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ABSTRACT 
This paper deals with the problem of static instability of 
Micro/Nano mirrors under the combined effect of 
capillary force and Casimir force. At the First the 
governing equations of the statical behavior of 
Micro/Nano mirrors under the combined effect of 
capillary force and casimir force is obtained. The 
dependency of the critical tilting angle on the physical 
and geometrical parameters of the nano/micromirror and 
its supporting torsional beams is investigated. It is found 
that existence of casimir force can considerably reduce 
the stability limits of nano/micromirror. It is also found 
that rotation angle of the mirror due to capillary force 
highly depends on the casimir force applied to the 
mirror. Finally analytical tool Homotopy Perturbation 
Method (HPM) is utilized for prediction of the mirror’s 
behaviour under combined capillary and casimir forces. 
It is observed that a sixth order perturbation 
approximation accurately predicts the rotation angle and 
stability limits of the mirror. Results of this paper can be 
used for successful fabrication of nano/micromirrors 
using wet etching process where capillary force plays a 
major role in the system. 
. 
Keywords:  Nano/micromirror, capillary force, casimir 
force, HPM. 
 

 
1) Introduction 
The technology of MEMS devices has experienced a lot 
of progress recently. Their low manufacturing cost, 
batch production, light weight, small size, durability, 
low energy consumption and compatibility with 
integrated circuits, makes them extremely attractive [1, 
2]. Successful MEMS devices rely not only on well 
developed fabrication technologies, but also on the 
knowledge of device behavior, based on which a 
favorable structure of the device can be forged [3]. The 
important role of MEMS devices in optical systems has 
initiated the development of a new class of MEMS 
called MicroOptoElectroMechanical Systems 
(MOEMS). MOEMS mainly includes micromirrors and 
torsional micro-actuators. These devices has found 
variety of applications such as optical cross connects [4, 
5],  optical switches [6], digital micromirror devices 
(DMD) [7], micro scanning mirrors [8], and etc. 
Existence of a liquid bridge between two objects results 
in forming capillary force [9]. The existence of capillary 
force even in low relative humidity is observed 
experimentally [10]. Parallel plate MEMS actuators are 
conventionally fabricated by forming a layer of a plate 
or beam material on the top of a sacrificial layer of 
another material and wet etching the sacrificial layer. In 
this process, capillary force can be easily formed and in 
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the case of poor design, the structure will collapse and 
adhere to the substrate. So investigating the effect of 
capillary force on micromirrors is extremely important 
in their design and fabrication. 
Many researchers investigated the effect of capillary 
force on MEMS devices. Mastrangelo and Hsu [11, 12] 
studied the stability and adhesion of thin 
micromechanical structures under capillary force, 
theoretically and experimentally. Moeenfard et al [13] 
studied the effect of capillary force on the static pull-in 
instability of fully clamped micromirrors. The effects of 
capillary force on the static and dynamic behaviors of 
atomic force microscopes (AFM) are widely assessed 
[14-16]. Recently, the instability of torsional 
MEMS/NEMS micro-actuators under capillary force 
was investigated by Guo et al [17]. 
When the size of a structure is sufficiently small, 
casimir and van der Waals forces play an important role 
and in the case of poor design, can lead to the collapse 
of the structure. VdW force is the interaction force 
between neutral atoms and it varies from covalent and 
ionic bondings in that it is caused by correlations in the 
fluctuating polarizations of nearby particles [18]. 
Casimir effect is understood as the longer distances 
range analog of the vdW force,  resulting from the 
propagation of retarded electromagnetic waves, whose 
distance ranges from a few nanometers up to a few 
micrometers [19].  
Tahami et al [20] discussed Pull-in Phenomena and 
Dynamic Response of a Capacitive Nano-beam Switch 
by considering casimir effect. Casimir effect on the 
pull-in parameters of nanometer switches has been 
studied by Lin and Zhao [21]. They [22] also studied 
Nonlinear behavior of nano-scale electrostatic actuators 
with casimir force. Ramezani et al [23, 24] investigated 
the two point boundary value problem of the deflection 
of nano-cantilever subjected to casimir and electrostatic 
forces using analytical and numerical methods to obtain 
the instability point of the nanobeam. Modelling and 
simulation of electrostatically actuated nano-switches 
under the effect of casimir forces have been studied by 
mojahedi et al [25]. Sirvent et al [26] theoretically 
studied pull-in control in capacitive microswitches 
actuated by Casimir forces using external magnetic 
fields. Effect of the casimir force on the static deflection 
and stiction of membrane strips in MEMS have been 
studied by Serry et al [27].  Guo and Zhao [28]  
discussed the effect of casimir force on the pull-in of 
electrostatic torsional actuators. But statical behavior 
and pull-in of single sided nano/micromirrors under 
effect of capillary and casimir forces has not been 
investigated. So in this paper, the combined effect of 
casimir and capillary forces on the tilting angle and 
stability of torsional nano/micromirror is studied. In this 
study, HPM is used as a perturbational based analytical 
tool.  
Perturbation methods have been used to analytically 
solve the nonlinear problems in MEMS. Younis and 
Nayfeh [29] investigate the response of a resonant 
microbeam to an electric actuation using the multiple-
scale perturbation method. Abdel-Rahman and Nayfeh 
[30] used the same method to model secondary 
resonances in electrically actuated microbeams. Since 

