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� ABSTRACT: Usually the classical approach to make inference in linear regression model 

assumes that the independent variable does not contain measurement errors. In practice, 

however, the data can contain measurement errors and the presence of these errors can affect the 

results of the analysis drastically. Rodrigues and Baba (1994) proposed a Bayesian approach to 

estimate the slope parameter β in linear regression model with measurement errors considering 

the reliability ratio KX as known. There are situations, however, where the information regarding 

the reliability ratio KX  not always is available. In this paper, our main interest is to make a 

Bayesian inference about β under the assumption that the reliability ratio KX is unknown. To 

obtain the posterior distribution we use Gibbs Sampler algorithm.  

� KEYWORDS: Posterior distribution; reliability ratio; slope parameter; Gibbs sampler. 

1 Introduction 

The classical simple linear regression analysis assumes that the independent variable 

is defined by  

i i i
y xα β ε= + + ,i=1, ...,n; (1) 

where (x1, . . ., xn) is fixed in repeated sampling and εi are independent N(0, σ2
ε) random 

variables. It is assumed that xi is measured without error. However, in practice, 

particularly in social sciences and biological essay, this assumption is often violated. 

There is a lot of work on the problem of parameter estimation when the xi contain errors of 

measurement, see for example, Fuller (1987). In the present paper we propose a Bayesin 

approach to estimate the model parameters. We shall study models of type (1), with 

0=α , where instead of observing xi one observes the sum 

iii uxX += ,i =1, ...,n. (2) 

We make the assumption that 
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2 2 2( , , ) '~ (( ,0, 0) ', ( , , ));
i i i x x u

x u NI diag εε µ σ σ σ  (3) 

where NI~  is an abbreviation for “distributed normally and independently”, and 

( )2 2 2, ,
x e u

diag σ σ σ  is a diagonal matrix with the given elements on the diagonal. 

It follows from (1), (2) and (3), that the vector (Xi , Yi)' is distributed as a bivariate 

normal  

 

2 2 2 2

2 2 2
~ , .

i x x e x

i x x x u

Y
NI

X

β µ β σ σ β σ

µ β σ σ σ

  +   
      +      

 (4) 

We can without loss of generality take µx = 0. 

A way of inference of the parameter consists of analyzing it subject to the two-

dimensional model, however, Rodrigues and Cordani (1990) analyze under other 

perspective, working with the conditional distribution of Yi
given Xi

. Because (Xi , Yi) is 

distributed as a bivariate normal, the conditional distribution of Yi given Xi is given by  

2 2 2
, ;~

i i X i X u e
Y X N K X Kβ β σ σ +  

 (5) 

where

2 2

2 2 2

x x

X

x u X

K
σ σ

σ σ σ
= =

+
 is called reliability ratio. 

Rodrigues and Baba (1994) proposed a Bayesian approach to estimate the slope 

parameter β  in linear regression model with measurement errors considering the 

reliability ratio KX  as known. 

There are situations, however, where the information regarding the reliability ratio 

KX  not always is available. In this paper, our main interest is to make a Bayesian 

inference about β  under the assumption that the reliability ratio KX  is unknown. 

2. Bayesian analysis of the regression model 

Let (X1 , Y1), . . ., (Xn , Yn) are independent and identically distributed random 

variables in agreement with the conditional model: 

2 2 2, ;~
i i X i X u e

Y X N K X Kβ β σ σ +   

whereKX  is unknown.  

We consider the “over identifiable” situation, that is, 
2

0

22 σσσ == ue
, where the 

common variance is known. Thus, the likelihood function is given by 

( )
( )

( )
22 2

2 2
10

1
( , ) 1 exp

2 1

n n

X X i X i

iX

L K K Y K X
K

β β β
σ β

−

=

  
∝ + − − 

+  
∑ . 

(6) 
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Denoting the variance of the distribution given in (6) by 

( )122

0

2222 +=+= βσσσβσ XeuX KK , we obtain 

( )
22

2
1

1
( , , ) exp .

2

n
n

X i X i

i

L K Y K Xβ σ σ β
σ

−

=

 
∝ − − 

 
∑  (7) 

Box and Tiao (1973) propose a locally uniform joint prior distribution for β and 

σlog  given by: 

( )2, log constant.π β σ ∝  (8) 

Consequently, the joint prior density for 
2

  and  σβ  is: 

( )2

2

1
, .π β σ

σ
∝  (9) 

To propose a prior distribution for KX , we observe that a close value of zero can be 

due to a great measurement error ( )∞=2

Xσ , an error of planning of the data that a 

statistician cannot accept, or it can be due to 02 =xσ  established for the functional case, 

a situation no studied here.  

