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We are in the age of data-driven biology. Not even a decade

after the invention of high-throughput sequencing

technologies, there are methods that accurately monitor DNA

polymorphisms, transcription profiles, methylation states,

transcription factor binding sites, chromatin compactness,

nucleosome positions, dynamic histone marks, and so on. We

are starting to generate comparable amounts of protein or

metabolite data. A key issue is how are we going to make sense

of all this information. Network analysis is the most promising

method to integrate, query and display large amounts of data

for human interpretation. This review shortly summarizes the

basic types of networks, their properties and limitations. In

addition, I introduce the application of networks to the study of

the molecular mechanisms behind natural phenotypic

variation.
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Introduction
Variation among individuals in a specific trait, such as

plant height, flowering time or susceptibility to patho-

gens, is often explained by a combination of mutations,

molecular interactions and environmental effects. The

extended use of genomic techniques in individual labs

and their availability in public repositories provide out-

standing opportunities to localize these mutations and

understand their interactions. At the same time, it is

becoming clear that dozens of candidate variants from

genome-wide association studies or hundreds of differ-

entially expressed transcripts only represent single
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dimensions of a much more complex figure. Therefore,

our best chance to gain insight into the molecular mech-

anisms controlling natural phenotypic diversity is to take

a step forward from the reductionist view that has been so

successful in science’s history and consider their compo-

site nature. This is challenging due to the heterogeneity

of genomic datasets, and the non-linear relationship be-

tween molecular events and phenotypes. Luckily, the

development of methods, sometimes derived from social

sciences, engineering or physics, is allowing biologists to

build more accurate pictures of molecular process by

compiling information from different sources and con-

necting the dots (Figure 1).

The most common representation used to describe relation-

ships is a graph, also called network. The most abundant

networks in biology have genes, proteins or metabolites

represented as nodes; and genetic relationships, physical

interactions or biochemical reactions as edges connecting

the nodes. The study of individual nodes or node clusters in

the context of these types of networks has been extremely

useful for gene annotation, pathway discovery and hypoth-

esis generation. Interpreting network topologies and node

characteristics is having a great impact in our understanding

of the hierarchical organization and the evolution of bio-

logical systems (Box 1). In addition to the basic types of

networks, graph representations in plants have been used to

represent relationships between microRNA and their tar-

gets [1,2], to describe evolutionary distances [3,4], or to filter

out complex SNPs from next generation sequencing reads

[5�]. Other types of data that benefit from graph repres-

entations include interactions between proteins and DNA

[6] or between distant chromatin [7].

The most popular tool to represent large networks in

personal computers is an open source initiative called

Cytoscape (www.cytoscape.org). Cytoscape is enhanced

with more than a hundred community-created plugins to

easily perform topological analyses, functional enrichment,

identification of sets of highly inter-connected nodes,

identification of sets of nodes that show coordinated

responses to stimulus, or integration of heterogeneous data-

sets, among others [8��]. Another open source software with

infinite possibilities for network construction and analysis is

R (http://www.R-project.org), although it requires users to

become familiar with its programming language.

Basic types of networks
Genetic pathways are among the earliest network repres-

entations in molecular biology. These represent regulatory
www.sciencedirect.com
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Figure 1
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Connecting the dots. Scientific techniques allow acquisition of molecular phenotypes at very high-throughput. Combination of this information is

essential to obtain a mechanistic understanding of biological processes. For example, expression of a transcript can only be understood by integrating

information from regulatory motifs, chromatin states, methylation, occupancy of transcription factors, polymerase speed, etc. In this way, generating

knowledge in modern biology requires combining evidences to obtain a recognizable picture, as in a connect-the-dots game. Network analysis helps

ordering the dots in the correct way.
interactions between genes or proteins, and were built

comparing the phenotype of single mutants to the pheno-

type of double mutants [9]. Genetic networks are arguably

the most helpful kind of network to understand complex

links between phenotypes and genotypes. The attractive-

ness of these networks is that they do not attempt to

represent a snapshot of an organism, but just to link

functionally related molecules. Although there are no high

throughput methods to build genetic networks in plants as

there are in yeast [10], we can find a substitute in the

multiple co-expression networks available for various plant

species (e.g. [11]). These networks are frequently used for

annotation of unknown genes based on the premise that

genes with similar expression patterns across a number of
www.sciencedirect.com 
coherent experiments are functionally related [12–14].