perturbation methods are based upon the assumption 
that there is a small parameter in the equations, they 
have some limitations in problems without involvement 
of small parameters. In order to overcome this limitation 
a new perturbational based method, namely Homotopy 
Perturbation Method (HPM) was developed by He et al 
[31]. His new method takes full advantages of the 
traditional perturbation methods and homotopy 
techniques. Homotopy perturbation method has also 
been used for solving the nonlinear problems 
encountered in N/MEMS. For example, Moeenfard et al 
[32] used HPM to model the nonlinear vibrational 
behavior of Timoshenko micobeams. Mojahedi et al 
[33] applied the HPM method to simulate the static 
response of nano-switches to electrostatic actuation and 
intermolecular surface forces. But so far no analytic 
solution has been presented to model the behavior of 
nano/micromirrors. 
In the current paper, the equations governing the statical 
behavior of rectangular nano/micromirrors are obtained 
using the minimum potential energy principle. Then 
pull-in parameters of nano/micromirrors under effect of 
casimir and capillary forces are investigated. At the end, 
tilting angle of a nano/micromirror under casimir and 
capillary forces is calculated both numerically and 
analytically using HPM. 
 
2) Theoretical model 
The micromirror shown in figure (1) is considered. 
 

Fig. 1: Schematic view of a nano/micromirror. 
 

 
The capillary pressure, capP  underneath the mirror is 
[13]: 
 

2 cos
sin

c
capP

h x
γ θ

θ
=

−
(1) 

 
where h  is the initial distance between the mirror and 
the substrate, θ  is the tilting angle of the mirror, γ   is 
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surface energy of liquid and cθ  is contact angle 
between liquid and solid surface.  
Furthermore the differential casimir force applied to a 
differential surface element of the mirror shown in 
figure (1) is [34]: 
 

2

4240( sin )Cas
cdF Wdx

h x
π

θ
=

−  

(2) 

 
 
Where  c  is speed of light,  is Plank’s constant 
divided by 2π  and W  is width of mirror  as illustrated 
in figure (1).  
The minimum total potential energy principle [35] is 
utilized here to obtain equilibrium equation and to 
investigate the stability of the equilibrium points. The 
total potential energy of the system can be divided into 
two parts: the potential strain energy of the torsion 
beams and the potential energy of applied loads which 
is equal to the minus of work done by external forces. 
 

eU V U W∏ = + = −  (3) 
 
Where ∏  is the total potential energy of the system, 
U  is the potential strain energy of the torsion beams, 
V  is the potential energy of applied loads and eW  is 
the work done by external forces. In equilibrium points, 
variation of the total potential energy of the system is 
zero. 
 

0eU Wδ δ δ∏ = − =  (4) 
 
The potential strain energy of system can be calculated 
as: 
 

21
2

U Kθ=
 

(5) 

 
Where 
 

2 pGI
K

l
=  (6) 

 
In this equation, G  is the shear modulus of elasticity of 
the beam’s material, l  is length of each torsion beam 
and pI  is the polar momentum of inertia of the beams 
cross section which can be calculated using equation (7) 
[36]. 
 

( )
( )3 4

55
1

2 11 64 1 tanh
3 22 1p

n

n r
I rs s

sn
π

π

∞

=

−
= −

−
∑  (7) 

 
Where r  and s  are the width and length of the torsion 
beams cross section respectively as illustrated in figure 
(1). 
The variation of U  would be as 
 

U Kδ θδθ=  (8) 
 
The total external work done on nano/micromirror to 
rotate it from angle θ  to angle θ δθ+  can be 
calculated as follows. 
 

