that x ∈ relvi(n) with i ∈ {1, 2}; we must prove that
x ∈ relv j (n), where j = 3 − i. Our assumptions are that there exists a path π

from n to nk ∈ � such that x ∈ refi(nk), but for all nodes n′ occurring before nk in
π , x /∈ defi(n′). Now, since nk ∈ �, codei(nk) = code j (nk), so x ∈ ref j (nk). We are
done if we can prove that x /∈ def j (n′) for all nodes n′ occurring before nk in π .
In order to arrive at a contradiction, assume that this is not the case. Let n1 be
the last node n′ occurring before nk in π with x ∈ def j (n′). Then n1

dd→ j nk, since

nk ∈ �, which by item (1) is closed under
dd→ j ; this implies n1 ∈ �. But then

code j (n1) = codei(n1), which gives the desired contradiction since x ∈ def j (n1)
but x /∈ defi(n1).

After this digression, we return the the main development, where a key prop-
erty is that the set of relevant variables is determined by the first observable.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 29

LEMMA 8. Assume that � is closed under
ntscd→ ,

dod→, and
dd→. Assume that n1

and n2 are such that obs1
may(n1) = obs1

may(n2). Then relv(n1) = relv(n2).

PROOF. If obs1
may(n1) and obs1

may(n2) are both empty, no node in � is reachable
from n1 nor from n2, and therefore relv(n1) = relv(n2) = ∅.

Otherwise, let n3 = obs1
may(n1) = obs1

may(n2); for reasons of symmetry, it is
sufficient to prove that relv(n1) ⊆ relv(n2). So let x ∈ relv(n1) be given, we must
prove x ∈ relv(n2). There exists a path π from n1 to nk ∈ � such that x ∈ ref(nk),
but x /∈ def(nj) for any node nj occurring before nk in π . Since n3 = obs1

may(n1),
we can split π into π1 = [n1..n3] and π0 = [n3..nk]. Since n3 = obs1

may(n2), there
exists a repetition-free path π2 = [n2..n3], and thus a path π ′ = π2π0 from n2
to nk. Towards proving our goal x ∈ relv(n2), we are left to show that x /∈ def(nj)
for all nodes nj occurring before nk in π ′. Assume the contrary, and let n′ be the
last node in π ′ serving as a counterexample. Since � is closed under

dd→, we infer
that n′ ∈ �. Also, due to the properties of π , we infer that n′ does not occur in π0,
and therefore n′ occurs before n3 in π2. But this contradicts n3 = obs1

may(n2).

We need one more auxiliary result.

LEMMA 9. Assume that � is closed under
ntscd→ ,

dod→, and
dd→. If i � s1

τ�−→ s2,
where s1 = (n1, σ1), s2 = (n2, σ2), and i ∈ {1, 2}, then:

(1) obs1
may(n1) = obs1

may(n2); and
(2) there exists a set of variables V such that;

(a) V = relv(n1) = relv(n2); and
(b) σ1 =V σ2.

Here we write σ1 =V σ2 when for all x ∈ V , σ1(x) = σ2(x).

PROOF. First observe that n1 /∈ �. For item (1), clearly obs1
may(n2) ⊆

obs1
may(n1), so by Theorem 5 it is sufficient to prove that it cannot be the case

that obs1
may(n2) = ∅ while obs1

may(n1) is a singleton {n3}. But if so, then Lemma 4
would tell us that n3 ∈ � occurs on all maximal paths from n1, and thus also
on all maximal paths from n2, contradicting that obs1

may(n2) = ∅.
Now (a) follows from Lemma 8. For (b), in order to arrive at a contradiction,

we assume that σ1 =V σ2 does not hold. For this to be the case, there must exist
x ∈ V with x ∈ def(n1). Since x ∈ relv(n1), there exists a path from n1 to a node
nk ∈ � with x ∈ ref(nk) along which x is not defined. But since x is defined at
n1, this yields the desired contradiction.

We now stipulate when a program state in the original program is related to
a program state in the sliced one.

Definition 23 (Bisimilar Relation). For � closed under
ntscd→ ,

dod→, and
dd→, we

define a relation R : s1 R s2 iff:

—obs1
may(n1) = obs1

may(n2); and
—σ1 =V σ2,

where s1 = (n1, σ1), s2 = (n2, σ2), and V = relv(n1) = relv(n2).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 30 • V. P. Ranganath et al.

By Lemma 8, this is well defined. We now state the key part of the correctness
result.