Thus, we consider a prior uniform in (0.3, 1) for KX , that is, 

( )X
Kπ ∝

 
constant, 13.0 << XK . (10) 

Now, supposing the parameters are independent we obtain a joint prior for 

( )2
,, σβ XK  given by  

( )2

2

1
, , .XKπ β σ

σ
∝  (11) 

Therefore, from (7) and (11) we can express the joint posterior distribution as: 

( ) ( )
22

2 2
1

1 1
, , data exp .

2

n

X i X in
i

p K Y K Xβ σ β
σ σ+

=

 
∝ − − 

 
∑  (12) 

Because our intention is to estimate the slope parameter, we consider the application 

of Gibbs Sampler to obtain the marginal posterior distribution of β. For this, we need to 

obtain the complete conditional distributions.  

 

Writing ( ) ∑ ∑∑∑
= ===

+−=−
n

i

n

i

i

n

i

iiXi

n

i

iXi YYXKYXKY
1 1

2

1

2

1

2
2ββ and after some 

algebras, the posterior conditional distribution ( )data,,|
2σβ XKp  is given by 
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that is,  
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The posterior conditional distribution for KX given by 

( )
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(14) 

which is a Normal Truncated with KX  restricted to the interval (0.3, 1). 

 Besides, conditional to β and KX, the posterior conditional distribution for σ2
 is 

given by  

( ) ( )








−−∝ ∑
=

+

n

i

iXinX XKYKp
1

2

22

2

2

1
exp

1
data,, β

σσ
βσ ; (15) 

that is, the posterior conditional distribution for σ2
 is a Gamma Inverted distribution with 

parameters 
2

n
α = and

( )
2

1

2

n

i X i

i

Y K Xβ

γ =

−

=
∑

. 

3. Implementation of Gibbs Sampler 

Gibbs sampler is a particular case of substitution sampling Gelfand and Smith (1990) 

in which all full conditional densities are supposed known. A nice introduction to the 

Gibbs sampler is given by Casella and George (1992). In this paper the conditional 

densities are given by equations (13), (14) and (15). 

We now describe the Gibbs Sampler implementation used in our framework. The 

algorithm proceeds as follows 

1. Choose starting values 
0 0 2

0( , , )XKβ σ . 

2. At step i+1: 

a) Draw 
iβ  from the conditional posterior ( )2, , datai

X i
p Kβ σ  given in (13); 
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b) Draw i

XK  from the conditional posterior ( )1 2, , datai

X i
p K β σ+  given in (14); 

c) Draw 2

iσ  from the conditional posterior ( )2 1 1
, ,data

i i

Xp Kσ β + +  given in (15). 

3. This provides a sequence of sampled values 
2( , , )i i

X iKβ σ , i=0, 1, . . ., N  which is a 

realization of the Markov chain associated with the full conditional densities of 

( )2, , data
X

p Kβ σ  given in (12). 

4. Numerical illustration  

In this section, we illustrated the performance of the procedure proposed in this 

paper based in the samples generated in the software R considering α = 0, β = 2and 

variances 2 2 2 2

0
1 and  1

e u x
σ σ σ σ= = = = . Two values for the reliability ratio KX are 

considered, for instance KX = 0.5 and KX =0.8, in order to compare the performance of 

estimates in the analysis. In this case, the parameter σ assumes values equal toσ = 1.732 

and 2.05, respectively. A practical example with real data is also presented. 

As we are not able to find an analytic expression for marginal posterior distributions 

and hence to extract characteristics of parameters such as Bayes estimates, and credible 

intervals, we need to appeal to the Gibbs Sampler algorithm to obtain a sample of values 

of parameters from the joint posterior. The chain is run for N=10000 iterations with a 

burn-in period of size 1000, which were discarded to eliminate the effect of the initial 

values.  

Figure 1 presents the MCMC output plot and the marginal densities resulting for the 

parameters of the regression model considering KX = 0.5 and n =10. The MCMC plots 

suggest we have achieved convergence. The posterior summaries of interest are given in 

Tables1 and2 for different sample sizes as n=10 and n=50,respectively. 