0

2

4
0

( )( )

2 cos( )( )
sin 240( sin )

L

e Cap Cas

L
c

W dF dF x

cWdx Wdx x
h x h x

δ δθ

γ θ π δθ
θ θ

= +

= +
− −

∫

∫

 
(9) 

 
Where L is length of mirror as illustrated in figure (1). 

Since 1h
L

<< , the tilting angle is small, and sinθ can 

be closely approximated by θ . For simplification 
purpose, the following dimensionless variable is 
introduced. 
 

0

θ
θ

Θ =  
(10) 

Where 0 0sin h
L

θ θ≈ =  is the maximum physically 

possible rotation angle of the mirror. 
At equilibrium points equation (4) must be satisfied. So 
by performing the integration the equilibrium equation 
is obtained as follows. 
 

2 3
1 1 3 11 ln(1 ) 0

6 6( 1)
η λ ⎛ ⎞Θ −⎛ ⎞+ − Θ − − + Θ =⎜ ⎟ ⎜ ⎟Θ Θ Θ Θ −⎝ ⎠ ⎝ ⎠

  (11) 

 
where η  and λ  are called instability numbers and are 
defined as equations (12) and (13) respectively. 
 

3

2
2 cos cWL

Kh
γ θη =   (12) 

2 3

5240
cWL
h K

πλ =   (13) 

 
Performing the second variation operator on equation 
(3) and using equilibrium equation yields: 
 

2 2
2

2 2

3 3 2 4

( ) 2 (1 ) 11 1
1

8 1 2 1 1
3 (1 ) (1 ) (1 ) 3

h K ln
L

δ ηδ

λ

Θ − Θ⎡ ⎛ ⎞∏ = − + +⎜ ⎟⎢ Θ Θ − Θ⎝ ⎠⎣
⎤⎛ ⎞+ − − + ⎥⎜ ⎟Θ − Θ − Θ − Θ⎝ ⎠⎦

 
(14) 

 
According to minimum total potential energy principle 
an equilibrium point is stable when 2 0δ ∏ >  and is 
unstable when  2 0δ ∏ <  . So the stability condition is 
reduced to: 

2

3 3 2 4

2ln(1 ) 1I( , , ) 1 1
1

8 1 2 1 1 0
3 (1 ) (1 ) (1 ) 3

ηη λ

λ

− Θ⎛ ⎞Θ = − + +⎜ ⎟Θ Θ − Θ⎝ ⎠
⎛ ⎞+ − − + >⎜ ⎟Θ − Θ − Θ − Θ⎝ ⎠

 
(15) 
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Finding η  from equation (11) and substituting it in 
equation (15) leads to: 
 

( )
( )3 3

3 3 2 4

1 3 1 1
2ln 16 6( 1) 1I( , ) 1 11 11 ln 1

8 1 2 1 1
3 (1 ) (1 ) (1 ) 3

λ

λ

λ

⎛ ⎞Θ −− −⎜ ⎟ − Θ⎛ ⎞Θ Θ −⎝ ⎠Θ = − + +⎜ ⎟Θ − Θ⎝ ⎠+ − Θ
Θ

⎛ ⎞+ − − +⎜ ⎟Θ − Θ − Θ − Θ⎝ ⎠

 

(16) 

 
Figure (2) shows the function ( )I ,λ Θ  versus Θ  at 

some values of λ . 
 

 
Fig. 2: Function ( )I ,λ Θ  versus Θ . 

 
  
An equilibrium point is stable if ( )I , 0λ Θ >  and 

unstable if  ( )I , 0λ Θ < . It is observed that in certain 

value of Θ  called PΘ , which relates to the pull-in 

state, ( )I ,λ Θ   becomes zero. When PΘ < Θ , 

( )I ,λ Θ  would be positive and the resulting 

equilibrium point is stable and when PΘ > Θ , 

( )I ,λ Θ  would be negative and the resulting 
equilibrium point is unstable.  
At the pull-in state the following equation is satisfied. 

( )pI , 0λ Θ =  (17)  

Figure (3) shows the values of pull-in angle versus Pλ  

where Pλ  is the value of λ  at pull-in. It is observed 

that with increasing the value of Pλ  the pull-in angle of 
the mirror is reduced. 
 