THEOREM 6. If � is closed under
ntscd→ ,

dod→, and
dd→, then the relation R from

Definition 23 is a weak bisimulation (compare with Definition 21).

PROOF. For i ∈ {1, 2} and j = 3 − i, we must show that:

(1) If s1 R s2 and i � si
τ�−→ s′

i, then there exists s′
j such that j � sj

τ=⇒ s′
j and

s′
1 R s′

2.

(2) If s1 R s2 and i � si
n�−→ s′

i, then there exists s′
j such that j � sj

n=⇒ s′
j and

s′
1 R s′

2.

For item (1), assume that i � si
τ�−→ s′

i. Choose s′
j = sj . The claim then

trivially follows from Lemma 9.
For item (2), assume that i � si

n�−→ s′
i. Thus si is of the form (n, σi); also

let sj = (nj , σ j) and s′
i = (n′, σ ′

i). We have n = obs1
may(n) = obs1

may(nj); let
V = relv(n) = relv(nj). Since by Lemma 4, n ∈ obs∗

must(nj), any execution
sequence starting from nj will sooner or later hit n; also, since n is the only
node in obs1

may(nj), that execution sequence will contain no other nodes in �.
All this shows that there exists s′′

j = (n, σ ′′
j) such that j � sj

τ=⇒ s′′
j . By repeated

application of Lemma 9 we infer that σ ′′
j =V σ j and since σi =V σ j , thus also

σi =V σ ′′
j . In particular,

σi and σ ′′
j agree on ref(n). (*)

Therefore, s′′
j will choose the same branch as si (if n is a predicate node, otherwise

vacuously). In other words, there exists s′
j of the form (n′, σ ′

j) such that j �
s′′

j
n�−→ s′

j and thus j � sj
n=⇒ s′

j . We are left to show that with V ′ = relv(n′),
we have σ ′

i =V ′ σ ′
j . So let x ∈ V ′, we must prove σ ′

i (x) = σ ′
j (x). If x ∈ def(n) (and

n is thus a statement node), then the claim clearly follows from (*). Otherwise,
if x /∈ def(n), then x ∈ relv(n) = V and the claim follows from σi =V σ ′′

j , since
σ ′

i (x) = σi(x) = σ ′′
j (x) = σ ′

j (x).

Observe that R is reflexive. Therefore, by Theorem 6, the initial state of
the original CFG is weakly bisimilar to that of the sliced CFG. Also, since two
states that are related by R produce the same “output,” and since bisimulation
generalizes Weiser’s notion of projection [Weiser 1984] to infinite traces, this

demonstrates that if � is closed under
ntscd→ ,

dod→, and
dd→, then the sliced program

has the same “observable behavior” as the original.
Let us elaborate on the preceding argument, and informally argue why

Theorem 6 entails the “standard” [Ball and Horwitz 1993] way of phrasing cor-
rectness of slicing, that is, the sequence of observed values (i.e., values of the
variables referenced) at each node in the slicing criterion C is the same for the
original as for the sliced program. Let n1 be the first SC-node hit by executing
the original CFG, then Theorem 6 tells us that n1 will also be the first SC-node
hit by executing the sliced CFG, and vice versa. Moreover, the two executions
will agree on the values of relevant variables. Repeating the argument, we can

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 31

show that if n2 is the second SC-node hit by executing the original CFG, then
n2 is also the second SC-node hit by executing the sliced CFG, and the two exe-
cutions will agree on the values of relevant variables. Repeating as desired, we
conclude that for each node in SC, the sequence of values of relevant variables
is the same for the original as for the sliced program. Since SC includes C, and
since a referenced variable is relevant, we have as a special case the desired
result: For each node in C, the sequence of observed values is the same for the
original as for the sliced program.

6. ALGORITHMS

In this section we present algorithms to calculate various forms of control
and order dependences that were presented earlier. Each algorithm is accom-
panied by an overview, a proof of correctness, and the complexity analysis
of the worst-case time requirement. The algorithms are presented to sug-
gest that the proposed dependences can be calculated by algorithms with
time complexity that is polynomial in the number of nodes/edges. We con-
jecture that more optimal algorithms can be designed to calculate the same
information.