Recently, this ‘guilt by association’ principle is questioned

because functional annotation seems to be encoded in very

few critical interactions and it cannot be freely transmitted

to the rest of the network [15�]. Another interesting use for

co-expression networks when genome sequences are avail-

able is the discovery of regulatory elements in the promo-

ters of tightly co-regulated genes [16,17].

Co-expression networks differ from genetic networks in

their lack of directionality, making impossible to establish

the hierarchy of its members. Dozens of algorithms,

mostly based on Bayesian Networks and Gaussian

Graphical Models, have been developed to predict
Current Opinion in Plant Biology 2014, 18:80–86
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Box 1 Networks properties

The general topology of biological networks, as well as single node

characteristics, can be described through graph theory measure-

ments [66�]. Biological networks are organized in modules and follow

a scale-free distribution, in which a reduced number of nodes, called

hubs, contain most of the interactions [67]. These properties could

have arisen from genome duplications, in which well-connected

molecules are more likely to double their number of links than

unconnected molecules. Consistent with this, older proteins typically

show more connections than their younger counterparts [68].

Another characteristic of biological networks is the ‘small world’

property, in which most nodes in the graph are unconnected to each

other, but there is a relatively short path connecting any pair of

nodes. This property is shown to enhance signal propagation and

synchronizability [69]. A characteristic of interest for nodes is their

degree, or number of connections. It is thought that nodes with many

connections tend to be essential for the network, but this is shown to

not always be true [70]. For example, essentiality in metabolic

networks comes from enzymes that are specific for a single reaction,

while generalist enzymes that perform multiple reactions are

dispensable [71,72�]. A good metric for essentiality is betweenness

centrality, or the number of shortest paths passing through a node.

Nodes with high betweenness centrality are more influential for the

rest of the network independently of their number of connections

[73]. The position of a node in a network is also a good indicative of

its essentiality [74].
directional genetic interactions from transcriptome data-

sets (reviewed in [18]). The 5th iteration of the DREAM

project evaluated 35 different methods to infer cause–
effect networks from expression data and showed that a

consensus based in multiple algorithms is the most accu-

rate approach [19�]. Discerning regulators from regulated

molecules at global scale is a great step towards under-

standing the pathways and main players controlling phe-

notypic variability in nature. In the future, we expect

more complex models that can have into account multiple

transcription factors controlling the expression of one

gene, polymorphisms in regulatory motifs, or smallRNA

regulation. As an example, researchers started including a

time lag between transcription factors and their targets to

search for novel target molecules [20].

Another common type of graphs are protein–protein

interaction networks, although their utility to associate

changes in complex phenotypes to molecules is question-

able. The main problem with constructing protein–
protein interaction (PPI) networks in plants is the low

specificity and sensitivity of the available methods [21�].
Technical advances have only partially reduced these

problems, indicated by the marginal overlap in the results

obtained with different techniques [22,23]. These net-

works can also be constructed through predicted inter-

actions that are based in functional annotation, homology

to interactions in other organisms, co-localization, co-

expression or literature mining (e.g. [24]). Similarly to

experiment-based networks, prediction-based networks

also show biases, so the former are usually preferred [21�].
Current Opinion in Plant Biology 2014, 18:80–86 
The largest PPI network in plants queried 30% of known

genes, leaving behind a datasets of irrefutable interest for

biology [25��]. The impossibility to repeat this for each

tissue, species, accession and mutant, leaves us anticip-

ating the unfolding of high throughput sequencing for

proteins [26].

