
 Symposium on Information & Computer Sciences (ICS 2011)

9

Morphing Engines Classification by Code Histogram

Babak Bashari Rad1, Maslin Masrom2, 3Suhaimi Ibrahim, 4Zalina Mohd Daud
1
Faculty of Computer Science and Information Technology,

2,4
Razak School of Engineering and Advanced

Technology,
3
Advanced Informatics School

University Technology of Malaysia
Kuala Lumpur, Malaysia

1
babak.basharirad@hotmail.com,

2
maslin@ic.utm.my,

3
suhaimiibrahim@utm.my,

4
zalina@ic.utm.my

Abstract— Morphing engines or mutation engines are
exploited by metamorphic virus to change the code
appearance in every new generation. The purpose of
these engines is to escape from the signature-based
scanner, which employs a unique string signature to
detect the virus. Although the obfuscation techniques
try to convert the binary sequence of the code, in some
techniques, the statistical feature of the code binaries
will be still remain unchanged, relatively. Accordingly,
this feature can be utilized to classify the engine and
detect the morphed virus code. In this article, we are
going to introduce a new idea to classify the
obfuscation engines based on their code statistical
feature using the histogram comparison.

Keywords-component: Computer Virus, Malware
Morphing Engines, Obfuscation Engines, Mutation
Engine, Metamorphic Virus, Code Histogram, Histogram
Comparison

I. INTRODUCTION

The purpose of code obfuscation techniques is to
make program codes more complicated to be
comprehensible by a static analysis [1-2]. To achieve
this purpose, the obfuscation engine transforms the
program code to another dissimilar edition, but keeps
the behavior of the different versions equivalent [3].
This skill can be used to protect the software from
tampering or being visible for hackers, however it is
widely being utilized by virus writers to make their virus
armored against the antivirus experts [4]. Metamorphic
viruses try to convert their code into new versions with
dissimilar byte sequences, by means of obfuscation
techniques. Therefore, traditional string signature-
based scanners are not efficiently able to detect and
classify the new instances.

In this study, we aim to propose a relatively novel
idea to deal with metamorphic engine, which
emphasizes on a statistical feature of the code, the
histogram of the code bytes. Here, we are going to
show that this new approach is applicable for
classification of the obfuscation engines. This solution
can be developed and improved in the future to be
more reliable and effectual and be used in the antivirus
scanners.

In next section, we review the recent attempts on
this problem and most related methodologies and
experiments. Then we present our proposed solution
and explain its novelty. In the next part, we illustrate the
methodology and implementation process, and in the
final section, we give the summary and some
recommendations for the future developments.

II. PREVIOUS RELATED WORKS

Several studies and experiments have been
conducted on the metamorphic virus and obfuscation
engines detection and classification problems. Wong
and Stamp in [5] utilized the Hidden Markov Model for
detection of metamorphic engines. They extracted
assembly opcode sequence from manually
disassembled assembly source files of a virus family
collection and trained a HMM to present the virus
family characteristics. Later, they used the trained
model to classify the metamorphic virus. The drawback
with their approach was the disassembling preprocess.
It was a time-consuming, incompetent and impossible,
especially when it deals with considerable quantity of
virus files. Furthermore, they implement experiments to
compare the similarity between some pairs of morphed
variants of the obfuscation engines by employing the
method developed by Mishra in [6]. His method
compares two opcode sequences by considering all
subsequences of three consecutive opcodes from each
sequence.

Govindaraj in [7] also used Hidden Markov Model
for the metamorphic virus detection problem, but he
focused on a practical solution to deal with executable
files directly. His method extracts the code section of
the infected portable executable containing the virus
code. Then it detects the 14 MFO (Most Frequently
Occurred) instruction opcodes and builds a opcode
sequence to train the HMM. He eliminated the manual
preprocess disassembly phase completely.

Karnik et al. in [8] used the cosine similarity function
to compare two suspicious infected files upon the static
analysis of the portable executable files. They proved
that for some given metamorphic variants of a virus, it
is possible to classify them using the cosine similarity
function.