6.1 Nontermination-Sensitive Control Dependence (NTSCD)

We adopt an approach similar to symbolic data flow analysis to calculate control
dependences. Basically, control dependences are determined by reasoning about
properties of sets of CFG paths; those sets are represented symbolically in
our algorithm. Specifically, for each node n with more than one successor in
G, the set of all maximal paths that start with n → m is represented by a
symbol tnm. The algorithm propagates these symbols to collect the effects of
particular control flow choices at program points in the CFG. For each node p,
a set of symbols Spn is maintained for every node n in the CFG that has more
than one successor; these sets record the maximal paths that originate from n
and contain p. Hence, based on the interpretation, tnm ∈ Spn indicates that all
maximal paths starting with n → m contain p. We shall use Tn to denote the
number of successors (|succs(n, G)|) of node n in G. Also, condNodes(G) denotes
the set of nodes in G that have multiple successors. The algorithm is presented
in Figure 4.

6.1.1 Proof of Correctness. The correctness of the algorithm (Figure 4) is
presented as the following theorem.

THEOREM 7. Upon the termination of phase (2) of the algorithm, tnm ∈ Spn

iff all maximal paths starting with n → m contain p.

PROOF. We shall use the “only if” direction as an invariant on the loops in
phase (2). We shall then prove the “if” direction via contradiction.

“Only if” direction. The finiteness of N ensures the termination of phase (1).
Upon completion of phase (1), the invariant is trivially established at the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 32 • V. P. Ranganath et al.

Fig. 4. Algorithm to calculate nontermination-sensitive control dependence.

beginning of phase (2). If n has only one successor m, then all maximal paths
containing n will contain m. Hence, the assignment at line 21 establishes the
invariant at the end of the loop at line 19 (and the conditional at line 17). If n
has multiple successors and all maximal paths through the successors contain
m, then all maximal paths containing n will also contain m. This is captured
by the assignment at line 29 and the invariant is established at the end of the
loops at lines 25 and 27.

As the graph has a finite number of nodes, the number of successors of a node
is finite. Hence, the total number of symbols (tnm) in G is finite as well. This
implies that the size of Snm has a finite bound for every pair of nodes n and m.
In each iteration of the while loop at line 14, either a symbol set Snm increases
in size or all of the symbol sets remain unchanged. The former case contributes

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 33

an iteration (lines 22 and 30). As the size of the symbol set is finitely bound,
the while loop in line 14 will terminate establishing the “only if” direction.

“If” direction. Suppose there are nodes n, m, and p such that all maximal
paths starting with n → m contain p, but tnm /∈ Spn. This implies that in every
maximal path starting with n → m, ending with p, and containing nodes q and
r (in the given order), tnm ∈ Sin for every node from m to q and tnm /∈ Sj n for
every node from r to p. We consider two cases.

—r is the only successor of q. In this case, when tnm is injected into Sqn, q will
be marked for processing (line 21). Upon processing, tnm will be injected into
Srn. Hence, the supposition cannot be true.

—q has multiple successors. By the supposition, there should be a first common
node to occur on all maximal paths originating from the successors of q. Let r
be this common node. Also assume that there are no conditional nodes in the
paths from q to r. From the previous clause of the proof and the nonbranching
property of the paths between q and r, |Srq| = Tq . This implies Sqn ⊆ Srn,
hence the supposition is falsified. When nested conditional nodes occur on
the paths from q to r, similar reasoning can be applied to conditional nodes
in decreasing order of nesting.

The preceding reasoning can be applied inductively when r is not the im-
mediate successor of q, or when r is not the first common node to occur on all
maximal paths originating from the successors of q.

Based on the interpretation attached to tmn and Spn and Theorem 7, it is triv-
ial to see that phase (3) correctly calculates nontermination-sensitive control
dependence.

6.1.2 Complexity Analysis. Phases (1) and (3) of the algorithm (see
Figure 4) have a worst-case complexity of O(|N|2 × lg |N|), where lg |N| is
the complexity of set operations. The complexity of the loop at line 25 is
O(|N|2 × lg |N|) and it dominates the complexity of the loop at line 14. In
the worst case in phase (2), for a node p, all token sets S[p, i] of p will
stabilize in

∑
Tn iterations. Hence, the overall complexity of phase (2) will be

O(
∑

Tn×|N|3×lg(|N|). This will also be the overall complexity of the algorithm.

6.2 Nontermination-Insensitive Control Dependence (NTICD)

The proposed algorithm (see Figure 5) to calculate nontermination-insensitive
control dependence is very similar to the NTSCD algorithm. The only differ-
ences are the presence of phase (2.3) and the interpretation attached to tnm.
In the NTSCD algorithm, any token tnm injected into Snn is not propagated
to non-m successors of n, hence preserving nontermination sensitivity. Phase
(2.3) in the NTICD algorithm induces nontermination insensitivity by undoing
this preservation. Also, tnm represents all extensible finite paths9 starting with
n → m in the NTICD algorithm.