A different type of graph uses metabolites as nodes. As

with co-expression networks, metabolic networks can

connect nodes based on co-occurrence across exper-

iments. Recently, these networks have been useful in

the analysis of natural variation in metabolite content in

tomato and Arabidopsis (e.g. [27,28]). Another class of

metabolic network, called metabolic models, has edges

representing the biochemical reaction that transforms one

metabolite into another. These are powerful tools that can

predict the effect of genotype or environment in metab-

olite concentration by fitting mathematical algorithms

that simulate the flow of metabolites through the network

[29]. Metabolite network models can be build using only

genome sequence and annotation [30], but removing

artifacts and validating predictions require several years

[31]. A number of flux-balance models are available for

plant species (reviewed in [32]). Biochemical reactions in

these models are still far from complete because of their

complexity, their subcellular compartmentalization and

their tissue and condition dependency [32,33]. Current

efforts try to update metabolic models to include these

factors [34].

Biases, filtering and integration
The interpretation of biological processes through

analysis of networks is not straightforward. A big problem

is to have into account the biases introduced by the

techniques used to generate the data and the specific

characteristics of each molecule. For example, if we rank

the importance of a protein based on the number of

neighbors it has in a PPI network, we need to consider

that soluble proteins show more protein–protein inter-

actions than membrane proteins [35]. Another problem is

that abundant transcripts; proteins or metabolites are

more visible to all techniques, therefore more likely to

be found in networks. As mentioned above, different

protocols will have preferences for specific molecules,

and in fact, networks constructed from datasets obtained

with different methods often have different topologies

[36]. Over-representation of known interactions is a sig-

nificant problem with techniques based on previous

knowledge, such as microarrays, chromatin immunopre-

cipitation, and yeast-two-hybrid. One more limitation of

network representations is their inability to represent

dynamic processes. This is important in light of the

current evidences showing that molecular interactions

are extensively rewired depending on growth conditions,

cellular compartments, cell types or environmental stres-

ses [37]. Acknowledging these biases is important to
www.sciencedirect.com
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design the null models to derive conclusions from net-

work analyses.

The most dangerous problem for researchers in network

analyses is their low specificity, in other words, the large

number of false connections they contain [38��]. Edges in

biological networks have a probabilistic nature that is

often not considered, and threshold variation affects net-

work topology dramatically. There are two main strat-

egies to increase edge specificity: filtering noise by

construction of networks that are specific to the studied

process and enhancing true relationships by accumulation

of evidences from heterogeneous datasets.

The need for filtering false positives is shifting the initial

attempts to build networks containing as many molecules

as possible from an organism towards construction of more

specialized networks. A general method to filter noise

uses pre-clustering algorithms to define coherent expres-

sion datasets prior to network construction [39]. An

excellent example of the power behind filtering is the

reconstruction of the metabolic pathway producing

steroidal glycoalkaloids starting from a co-expression

analysis only with data from two of the species that

contain this toxic compound [40�]. The popularization

of genomic technologies makes possible the generation of

networks from tissue and condition specific datasets. A

recent work re-constructs part of the signaling network

downstream of a receptor protein by using genome wide

expression data from a mutant on this receptor grown

under conditions known to stimulate the signals [41].

Finally, another way to focus on reconstruction of particu-

lar pathways is to link genes by their coordinated

responses to a stimulus, independently of whether these

genes co-express or not [42,43].

Integrating evidences from multiple sources can also help

reducing the number of false positive interactions in a

network. This can be challenging when combining unre-

lated datasets describing very different aspects of a mol-

ecule. Bayesian methods can solve this problem and have

been used in Arabidopsis to enhance a protein–protein

interaction network with evidences such as co-expression,

annotation, sequence composition or phylogeny [44,45].

