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Modeling and Identification of a 
Class of Servomechanism Systems 
With Stick-Slip Friction 
This paper describes a technique for modeling and identifying a class of nonlinear 
servomechanism systems with stick-slip friction. The physics of the stick-slip friction 
is considered in modeling the process. Identification of the system parameters is for­
mulated as a nonlinear optimization problem. A modified simplex algorithm is pro­
posed as the optimization procedure. The difficulties encountered in choosing iden­
tification algorithm and input signals for the problem are discussed. A simulation 
example of a servomotor system is provided. 

I Introduction 

When operating with small amplitude and low frequency 
signal input, the presence of stick-slip friction in a ser­
vomechanism cannot be ignored. To accurately predict or 
simulate the performance of the system, the effects of friction 
on the motor behavior should be taken into consideration by 
appropriate modeling of the friction. This paper describes a 
modeling and identification technique for a class of ser­
vomechanism systems with stick-slip friction. 

In the paper [1], Karnopp presented a novel model for 
describing the effect of stick-slip friction in mechanical 
dynamic systems. The model proposed by Karnopp takes the 
physics of the stick-slip friction process into account by con­
sidering the rate of change of momentum in the mechanical 
system. The main parameters in the model include the inertia 
of the system, the slip coefficient, the threshold for the 
momentum rate and the saturation stick force. The stick-slip 
friction model of Karnopp is adapted to a class of ser­
vomechanism in this paper. For the present discussion, the dc 
servomotor is considered. The proposed adaptation can be ex­
tended to other classes of servomechanisms. 

This paper next addresses an identification technique and 
the choice of input signals for estimating the parameters 
associated with the nonlinear stick-slip model. The identifica­
tion problem is posed as an optimization problem to be solved 
using nonlinear programming methods [2]. A modified 
simplex algorithm is suggested for speeding up the optimiza­
tion procedure. Simulation results show that the algorithm is 
effective and suitable for the problem considered. A summary 
of the simplex method and its modifications are given in the 
Appendix for completeness. The paper also briefly discusses 
the difficulties encountered in applying other nonlinear pro­
gramming methods to the problem under investigation. 

II Modeling 

A typical armature-controlled dc motor is shown in Fig. 1. 
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The schematic block diagram for the system is given in Fig. 2, 
where the stick-slip friction model for the system is shown as 
NL1 and NL2 [1]. In the system, u is the control voltage, 6m is 
the motor angular velocity, T is the motor torque, Ka is the 
amplifier gain, and Lm and Rm are the armature inductance 
and resistance, respectively; K, and Kb are the torque and 
back EMF constants, respectively; / is the inertia; B is the 
viscous damping coefficient; P is the momentum; 7y, Tslip, 
and Tstkk denote the total, slip and stick friction torques, 
respectively; Ts is the saturation torque of stick friction; Dp is 
the limiting momentum in the stick region, and D$ is the 
limiting angular velocity in the stick and slip regions; and Sc is 
the switching variable. A simplified block diagram of the 
model is shown in Fig. 3. 

The friction torque Tf consists of two components, rsiip and 
rstick. In the slip region where \6m\>Dj, the switching 
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Fig. 1 Servomotor system with stick-slip friction 

HEH? l A m 
s+"mAn o+ 

"0* 

M 9\ 

T ^ 
£ 

-HXK- _cii 

Fig. 2 System schematic black diagram 
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Fig. 3 Simplified system block diagram 
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variable Sc vanishes, so that Tstick=0. Therefore, the torque 
Tj= rslip. In the stick region where 16 m I =Z)j, rslip = 0 and 
Sc = 1 so that Tf=Tsiick. The stick friction T,.,^ is limited to 
the saturation level Ts. 

The nonlinearities can be expressed mathematically as 
follows: 

NL1: 

NL2: 

where 

and 

0, -Dp<P<Dp; 

Ts\\p -

P/J, Otherwise. 
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-Dt)<dm<Df, 

JD, Otherwise. 

The relationship between Dp and £>̂  is given by [1] 

Dp=JD6. 