Both Tables allow a comparison of the estimators of β,KX  and σ using the 

approaches proposed by Rodrigues and Cordani (1990) and the Bayesian procedure 

proposed in this paper. The 95% intervals from the maximum likelihood (ML) and 

Bayesian approaches are also displayed in the Table 1. 

The results from Table 1 show that ML and Bayesian approaches do not provide 

good estimates for β, however the confidence interval by ML approach has negative 

values. The Bayesian estimate for the parameter KX is too close to the true value while the 

ML estimate assumes an impossible value, that is, greater than 1. Besides, the ML interval 

is larger than the range (0, 1) of KX. For the parameter σ, the ML estimate is better than 

the Bayesian. 
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Table 1 - Estimates values and confidence intervals for the parameters β, X
K  and σ by 

ML and Bayesian approaches for = 0.5 and  n =10 

 β 
X

K  σ 

ML 
1.3254 

(-0.5703, 3.2211) 

1.1013 

(-0.76736, 2.9699) 

1.7131 

(0.4504, 2.9757) 

Bayesian 
2.8087 

(0.8226, 5.8844) 

0.5842 

(0.3105, 0.9623)  

1.8658 

(1.1784, 3.1757) 

 

 

 

 

 
Figure 1 - Estimates Densities via Gibbs Sampler and the traces of the chains generated for the 

parameters β, 
X

K  and σ. 
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Table 2 - Estimates values and confidence intervals of the parameters β, KX  and σ by ML 

approach and Bayesian estimator obtained via Gibbs Sampler for KX = 0.5 and  

n=50 

 β KX  σ 

ML 
1.6666 

(0.5069, 2.8263) 

0.5785 

(0.08641, 1.0707) 

1.6146 

(1.0824, 2.1469) 

Bayesian 
1.8237 

(0.8717, 3.4150) 

0.5742 

(0.3085, 0.9729) 

1.6405 

(1.3478, 2.0044) 

 

When the sample size n increases (n=50) all the estimates get better and more 

accurate providing quite similar results, as expected. Note however that the ML estimate 

for KX becomes close to the 0.5 but with interval still large while the Bayesian estimation 

for KX does not improve.  

In summary, when sample size n is small, the ML estimates can assume inadmissible 

values and the Bayesian estimates will have likely values but not very accurate. However, 

for moderate n (n = 50), the most estimates will have similar values. 

In Tables 3 and 4 we can analyze the point and intervals estimates of β, KX  and σ 

for different values of KX  , (KX =0.5 and KX =0.8) for a sample size n=10. We consider 

KX  = 0.8 resulted from 2 2 2 1 and 4
e u x

σ σ σ= = = . 

 

Table 3 -Estimates values of the parameters β, KX  and σ by ML approach and Bayesian 

estimator (via Gibbs Sampler) for n =10 

 β KX  σ 

ML 0.8252 

(1.3254) 

2.3598 

(1.1013) 

1.6146 

(1.7131) 

Gibbs 3.7268 

(2.8087) 

0.5738 

(0.5842) 

1.7682 

(1.8658) 

Note: values corresponding to 
X

K =0.5  (are between parentheses). 

 

Table 4 - 95% confidence intervals of the parametersβ, KX  and σ by ML approach and 

Bayesian estimator (via Gibbs Sampler) for n =10 

 β KX  σ 

ML  (-0.3606, 2.0110) (-1.1349, 5.8545) (0.4245, 2.8047) 

Gibbs (1.8296, 6.6435) (0.3099, 0.9662) (1.1069, 2.9527) 
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As the sample size n is small, the ML and Bayesian estimates have the similar 

behavior for KX =05, however, by comparing the estimations for KX =0.5 and KX =0.8 

we analyze how the parameter KX  can affect the estimations. Note that for KX =0.8 

2( 4)xσ =  the estimation of β gets worse and inaccurate with both estimation approaches. 

For parameter KX  the Bayesian approach is still better than ML. 

Therefore KX  is an important parameter of interest in the regression analysis with 

measure errors and it should be considered in this study, mainly when there are few 

observed data set. 

5. A real illustration with literature data 

Consider the example of regression model with measurement errors proposed by 

Fuller (1987, page 18) that involves yield of corn (Y) for different levels of soil nitrogen 

(X). Here the explanatory variable, soil nitrogen level, has been determined with 

measurement error.  

It is assumed there is a prior estimate of the measurement error for soil nitrogen is 
2

uσ = 57. We consider the “over identifiable” situation, that is, 
2

0

22 σσσ == ue . 