9A finite path is extensible if it can be extended by adding an edge.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 34 • V. P. Ranganath et al.

Fig. 5. Algorithm to calculate nontermination-insensitive control dependence.

6.2.1 Proof of Correctness. Given the similarity of the NTSCD and NTICD
algorithms, we prove the correctness of the latter by proving that phase
(3), along with the interpretation attached to tnm, calculates nontermination-
insensitive control dependence.

The key observation is that phase (2.3) induces nontermination insensitivity.
Succinctly, if tnm ∈ Snn, then tnm is added to Spn, where p is a successor of n.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 35

This establish that all finite paths that start with n → m and reach n can be
finitely extended to reach p, hence inducing nontermination insensitivity.

LEMMA 10. If tnm ∈ Spn and p belongs to a control sink, then for all nodes
q ∈ c-sink(p).tnm ∈ Sqn, where c-sink(p) is the set of nodes in the control sink
containing p.

PROOF. If |c-sink(p)| ≤ 1, then we are done. If |c-sink(p)| > 1, then let q
be a node such that q ∈ c-sink(p) and tnm /∈ Sqn. Since q and p belong to the
same control sink, every finite path from p can be extended to q (since there
is a path between any two nodes belonging to the same SCC and every control
sink is a SCC). Hence Spn ⊆ Sqn. Similarly, we can prove Sqn ⊆ Spn. Hence
Spn = Sqn.

THEOREM 8. Phase (3) of NTICD calculates nontermination-insensitive con-
trol dependence.

PROOF. tnm ∈ Spn implies that all finite paths starting with n → m can be
extended to p. Hence, 0 < |Smn| < Tn implies that there are some successors
m of n for which all finite paths starting at m can be extended to p, while for
some successors q, not all finite paths starting at q can be extended to p. Hence,

n
ntscd→ p.
When |Spn| = 0 or |Spn| = Tn, this implies that for all successors of n, either

none or all finite paths can be extended to contain p. Hence n �ntscd→ p. Also, by
Lemma 10, |Spn| = Tn for all conditional nodes n in the control sink of p, hence

n �ntscd→ p.
So, phase (3) correctly calculates nontermination-insensitive control

dependence.

6.2.2 Complexity Analysis. Phase (2.3) of the NTICD algorithm con-
tributes O(

∑
Tn × |N| × lg(|N|)) to the overall complexity of phase (2) of the

NTSCD algorithm. As O(
∑

Tn ×|N|3 × lg(|N|) dominates O(
∑

Tn ×|N|× lg(|N|),
the overall complexity of the NTICD algorithm is identical to that of NTSCD
algorithm.

6.3 Decisive Control Dependence (DCD)

As Definition 11 implies Definition 7, we calculate decisive control dependence
by pruning nontermination-sensitive control dependence. It is evident that
clause (2) in Definition 11 is stronger than that in Definition 7. Hence, we
use the negative form of clause (2) in Definition 11—namely, for all successors
nl of ni, there exists a maximal path such that nj occurs before any occurrence of
ni—to prune nontermination-sensitive control dependence to calculate decisive
control dependence.

In the algorithm of Figure 6, tnm represents a path π that starts with n → m
and is maximal or terminates with n, while tnm ∈ Spn represents a path starting
with n → m that can be extended to contain p. In phase (2) of the algorithm,
tokens are propagated to calculate reachability between conditional and other

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 36 • V. P. Ranganath et al.

Fig. 6. Algorithm to calculate decisive control dependence.

nodes of the G. This information is later used in phase (3) to calculate decisive
control dependence.

6.3.1 Proof of Correctness. To prove the correctness of the DCD algorithm,
it is sufficient to prove that phase (2) of the algorithm calculates reachability
between the successors of conditional nodes and other nodes of G.

THEOREM 9. At the end of phase (2) in the DCD algorithm, tnm ∈ Spn iff there
exists a path starting with n → m that can be extended to p.

PROOF. We shall use the “only if” direction as an invariant on the loop in
phase (2). We shall then prove the “if” direction via contradiction.

“Only if” direction. As the number of edges in the G is finite, phase (1) will
terminate. The invariant is trivially established at the beginning of phase (2).
The loops at lines 18 and 19 extend a path starting with n → m and leading
to p to every successor q of p, if it has not already been extended. Also, q is
queued for processing at line 22. Hence, at the end of the loop, the invariant is
established.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 37

Each iteration of the outer while loop at line 16 in phase (2) will either result
in an increase in size of a symbol set while contributing an iteration, or there
will be no change in the data. The size of the symbol sets are finite, as the tokens/
symbols in G are finite. Hence, the outer while loop in phase (2) will terminate.