It is noted that the limiting augular velocity Dg should be suf­
ficiently wide so as to allow Tstick to reach saturation torque 
T 

The nominal values of parameters Ka, Kt, Lm, Rm, and Kb 

are usually specified by the manufacturer, or can often be 
determined a priori. However, the parameters J, B, Dp, D$, 
and Ts are not generally known since they vary considerably 
with operating conditions and environment. 

Il l Identification 

This section presents an identification scheme for estimating 
the unknown parameters. Figure 4 shows the identification 
configuration in which the system parameters are identified by 
minimizing the mismatched output error between the plant 

and the model. General description and development on this 
method can be found, for example, in Richalet [3], Brogan [4] 
and Christopher et al. [2]. 

The idea is to compare the behaviors between the physical 
plant and the mathematical model. If the behaviors of both 
plant and model, under the conditions of experiment, are 
almost identical by some measure [3], then we may claim that 
we have identified a model which mathematically describes the 
plant. If not, the parameters or even the structure of the model 
may be modified in such a way that a greater conformity of 
the model behavior to that of the plant is achieved. The iden­
tification of the model can be formulated in terms of minimiz­
ing the mismatched output errors as follows. 

Let z denote the set of unknown plant parameters to be 
identified or estimated, and z denote an estimate of z. Define 
the mismatched error between the outputs of the plant and 
model as 

e(z,ti)=yp(ti)-y,„(z,ti), (6) 

where yp(tj) is the plant output at sample instants th ym (z,tj) 
is the sampled model output which depends on the estimated 
parameters z, and (=1,2, . . . ,N with N being the total 
number of samples. Consider the objective function of the 
weighted squared errors given by 

•>.(?)= E^&'z). (7) 

where <?,- is a non-negative weighting factor which may vary 
with tj. The parameter identification problem may be posed as 
an optimization problem as follows: 

(8) Minimize Je 

subject to the dynamic model constraint 

ym = G(z,t), (9) 

where G is a nonlinear mathematical description of the plant 
shown in Fig. 2. When the objective function Je is less than a 
predetermined small value, one may say both plant and model 
are identical in the sense of the weighted least squared error, 
and that parameters f identifies with z. 

In the case where a number of experimental responses are to 
be fitted simultaneously, a multiresponse objective function of 
the form (10) may be used: 

L 

Je=H^jJej(Zj), (10) 
J = l 

where 

JeMj)= £ qjilypjU^-y^iZjJi)]2, 

L is the number of experimental responses, Wj is the weighting 
factor for each of the responses, j=l,2 L, and Nj is the 
number of data in each experiment. ypJ and ymj are the plant 
and model outputs, respectively, for they'th experiment. 

IV Optimization Method 

Nonlinear programming techniques [2, 5] may be applied to 
the optimization process of the identification scheme. We may 
classify nonlinear programming methods as two types: the 
direct search method such as simplex and Powell's methods, 
and the gradient method such as Davidon-Fletcher-Powell (D-
F-P) method [5]. Since the latter uses information from the 
derivative or gradient of the objective function in determining 
the search direction, one generally expects a more stable and 
faster convergence in the optimization process. However, our 
experience has shown that the gradient method like D-F-P 
method is not suitable for the identification problem under in­
vestigation. This may be due to a number of factors: 1) an ex­
plicit mathematical gradient relationship for the nonlinear 
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Fig. 5 Flowchart of the modified simplex algorithm 
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Fig. 6 Comparison of responses of plant and model 

system model response could not be found; 2) the objective 
function (7) or (10) is generally not convex over the parameter 
space; and 3) the objective function varies very slowly with the 
variations of some of the parameters under certain system ex­
citation conditions. 

The difficulties in computing the gradients of the objective 
function with sufficient accuracy turn our attention to the 
direct search method. From extensive programming ex­
periments, it is found that the simplex method [5-8] with some 
modifications is effective in overcoming the above difficulties. 

The work of Hanus et al. [6] presents a description of the 
classical simplex method introduced by Splendley et al. [7], 
and its improvements. The classical simplex procedure con­
sists of choosing (n +1) points in a space of n independent 
variables. Based on the (n +1) points, it sets out to find a new 
point in the ^-dimensional space which produces a better value 
for the objective function. The optimum point is found by a 
sequence of elementary geometric transformations: reflection, 
contraction, and extension. A comparison of the simplex 
method with other nonlinear programming methods is found 
in [8]. The classical simplex algorithm is relatively slow in con­
vergence and the final point is not necessary the global op­
timum. Modifications that help to speed up the rate of con­
vergence and to increase the chance of finding a global op­
timum have been proposed [5, 6]. 