 Symposium on Information & Computer Sciences (ICS 2011)

10

Lin and Stamp in [9] show that it is possible to make
the metamorphic viruses not detectable via Hidden
Markov Model detectors, by morphing viruses such a
way that they looks similar to benign programs. They
showed that the HMM-based classifiers could not
success when they inserted some sub-procedures
copied from normal files, but inserting the copy of small
code pieces had not produced the same result.

Rad et al. in [10] used the histogram of the machine
instruction opcodes as a feature to present a virus
variant. They utilized the Euclidean histogram distance
metric to compare a pair of portable executable files.
They showed that for some particular obfuscation
techniques, their simple introduced approach could
detect morphed variants of a file. In [11], Rad et al.
used another histogram metric, Manhattan metric, and
compare the result obtained by two Minkowski-form
distances with r = 1 and r = 2. In both two latter ones,
Rad et al. applied a preprocess phase to manually
disassemble each portable executable file, break it
down into its building function blocks and extract the
instruction opcodes and convert them to a histogram as
a feature of the file.

III. OBFUSCATION ENGINES

A. Morphing Techniques

Metamorphic viruses can obfuscate their body by
several techniques. The most applicable techniques
are [3, 10, 12-13]:

1) Register or variable exchange - using different

registers or variables in code instructions for each new

produced instance,

2) instruction substitution - replacing instructions with

their possible equivalents instructions or code blocks or

subroutines,

3) Code transposition - code and subroutines reordering

or changing the flow control by conditional or unconditional

jumps,

4) Instruction permutation - reordering instructions that

are independent,

5) Garbage code insertion – inserting NOP instruction

and other instruction that has no effects on the operation of

the code among the original program instructions.

B. Metamorphic Virus Creation Kits

Virus creation kits, which are widely employed
recent years, are serious matters of the antivirus
vendors. These kits make the generation process very
simple, such that no professional programming or
computer knowledge is required to produce new
viruses. Many virus construction tools are accessible
and can be downloaded from internet [14]. Some of

them employ stealth and anti-antivirus techniques to
make the task of virus scanner harder. In addition,
some kits are equipped with obfuscation engines to
produce metamorphic virus variants.

One of the most famous and powerful tools is
NGVCK(Next Generation Virus Creation Kit), which is
introduced in 2001 [12]. It has an advanced mutation
engine and can automatically produce high quality
morphed variants of the virus. Wong and Stamp in [5]
calculated the similarity between each pair of virus
variants created by four virus creation tools, NGVCK,
VCL32, MPCGEN, and G2, downloaded from the
VxHeaven website [14]. Their findings demonstrate that
the efficiency of these kits differs very much. Among
the mentioned tested tools, the best generator kit,
NGVCK, is capable to generate virus variants that
contain only a small amount of similarity, the other tools
creates variants that are very similar, more than 60
percent, on average. Randomly chosen benign
programs have about 35 percent likeness, which show
that, except the NGVCK, the other virus creation kits
cannot efficiently mutate the code [5]. Therefore, based
on their experiments, NGVCK obviously perform better
than the other kits in terms of producing dissimilar virus
variants, means that the virus variants generated by
NGVCK are significantly dissimilar from their other
family members, while the virus variants created by the
other tools are more similar.

IV. PROPOSED SOLUTION

The proposed solution is a development of the
methodology presented by Rad et al. in [10]. It is based
on the concept of using the statistical feature of the
virus variants, but in new solution, we suggest some
improvements and novel ideas:

A. Eliminate the Disassembly Process

The first development of the presented approach by
Rad et al. in [10] is to remove the manual disassembly
phase. We suggest implementing the algorithm directly
on the binary executable files. With this idea, it would
be more practical to be employed by antivirus software.
In addition, manual preprocess section include of
binary code disassembling, breaking down and feature
extraction is very time-consuming. In new proposed
method, it will be contain of feature extraction part,
meaning that the algorithm extract the bytes of the
virus and produce a histogram of the code, which is the
representative of the virus.