A different approach to heterogeneous data integration is

to assign a common scoring scheme to all datasets and use

these scores to calculate the likelihood of an interaction.

This has been successful to link genes with phenotypic

traits using an Arabidopsis network that integrates co-

expression, protein–protein interactions in multiple

organisms, protein homology, or co-citation in the litera-

ture, among others [46�].

Network analyses to elucidate the molecular
mechanism underlying phenotypic variation
Network analyses allow detection of orchestrated changes

that are not visible by looking at the individual molecules.
www.sciencedirect.com 
This is helpful to understand global molecular changes

leading natural phenotypic diversity. For example, com-

parison of co-expression networks between cultivated

tomato and a wild relative adapted to a desertic environ-

ment, showed extensive rewiring of light regulated and

photosynthesis related genes [47]. Lack of conservation in

co-expression patterns has also been observed between

rice and Arabidopsis in stress responsive genes, while

connections between tissue-specific genes were much

more conserved [48]. Analysis of multiple network types

showed that rewiring occurs fastest in transcriptional

regulation networks, and then in decreasing order, in

genetic interactions, protein interactions, and metabolic

networks [49]. For the interested reader, excellent

reviews have dealt with various aspects of network evol-

ution in plants [50,51].

It is also possible to focus in individual pathways to find

associations to natural phenotypic variation. For example,

variation of expression in predefined sets of genes was

studied in a segregating population of Arabidopsis [52].

Also in Arabidopsis, a regulatory network controlling

flowering time was inferred from a list of genes known

to affect this trait, their expression patterns in a segregat-

ing population and eQTL data [53]. An interesting work

in yeast proposes that lineage-specific selection in a path-

way can be detected by counting the number of eQTLs

with effects in the same direction among its members

[54]. A very popular protocol to find pathways underlying

phenotypic differences is to define sets of interconnected

nodes that coordinately change across genotypes or con-

ditions (called active modules). This method is imple-

mented in Cytoscape and is widely used in humans to

infer the regulatory networks underlying complex dis-

eases [8��]. Changes in expression of groups of genes can

also serve as markers to classify phenotypes or genotypes.

These groups of genes are called set covers, and helped

comparing developmental stages in meristems from dis-

tant tomato species [55].

Another popular use of networks is to prioritize candidate

genes from the large lists generated in natural variation

studies. In plants, co-expression networks have been used

to propose candidates for associations in GWA studies in

Arabidopsis [56] or for eQTL hotspots in Populus [57].

Combination of evidences from genomic variants, eQTLs,

annotation and co-expression pointed the gene underlying

a QTL in Arabidopsis [58]. There are a number of exciting

examples outside plants where the genes underlying

eQTL hotspots are identified by integrating multiple

heterogeneous datasets such as co-expression, annotation,

presence of regulatory motifs, protein–protein interactions,

among others (e.g. [59,60��]). Moreover, recent works

targeting genes underlying complex human diseases show

the benefit of using genome-wide maps of variation in

regulatory elements to prioritize candidate mutations

[61,62��]. Genome wide maps of regulatory elements
Current Opinion in Plant Biology 2014, 18:80–86
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can be now obtained with techniques that do not require

previous knowledge of the motifs involved, such as

DNase-seq or MNase-seq [63,64]. Using networks to inte-

grate these types of datasets and boost the noise-to-signal

ratio is perhaps the key to associate mutations in regulatory

regions with phenotypic differences among related indi-

viduals.

Conclusions
Technical advances in genomics create multiple layers of

valuable information. Integrating and displaying this

heterogeneous information in networks will help us

understand the molecular organization of organisms

and their evolution. Moreover, network analyses enable

generation of precise, data-driven hypothesis about the

molecular changes that lead to phenotypic variation.

While integrating information in networks is not the

solution to all questions in biology, it may be our best

bet to deal efficiently with large amounts of data and to

make it work towards solving some of the standing

questions and challenges in modern biology [65��].
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