In this paper, we introduce a new modification in the exten­
sion procedure: 

If the new extension point is better than the reflection point, 
then take this new point as the initial point, and begin a new 
Simplex search iteration. If not, continue in the usual way. 

This modification helps to increase the convergence rate of 
the search algorithm. Since the modified procedure explores 
new directions, the chances of finding the global optimum are 

also increased. Simulation results show that these im­
provements have been very effective. The modified simplex 
algorithm is summarized in the Appendix for completeness, 
and its flowchart is shown in Fig. 5. The reflection coefficient 
a is chosen as 1, the contraction and extension coefficients /3 
and 7 may be chosen as some values around 0.5 and 2.0, 
respectively [6]; er is the scale of convergence criterion which 
is a small number whose value depends on the accuracy 
desired; Kmm is the maximum iteration time; and f{z) is the 
objective function to be minimized, such as Je given by (10). 

V Identifiability of Parameters and Choice of Excita­
tion Input Signals 

Successful identification of system characteristics requires 
the understanding of the identifiability of the parameters and 
the right choice of excitation input signals. It is necessary to 
excite the transient behavior associated with the parameters to 
be identified in order to study their characteristics. The infor­
mation which one can draw from any experiment thus depends 
on the excited characteristics and the nature of the excitation 
inputs. There are two different kinds of parameters in the 
model being investigated: one associated with linear 
characteristics and other with nonlinear characteristics. In this 
paper, we will concentrate on the problem of finding a proper 
input which simultaneously excites both the linear and 
nonlinear characteristics of the system. 

A solution to the suitable choice of excitation inputs would 
be a set of input signals which have high and low frequency 
components as well as small and large magnitude. The small 
magnitude low frequency signal excites the nonlinear stick slip 
friction characteristics while moderately large magnitude high 
frequency signal incites mostly the linear behavior. The 
multiresponse objective functions (8)-(10) may be used to 
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estimate the optimum parameters that identify the linear and 
nonlinear characteristics. The effectiveness of the proposed 
approach is verified by simulation studies shown in the next 
section. 

The choice of input signal is an interesting aspect of both 
linear and nonlinear system identification problems. A com­
prehensive discussion on this subject is given in [9]. 

VI Analyses of Results 

In this section, we apply the method suggested in the 
preceding sections to identify the parameters of a simulated 
servomotor system in which the stick-slip friction is con­
sidered. The aim is to verify that the proposed parameter iden­
tification technique works on a simulation basis. A future goal 
is to test the scheme on an experimental basis. 

Satisfactory simulation results were obtained and are shown 
in Fig. 6. It is found that the response of the model agrees 
closely with that of the simulated plant at the 40th iteration of 
the modified Simplex algorithm. The objective function 
reduces from 4.36 x 103 at the 1st iteration to approximately 
10 - 1 0 at the final iteration when the algorithm converges. 

In the simulation, it is assumed thatK a ,K b , K,,Lm, and/?,,, 
are known, and / , B, Dp, D$, and Ts are to be identified. A 
summary of the results is as follows: the actual values of the 
parameters used for simulating the plant are: / = 3 . 0 x 10 - 3 , 
5 = 1 . 2 x l 0 ~ 4 , Dp = 8.5xl0~2, and 7; = 1 .0x l0 - 3 ; the 
estimated values recovered from the simulated plant output 
d a t a a r e : J = 3 . 0 0 0 X 1 0 " 3 , B = 1.1 99 x 1 0 - 4 , 
£>p = 8 .519xl0- 2 , and Ts = 9.995x 10"4 . Note that D6 is 
determined by using the relationship between Dp and D$ given 
in (5). Hence, the parameters in the proposed model of a ser­
vomotor system with stick-slip friction can be obtained. The 
results could be considered to be quite satisfactory. 