The data set given in Table 5 represents the corn and determinations available soil 

nitrogen collected at 11 sites on Marshall Soil in Iowa. 

 

Table 5 -Yields of corn on Marshall soil in Iowa 

Site 1 2 3 4 5 6 7 8 9 10 11 

Yield (Y) 86 115 90 86 110 91 99 96 99 104 96 

Soil Nitrogen (X) 70 97 53 64 95 64 50 70 94 69 51 

 

 

After run the Gibbs Sampler algorithm for N=30000 iterations we provide the Figure 

2 with the MCMC output plot and the marginal densities resulting for the parameters of 

the regression model. 

Comparison of the regression estimates from ML and Bayesian approaches are 

provided at the Table 6 below which shows the point estimates and 95% confidence 

intervals for the parametersβ, KX  and σ. 
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Figure 2 - Estimates Densities via Gibbs Sampler and the traces of the chains generated for the 

parametersβ, KX  and σ. 

 

Table 6 - Estimates values and confidence intervals of the parameters β, KX  and σ by ML 

approach and Bayesian estimator obtained via Gibbs Sampler for n=11 

 β KX σ 

ML 
4.0292 

(3.5534, 4.5051) 

0.3289 

(0.2518, 0.4059) 

19.0091 

(5.6499, 32.3683) 

Bayesian 
2.5170 

(1.3194, 4.3654) 

0.5970 

(0.3098, 0.9734) 

20.6173 

(13.2046, 33.5342) 
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Now, what would happen if we did not consider the estimation error in the variable 

X. In other words, what would be the estimator of β for X fixed in a simple linear 

regression model? We can specify such a linear regression model easily by R software 

and estimation results would be: 

 

Call: 

lm(formula = Y ~ -1 + X) 

 

Residuals: 

    Min        Median      3Q     Max  

-25.566 -10.152   3.238  16.165  32.742  

 

Estimate  Std. Error  t  value Pr(>|t|)     

X  1.32517    0.07898    16.78  1.19e-08  

 

IC 95% (1.278496 ; 1.371844) 

 

Conclusion 

Because the procedures proposed by Rodrigues and Cordani (1990) are based in 

asymptotic results, the classic estimator of β in the regression model with measurement 

errors does not produce satisfactory estimates when the size of the sample is small. In this 

case, the Bayesian approach for estimation of the studied model produces better results 

than classical estimators. Therefore, we verified that Bayesian method usually requires 

less sample data to achieve the better quality of inferences than the method based on 

classic theory. In many cases, this is the practical motivation for using Bayesian methods 

and represents the practical advantage in the use of prior information. This is an especially 

important consideration in those areas of application where sample data may be either 

expensive or difficult to obtain it. 

In addition, the statistical inferences based on sampling theory are usually more 

restrictive than Bayesian Inference due to the exclusive use of sample data. The Bayesian 

Inference’s use of relevant past experience, which is quantified by the prior distribution, 

produces more informative inferences in those cases where the prior distribution 

accurately reflects the variation in the parameter. So, it was possible that we put the 

information that 
X

K  assumes values between 0 and 1 in this work. We observe that 
X

K  

is an important parameter in the regression analysis with measure errors and it should be 

considered in the study, mainly when there are few observed data set. The degree to which 

more informative inferences occur otherwise depends upon the quality of the assessments 

embodied in the prior distribution. Therefore, other priors could be tried to improve the 

estimation. The comparison of priors for the model with errors in variables is a future 

study of our interest. 
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� RESUMO:Geralmente a análise clássica de inferência do modelo de regressão linear assume que 

a variável independente não contém erros de medida.Na prática, porém, os dados podem conter 

erros de medição e a presença destes erros pode afetar drasticamente os resultados da análise. 

Rodrigues e Baba (1994) propuseram uma abordagem Bayesiana para estimar o parâmetro de 

inclinação β no modelo de regressão linear com erros de medida, considerando a razão de 

confiabilidade KX como conhecida. Há situações, no entanto, em que a informação sobre a razão 

de confiabilidade KX nem sempre é disponível.  Neste artigo,nosso interesse principal é realizar 

uma inferência Bayesiana do parâmetro β sob a suposição deque a razão de confiabilidade KX é 

desconhecida. Para obter a distribuição a posteriori usamos o algoritmo amostrador de Gibbs. 

� PALAVRAS-CHAVE:Distribuição a posteriori; razão de confiabilidade; parâmetro de 

inclinação; amostrador de Gibbs. 
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