“If” direction. Upon termination of phase (2), suppose that there are nodes
n, m, and p such that there exists a path starting with n → m that contains
p but tnm /∈ Spn. This implies that along a path starting with n → m and
containing p, there should be two consecutive nodes q and r, in the given order,
such that tnm ∈ Sqn and tnm /∈ Srn. However, this leads to a contradiction, as
upon termination of phase (2), the condition on line 20 will evaluate to false for
all nodes in G. Hence the supposition cannot be true.

6.3.2 Complexity Analysis. Based on the structure of phase (2), it is trivial
to see that the complexity of the DCD algorithm is identical to that of NTSCD
algorithm.

6.4 Decisive Order Dependence (DOD)

Given nodes n = n1, m = n2, and p = n3, we need to check whether the three
clauses in the definition of decisive order dependence10 are satisfied. We can use
information from any graph reachability algorithm to check whether m and p
satisfy the first clause in Definition 12 (as done in the first and second conjuncts
on line 6 of ORDER-DEPENDENCE()).

As for the second and third clauses, we encode the order dependence calcula-
tion as a problem of constructing a colored bound directed acyclic graph (DAG).
The bounding condition is that outgoing edges of m and p are not explored. The
coloring condition contains three parts: (1) m and p are assigned colors white
and black, respectively; (2) every node in the DAG is colored white(black) iff all
its children are colored white(black); and (3) nodes with children of different
colors, all uncolored children, and/or nodes that are sources of back edges are
uncolored.

Given such a colored bound DAG rooted at n, it is trivial to observe that for an
acyclic graph, a node q will be colored white(black) only if all of its successors are
colored white(black). Given the encoding, this implies that all maximal paths
from q contain m(p) before any occurrence of p(m). Hence, we can conclude
that m and p are decisively order dependent on any node n that has at least
one black child and at least one white child.

In the case of a cyclic graph, the source q of a back edge is uncolored, in-
dicating the existence of a maximal path that does not contain m(p). In such
cases, given the coloring condition, every ancestor of q will be uncolored, hence
falsifying clauses (2) and (3) of Definition 12.

6.4.1 Proof of Correctness. Based on the aforementioned description/
intuition, we need to prove that the coloring and bounding of the DAG does
indeed capture the information required to decide whether n

dod→ m � p.

10In this subsection, we shall refer to decisive order dependence as order dependence.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 38 • V. P. Ranganath et al.

Fig. 7. Algorithm to calculate decisively strong order dependence. Here, reachable(m, p, G) returns
true if p is reachable from m in the graph G.

We shall prove the correctness of the algorithm by proving the following
theorems.

THEOREM 10. Given a CFG G, a white node, and a black node, COLORED-DAG()
creates a colored bound DAG such that:

(1) A node is colored white if all its immediate successors are colored white;
(2) a node is colored black if all its immediate successors are colored black; and
(3) a node is uncolored if all its immediate successors are uncolored, it has at

least two children of different colors, or is the source of a back edge in G.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 39

PROOF. It is trivial to see (by induction) that COLORED-DAG() will visit all
unvisited nodes reachable from the given node n as in a depth-first search. As
each visited node is recorded in visited, the bounding condition is established
by the addition of m and p to VISITED at lines 4 and 5 of DEPENDENCE() and main-
tained by the check at line 1 of COLORED-DAG(). This record keeping, along with
the finiteness of nodes in the CFG, ensures the termination of COLORED-DAG().

After every child of node n has been fully explored in the loop at line 3 in
COLORED-DAG(), the color of n is determined by the loop at line 6 in the same
procedure. The loop will terminate normally only when the color of every
child of n is the same as the color of an arbitrarily chosen child at line 5. The
abnormal termination of the same loop (via break) indicates that there are at
least two children of the node that have different colors. In situations where
one of the successor q is a visited but partially explored node, the color of q
will be uncolored due to initialization at line 3 of DEPENDENCE(). Hence, the loop
at line 6 will terminate either abnormally or normally (when every child of n
was uncolored) and color n as uncolored.

LEMMA 11. In the colored bound DAG constructed by COLORED-DAG(), a node
n is white(black) if all nodes reachable from n in the DAG are white(black).

PROOF. Follows trivially from the first and second clauses of Theorem 10.