VII Conclusions 

A nonlinear'model for a class of servomechanism system 
with stick-slip friction is presented. An effective technique has 
been developed to identify the parameters of this model. The 
main difficulties in the identification problem are: the for­
mulation of the identification model, the identifiability of the 
system parameters, the choice of excitation inputs and the 
choice of the nonlinear programming method. The modified 
simplex method has proved to be effective as an optimization 
procedure in the identification problem investigated. It is ex­
pected that the technique proposed here is applicable to system 
parameter identification problems associated with a wide class 
of nonlinear systems. Experimental aspects and verification of 
the method is currently underway. 
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A P P E N D I X 

Modified Simplex Algorithm 

Let Z denote the set of n independent variables;/(z), zeZ, 
be the objective function to be minimized. Then, after choos­
ing a first set of (n + 1) points z,eZ, i= 1, 2, . . . , n + 1, the 
classical simplex procedure [7] basically includes a sequence of 
elementary geometric transformations: reflection, contraction 
and extension, to coverge to an optimum. Define the 
following: 

A reflection point zr is given by 

Zr = (l + a)zcr-azii, a>0, (11) 

where zh is the worst point which yields the highest value of 
/(z , ) , and zcr is the centroid: 

i*h 

The value of a is usually 1. It is a reflection of the worst point 
zh through the centroid zcr. A contraction point zc is given by 

zc = (l-/3)z„. + /3z„, 0.0</3<1.0. (13) 

The usual value of (3 is 0.5. It is a contraction of the worst 
point Zh towards the centroid z„. A general contraction is a 
procedure given by 

zi = (l-P)z, + fizi, /=1,2 , . . . ,/z + l, (14) 

with z/ the best point which yields the lowest value of/(z,). All 
the points are contracted towards the best point. An extension 
point ze is given by 

ze = (.l-y)zcr + yzr, 7 > 1 - (15) 

It is an extension of the reflection beyond the reflection point. 
The usual value of the parameter 7 is 2. 

The simplex iteration begins with reflection. The reflection 
procedure consists of trying to replace the worst point by its 
reflection through the centroid of all other points. If the 
reflection point is better than the current best point, the exten­
sion procedure is tried; else the reflection point is compared to 
all the other points except the worst one. If the reflection point 
is better than one of other points, then it takes the place of the 
worst one and a new iteration can be repeated; else the con­
traction procedure is tried. 

The contraction procedure consists of trying to replace the 
worst point Z/, by a contraction point zc. If the contraction 
point is better than the worst point, then it takes the place of 
that point and a new iteration starts; else a general contraction 
of all the points is executed towards the best one, and a new 
simplex iteration may be started. 

When the reflection point is better than the current best one, 
the extension procedure is applied. If this new extension point 
is better than the reflection point, it replaces that point in the 
simplex, and a new simplex iteration may be started again. 

Since each transformation replaces the current worst point 
with a better one, an optimum would finally be reached. 

In order to overcome the disadvantages of the classical 
simplex algorithm [8], different improvements have been pro­
posed [6, 10]. Some of the main improvements include: 
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(1) Regarding the simplex size, Lesuisse [10] has shown that 
the optimal number of points is In and not the minimum 
number (« + 1). The choice of In points assures a maximum 
speed of convergence and a maximum chance to find a global 
optimum. 

(2) Regarding the contraction procedure, Hanus et al. [6] 
modified the simplex method as follows. For the contraction 
procedure, if the contraction point is not better than the cur­
rent worst one, do the following operation: a new point z„ is 
chosen halfway between the worst point and the best one: 

zn = (z, + Zh)/2. (16) 

If the new point z„ is better than the current worst point zh, it 
takes its place in the simplex with the associated cost given by 

f(z„). If not, it also takes the place of the worst point but with 
the associated cost given by / (zA ) , and a new iteration is 
started. 

In our approach, we introduce a new modification in the ex­
tension procedure: If the new point ze after extension is better 
than the reflection point zr, then take this point as initial 
point, and a new simplex algorithm is started with new set of 
initial points around ze. If not, continue in usual way. 

The modifications in both contraction and extension pro­
cedures, and the use of 2n points assure the convergence of the 
algorithm. Since they explore new directions, the chance of 
finding the global optimum increases. Moreover, when the 
simplex has reached an optimum, the entire procedure can be 
restarted with a new simplex for exploring the vicinity around 
this newly found optimum. 
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