 
Fig. 3: pull-in angle of mirror versus Pλ . 

 
 
 
Using equations (11) and (17), pull-in angle can be 
plotted versus Pη  as illustrated in figure (4) where Pη  
is the value of η  at pull-in state. 
 

 

Fig. 4: pull-in angle of mirror versus Pη . 

This figure shows that by increasing Pη , pull-in angle  

of the mirror is increased. By eliminating PΘ  between 

equations (11) and (17), Pη  can be obtained versus Pλ  
as plotted in figure (5). 
 

Fig. 5: Pη versus Pλ . 

It is observed that with increasing λ  pull-in occurs at 
lower values of η . In fact this figure shows that casimir 
force can significantly reduce the maximum allowable 
value for η  and as a result, the stability limits of the 
nano/micromirror are reduced. In addition it can be 
concluded that even in the absence of capillary force, 
casimir force can lead to the occurrence of pull-in. So, 
in order to have a successful and stable design for 
nano/micromirrors fabricated using wet etching process 
where capillary force plays a major role, the inequalities 
given in equation (18) has to be satisfied. 
 

3

2

2 cos c
p

WL
Kh

γ θη η= <  

2 3

5240 P
cWL
h K

πλ λ= <  
(18)  
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In order to investigate the mirror’s behavior under 
combined capillary and casimir loading, the 
dimensionless rotation angle has been plotted versus η  
in figure (6). 
 

 
Fig. 6: Stable equilibrium angle versus η . 

It is observed that by increasing the value of η  the 
rotation angle of the nano/micromirror is increased, but 
the maximum value of η  at pull-in, highly depends on 
the value of λ  and it is verified that by increasing λ , 
the maximum allowable value for λ  is reduced. 
Furthermore it is concluded that at a constant η , larger 
values of λ  would lead to larger values for stable 
equilibrium angle.  
 
3) Analytical solution of equilibrium equations 
In this section, it is tried to find the value of the rotation 
angle of the nano/micromirror analytically in terms of 
η  and λ . For this purpose, the analytical tool, HPM is 
utilized. 
The linear part of equation (11) can be found by using 
Taylor series expansion of the equilibrium equation (11) 
as follows. 
 

( ) 3 4, ,
2 3

L η λ λ ηη λ + − −⎛ ⎞Θ = − + Θ⎜ ⎟⎝ ⎠
 (19) 

 
Where ( ), ,L η λΘ  is the linear part of equation (11). 
Obviously the nonlinear part of equilibrium equation is 
obtained by subtracting ( ), ,L η λΘ  from equation 
(11). 
 

( ) 2 3
1 1 3 1, , 1 ln(1 )

6 6( 1)
4

3 2

N η λη λ

λ η η λ

⎛ ⎞Θ −⎛ ⎞Θ = + − Θ − −⎜ ⎟ ⎜ ⎟Θ Θ Θ Θ −⎝ ⎠ ⎝ ⎠
+ +⎛ ⎞+ Θ +⎜ ⎟⎝ ⎠

 
(20) 

 
Now, the homotopy form is constructed as follows. 
 

( ) ( ) ( ), , , , , . , , 0P L P Nη λ η λ η λℑ Θ = Θ + Θ =  (21) 

 

In equation (21), ( ), , , Pη λℑ Θ  is the homotopy 

form and P  is an embedding parameter which serves 
as perturbation parameter. When 1P = , the homotopy 
form would be the same as the equilibrium equation and 
when 0P = , homotopy form would be the linear part 
of equilibrium equation. The value of the dimensionless 
rotation angle Θ  can also be expanded in terms of the 
embedded parameter P as follows. 
 

2 3
0 1 2 3 ...P P PΘ = Θ + Θ + Θ + Θ +  (22) 

 
Substituting equation (22) into homotopy form yields: 
 

( ) ( )
( )

2
0 1 2

2
0 1 2

, , , ..., ,

. ..., , 0

P L P P

P N P P

η λ η λ

η λ

ℑ Θ = Θ + Θ + Θ +

+ Θ + Θ + Θ + =
 

(23) 

 
The Taylor series expansion of right hand side of 
equation (23) in terms of P  would be as 
 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