THEOREM 11. Given a colored bound DAG created by COLORED-DAG() from
CFG G, DEPENDENCE() returns true iff clauses (2) and (3) of Definition 12 are
satisfied in G.

PROOF. At the beginning of DEPENDENCE(), m and p are designated as
white and black nodes, respectively. After COLORED-DAG() returns on line 7 of
DEPENDENCE(), let q and r be immediate successors of n such that q is white and
r black.

“Only if” direction. From Lemma 11, on all paths in the DAG from q(r), m(p)
will be encountered before any p(m) is encountered. The absence of uncolored
nodes on such paths rules out the possibility of an infinite path from q(r) that
does not contain the m(p). Hence, for all maximal paths from q(r) in G, m(p) will
be encountered before any m(p) is encountered. Thus q and r satisfy clauses
(2) and (3) of Definition 12, respectively, when DEPENDENCE() returns true.

“If” direction. Suppose all maximal paths from q(r) contain m(p) before
any occurrence of p(m). This implies that there can be no node ni on any path
between q(r) (inclusive) and m(p) (exclusive) such that ni has an outgoing edge
that can lead to a cycle not containing m(p). Hence, all nodes on these paths
can be colored white(black). As a DAG rooted at n will not contain back edges
leading to infinite paths and as no such edges emanate from nodes on the paths
between q(r) (inclusive) and m(p) (exclusive), COLORED-DAG() will achieve the
coloring as described earlier. Hence, DEPENDENCE() will return true when q and
r satisfy clauses (2) and (3) of Definition 12.

6.4.2 Complexity Analysis. COLORED-DAG() will be executed at least for every
edge in the graph. As line 7 in COLORED-DAG() can be executed |N| times for each

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 40 • V. P. Ranganath et al.

execution of COLORED-DAG(), the worst-case complexity of the COLORED-DAG() will
be O(|E| × |N| × lg(N)).

The conditional at line 11 in DEPENDENCE() can execute |N| times for each
execution of DEPENDENCE(). By factoring in the complexity of COLORED-DAG(), the
worst-case complexity of DEPENDENCE() will be O(|N|+|E|×|N|×lg(N)) = O(|E|×
|N| × lg(N)).

The worst-case complexity of the graph reachability algorithm is O(|N|3). The
loops at lines 3, 4, and 5 in ORDER-DEPENDENCE() will contribute |N|3 iterations.
Hence, the worst-case complexity of ORDER-DEPENDENCE() will be O(|N|3 + |N|3 ×
|E| × |N| × lg(N)) = O(|N|4 × |E| × lg(N)).

7. RELATED WORK

Fifteen years ago, control dependence was rigorously explored by Podgurski and
Clarke [1990]. Since then, there has been a variety of work related to calculation
and application of control dependence in the setting of CFGs that satisfy the
unique end node property.

In the realm of calculating control dependence, Johnson and Pingali [1993]
proposed an algorithm that could be used to calculate control dependence in
time linear in the number of edges. Later, Bilardi and Pingali [1996] proposed
new concepts related to control dependence, along with algorithms based on
these concepts, to efficiently calculate weak control dependence. In comparison,
in this article we sketch a feasible algorithm in a more general setting.

In the context of slicing, Horwitz et al. [1990] presented what has now be-
come the standard approach to interprocedural slicing via dependence graphs.
However, the last decade has seen the prominence of C++, Java, and other lan-
guages that support semantically different procedure exit points (exceptional
and normal). Hence, the work of Horwitz et al. [1990] cannot be applied directly
as data dependence changes due to the semantic differences between exit points.
This issue was recently addressed by Allen and Horwitz [2003]. In their effort,
they extended the previous work [Horwitz et al. 1990] to handle exception-
based interprocedural control flow. In their work, they inject normal exit nodes
and exceptional exit nodes in the CFG, but then preserve the unique exit node
property by connecting the normal and exceptional exit node to the unique exit
node. They also consider the first statements of try and catch blocks, and throw
statements, as predicate statements. In contrast, our approach is simpler, as
the CFG is untouched even in case of exceptional exit nodes and/or multiple
normal exit nodes.

As for control dependence across procedure boundaries, Stafford [2000] pro-
posed compositional control dependences (and algorithms) in which intrapro-
cedural control dependences of call sites and return points were appropriately
extended to the statements in the called and calling procedure, respectively.
These dependences were sensitive to the (non-)termination aspect of the called
procedures. In comparison, as our definitions are path based, they are similar
to Stafford’s definitions in interprocedural settings when the interprocedural
control flow paths of the program are constructed by appropriate splicing of
intraprocedural control flow paths.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 41

For relevant work on slicing correctness, Horwitz et al. [1989] used a
semantics-based multilayered approach to reason about the correctness of slic-
ing in the realm of data dependence. Alternatively, Ball and Horwitz [1993]
used an approach based on program-point-specific history to prove the correct-
ness of slicing for control flow graphs that are arbitrary, but still assumed to
have a unique end point. Their correctness property (which holds also for irre-
ducible CFGs) is a weaker property than bisimulation in that it does not require
ordering to be maintained between observable nodes if there is no dependence
between these nodes. We build off of their work to consider arbitrary control
flow possibly without a unique end node; for irreducible CFGs, we need the extra
notion of “order dependency” to achieve the stronger correctness property.

In terms of handling dependences in a concurrent setting, Krinke [1998]
considered static slicing of multithreaded programs with shared variables, and
focused on issues associated with interthread data dependence, but did not
consider nontermination-sensitive forms of control dependence. Millett and
Teitelbaum [1998] studied static slicing of Promela (the model description lan-
guage for the model checker SPIN) and its application to model checking, sim-
ulation, and protocol understanding. They reused existing notions of slicing
which—as we argue in this article—do not account for the subtleties of multi-
threaded execution. They did not discuss the appropriateness of those notions
for an inherently multithreaded language like Promela, nor did they for their
applications formalize a notion of a correct slice. Hatcliff et al. [1999] presented
notions of dependence for concurrent CFGs to capture Java-like synchroniza-
tion primitives. They proposed a notion of bisimulation as the correctness prop-
erty, but did not provide a detailed definition or proof of correctness, as has been
done in this work.

8. CONCLUSION

The notion of control dependence is used in myriads of applications, researchers
as well as tool builders increasingly seek to apply it to modern software systems
and high-assurance applications (even though the control flow structure and
semantic behavior of these systems do not mesh well with the requirements
of existing control dependence definitions). In this article, we have proposed
conceptually simple definitions of control dependence that: (a) can be applied
directly to the structure of modern software, thus avoiding unsystematic prepro-
cessing transformations that introduce overhead, conceptual complexity, and
sometimes dubious semantic interpretations; and (b) provide a solid semantic
foundation for applying control dependence to reactive systems where program
executions may be nonterminating.

We have rigorously justified these definitions by detailed proofs, by express-
ing them in temporal logic which provides an unambiguous definition and al-
lows them to be mechanically checked/debugged against examples using auto-
mated verification tools, by showing their relationship to existing definitions,
and by implementing and experimenting with them in a publicly available
slicer for full Java. In addition, we have provided algorithms for computing
these new control dependence relations. We applied our experience in realizing

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

Article 27 / 42 • V. P. Ranganath et al.

the algorithms while building the Indus Java slicer to research with several
different tool chains, and found that any additional cost in computing these
relations is negligible relative to the cost and ill-effects of the preprocess-
ing steps required for previous definitions. Indeed, we were led to propose
these new definitions because of frustrations experienced when using previ-
ous definitions in the construction of several large-scale tool frameworks. How-
ever, further empirical studies are needed to provide a precise characteriza-
tion of the impact of the different definitions. Nevertheless, we believe that
there are many benefits for widely applying these definitions in static analysis
tools.

In ongoing work, we continue to explore the foundations for statically and
dynamically calculating dependences for concurrent Java programs for slicing,
program verification, and security applications. In particular, we are exploring
the relationship between the dependences extracted from execution traces and
those extracted from control flow graphs. This is being undertaken in an effort
to systematically justify a comprehensive set of dependence notions for the rich
features found in concurrent Java programs.

Also, we would like to further understand the relationship between order
dependence and control dependence; the latter is based on whether nodes are
reachable, whereas the former is based on the order in which nodes are reached.
Given the numerous applications of control dependences, it may be interesting
to explore applications of order dependences in the realm of compiler optimiza-
tions and program understanding. We conjecture that special cases and/or other
variants of order dependences may be useful in reverse engineering the high-
level structure (i.e., source code) of programs from their intermediate forms
(i.e., machine instructions), based on patterns of control flow orderings.

REFERENCES

ALLEN, M. AND HORWITZ, S. 2003. Slicing Java programs that throw and catch exceptions. In
Procedings of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM). ACM, 44–54.

ANDERSEN, L. O. 1994. Program analysis and specialization for the C programming languages.
Ph.D. thesis, DIKU, University of Copenhagen, DIKU, Universitetsparken 1, DK-2100, Copen-
hagen ∅, Denmark.