0
0 1 0

0

20 0
2 1

0 0

2
2 30 0 0

3 2 1 2
0 0 0

, ,
, , , , , ,

, , , ,

, , , , , ,1
2

... 0

L
P L N P

L N
P

L N N
P

η λ
λ η λ η λ

η λ η λ

η λ η λ η λ

∂ Θ⎛ ⎞
ℑ Θ = Θ + Θ + Θ⎜ ⎟∂Θ⎝ ⎠

∂ Θ ∂ Θ⎛ ⎞
+ Θ +Θ⎜ ⎟∂Θ ∂Θ⎝ ⎠

⎞∂ Θ ∂ Θ ∂ Θ⎛
+ Θ + Θ + Θ ⎟⎜ ∂Θ ∂Θ ∂Θ⎝ ⎠
+ =
 

(24) 

Since the homotopy form must be unified with zero, the 
coefficients of all powers of P  must be zero. This, 
leads to the following equations. 
 

( )0 , , 0L η λΘ = (25) 

( ) ( )0
1 0

0

, ,
, , 0

L
N

η λ
η λ

∂ Θ
Θ + Θ =

∂Θ
 (26) 

( ) ( )0 0
2 1

0 0

, , , ,
0

L Nη λ η λ∂ Θ ∂ Θ
Θ + Θ =

∂Θ ∂Θ
 (27) 

( ) ( )

( )

0 0
3 2

0 0
2

2 0
1 2

0

, , , ,

, ,1 0
2

L N

N

η λ η λ

η λ

∂ Θ ∂ Θ
Θ + Θ

∂Θ ∂Θ

∂ Θ
+ Θ =

∂Θ

 
(28) 

With solving equations (25) to (28) , the parameters iΘ  
0 3i≤ ≤  are found as follows. 
 

( )
( )0
3

2 3 4
η λ
η λ
+

Θ =
− −

 (29) 

( ) ( )0
1 0

0

, ,
, ,

L
N

η λη λ ∂ Θ⎛ ⎞
Θ = − Θ ⎜ ⎟∂Θ⎝ ⎠

 (30) 

( ) ( )0 0
2 1

0 0

, , , ,N Lη λ η λ∂ Θ ∂ Θ⎛ ⎞ ⎛ ⎞
Θ = −Θ ⎜ ⎟ ⎜ ⎟∂Θ ∂Θ⎝ ⎠ ⎝ ⎠

 (31) 

( ) ( ) ( )2
20 0 0

3 2 1 2
0 0 0

, , , , , ,1
2

N N Lη λ η λ η λ⎛ ⎞∂ Θ ∂ Θ ∂ Θ⎛ ⎞
Θ = − Θ + Θ⎜ ⎟ ⎜ ⎟∂Θ ∂Θ ∂Θ⎝ ⎠⎝ ⎠
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The value of Θ  can be found by substituting iΘ  

0 3i≤ ≤  and 1P =  in equation (22). In figure (7) the 
results of the numerical simulations is compared with 
those of analytical HPM results for the special case of 

0.1λ = . It is observed that HPM closely approximates 
the rotation angle of the mirror. Obviously increasing 
the order of perturbation approximation would lead to 
more precise results, but increasing the order of the 
perturbation approximation more than 6 will not 
improve the accuracy of the obtained response 
significantly. As a result, a sixth order perturbation 
approximation used in HPM can precisely predict the 
nano/micromirror behaviour under the combined effects 
of capillary and casimir force. 
 

Fig. 7: Estimation of nano/micromirror’s rotation angle 
using HPM. 

Conclusion 
The dimensionless equilibrium equation of 
nano/micromirror under capillary force was obtained 
considering casimir force. The dependency of the 
critical tilting angle on the instability numbers defined 
in the paper was investigated. Results show that 
neglecting casimir effect on the static equilibrium of 
nano/micromirrors under capillary force may lead to 
considerable error in predicting stability limits of the 
mirror and can lead to an unstable design. 
It was observed that rotation angle of the mirror due to 
capillary force highly depends on the casimir effect 
applied to the mirror. HPM was utilized to analytically 
predict the rotation angle and stability limits of the 
nano/micromirrors. It was found that a sixth order 
perturbation approximation can accurately estimate the 
rotation angle of the mirror due to capillary and casimir 
loading. Presented results in this paper can be used for 
stable design and fabrication of nano/micromirrors 
using wet etching process where the gap between the 
mirror and the underneath substrate is less than a few 
micrometers and as a result, both capillary and casimir 
forces have significant effects on the system. 
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