BALL, T. AND HORWITZ, S. 1993. Slicing programs with arbitrary control-flow. In Proceedings of
the 1st International Workshop on Automated and Algorithmic Debugging (AADEBUG). Lecture
Notes in Computer Science, vol. 749. Springer, 206–222.

BILARDI, G. AND PINGALI, K. 1996. A framework for generalized control dependences. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI) (Pennsylvania, PA). ACM Press, New York, 291–300.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. A. 1999. Model Checking. MIT Press, Cambridge,
MA.

CORBETT, J. C., DWYER, M. B., HATCLIFF, J., LAUBACH, S., PĂSĂREANU, C. S., ROBBY, AND ZHENG, H. 2000.
Bandera: Extracting finite-state models from Java source code. In Proceedings of the 22nd Inter-
national Conference on Software Engineering (ICSE). 439–448.

FERRANTE, J., OTTENSTEIN, K. J., AND WARREN, J. O. 1987. The program dependence graph and its
use in optimization. ACM Trans. Program. Lang. Syst. 9, 3 (Jul.), 319–349.

FRANCEL, M. A. AND RUGABER, S. 1999. The relationship of slicing and debugging to program un-
derstanding. In Proceedings of the 7th IEEE International Workshop on Program Comprehension
(IWPC). 106–113.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

A New Foundation for Control Dependence and Slicing • Article 27 / 43

HATCLIFF, J., DWYER, M. B., AND ZHENG, H. 2000. Slicing software for model construction. J. Higher-
Order Symb. Comput. 13, 4, 315–353. A special issue containing selected papers from the 1999
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation.

HATCLIFF, J., CORBETT, J. C., DWYER, M. B., SOKOLOWSKI, S., AND ZHENG, H. 1999. A formal study
of slicing for multi-threaded programs with JVM concurrency primitives. In Proceedings on the
International Symposium on Static Analysis (SAS). Lecture Notes in Computer Science, vol. 1694.
Springer, 1–18.

HECHT, M. S. AND ULLMAN, J. D. 1974. Characterizations of reducible flow graphs. J. ACM 21, 3,
367–375.

HORWITZ, S., REPS, T., AND BINKLEY, D. 1990. Interprocedural slicing using dependence graphs.
ACM Trans. Program. Lang. Syst. 12, 1, 26–60.

HORWITZ, S., PFEIFFER, P., AND REPS, T. W. 1989. Dependence analysis for pointer variables. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI). ACM, 28–40.

I. MILLETT, L. AND TEITELBAUM, T. 1998. Slicing Promela and its applications to model checking,
simulation, and protocol understanding. In Proceedings of the 4th International SPIN Workshop.

JAYARAMAN, G., RANGANATH, V. P., AND HATCLIFF, J. 2004. Kaveri: Delivering Indus Java program
slicer to Eclipse. http://projects.cis.ksu.edu/docman/?group id=12.

JOHNSON, R. AND PINGALI, K. 1993. Dependence-Based program analysis. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 78–
89.

KRINKE, J. 1998. Static slicing of threaded programs. In Proceedings of the ACM SIG-
PLAN/SIGFSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE).
35–42.

MILNER, R. 1989. Communication and Concurrency. Prentice-Hall. ISBN: 0-13-115007-3.
MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann, San

Francisco, CA.
PODGURSKI, A. AND CLARKE, L. 1990. A formal model of program dependences and its implications

for software testing, debugging, and maintenance. IEEE Trans. Softw. Eng. 16, 9, 965–979.
RANGANATH, V. P., AMTOFT, T., BANERJEE, A., B. DWYER, M., AND HATCLIFF, J. 2005. A new foun-

dation for control-dependence and slicing for modern program structures. In Proceedings of
the European Symposium on Programming Languages and Systems (ESOP). Lecture Notes in
Computer Science, vol. 3444. Springer, 77–93. Extended version available at http://projects.cis.
ksu.edu/docman/?group id=12.

SANTOS LABORATORY. 2007 Indus, a toolkit to customize and adapt Java programs. http://indus.
projects.cis.ksu.edu.

STAFFORD, J. 2000. A formal, language-independent, and compositional approach to interproce-
dural control dependence analysis. Ph.D. thesis, University of Colorado.

TIP, F. 1995. A survey of program slicing techniques. J. Programm. Lang. 3, 121–189.
WEISER, M. 1984. Program slicing. IEEE Trans. Softw. Eng. 10, 4, 352–357.

Received September 2005; accepted January 2007

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 27, Publication date: August 2007.