B. Histogram as the Feature for a Virus Family

After feature extraction process for each member of
a metamorphic family, we can make an average of the
created histograms and produce a more general
histogram as the representative of the virus family. It
can be later used to classify whether a new virus
belongs to a family or not. To achieve this purpose, we
have to specify an appropriate threshold value that is

 Symposium on Information & Computer Sciences (ICS 2011)

11

able to classify a new virus and decide that it matches
with which known virus family.

C. Code and Data Analysis

In [10], the authors experimented the algorithm on
the code section of the virus file and the histograms are
created only from the instructions opcodes. In this
paper, we propose to make the histogram from the
both instructions code and data bytes, including the
instructions opcodes and operands. We believe that
because all family member of a metamorphic engine
use a same constant algorithm to generate the
variants, an average of their histograms can represent
the family statistical characteristics in terms of
employing similar instructions. However, this can work
properly if the representative histogram of a family
constructed from enough number of the family
members, otherwise it cannot be sufficiently trustable
to classify the members correctly.

V. METHODOLOGY

A. Feature Extraction

Each metamorphic virus engine has a histogram as
the representative of the family. It includes of the
average statistical characteristic of the engine. To find
such a histogram as the feature, we can extract the
code statistics and present it as a histogram for each
member of the family. Then we produce an average
histogram to show the statistical characteristic of the
engine. Fig. 1 demonstrates this process, briefly.

B. Classification

For each virus family, a threshold value must be
selected such that be able to classify the family
members correctly. It means that it must make the false
negatives and false positives as less as possible.
Distance between the histogram of the input file and
representative histogram of the engine can be
calculated via several distance metrics. The Minkowski-
form distance measurement, with r = 2, or Euclidean
distance is one of the most common metrics to
measure the dissimilarity of two histograms [15].

dX,Y
2

=���� − ���
�

	
�

 Choosing the proper threshold value is the crucial

issue in this classification problem. Fig. 2 shows the
classification procedure.

Figure 1. Feature extraction process.

VI. SUMMARY AND FUTURE WORKS

In this paper, we present a simple novel idea for
classifying the metamorphic engines based on their
code statistical property. This statistical feature is
presented by a histogram of the code bytes for each
obfuscation engine or virus family, distinctly. We
believe for a large scale of data set include of virus
family members, the representative histogram can
reveal the statistical feature of the family. Then,
histogram distance metrics can be used to compare
the histogram of a suspected file with the histogram of
a virus family to find whether it is a member of that
family or not.

In this paper, we have not examined the proposed
solution, so the efficiency of the improvements is not
evaluated and compared to previous method. We plan
to implement the proposed improvements and evaluate
the efficiency of new ideas in the future researches.

 Symposium on Information & Computer Sciences (ICS 2011)

12

The most advantage of this method is the low
complexity of implementation. This is very simple
approach to classify the morphing engines.

For the future works, this simple method can be
developed for other statistical properties or it may be
limited and filtered for some special byte values that
are more specific for a particular virus family. In
addition, the histogram comparison can be weighted to
emphasize on certain family properties.

ACKNOWLEDGMENT

This research was supported by UTM Razak School
Grant through the project 4B010.

Figure 2. Feature classification process.

REFERENCES

[1] I. You and K. Yim, "Malware Obfuscation Techniques: A Brief

Survey," Proc. Fifth International Conference on Broadband,

Wireless Computing, Communication and Applications

(BWCCA 2010), IEEE, 2010, pp. 297-300.

[2] K. Murad, et al., Evading Virus Detection Using Code

Obfuscation, in Future Generation Information Technology, T.-

h. Kim, et al., Editors. 2010, Springer Berlin / Heidelberg. p.

394-401.

[3] J.M. Borello and L. Me, "Code obfuscation techniques for

metamorphic viruses," Journal in Computer Virology, vol. 4 (no.

3), 2008, pp. 211-220.

[4] B.B. Rad, M. Masrom, and S. Ibrahim, "Evolution of Computer

Virus Concealment and Anti-Virus Techniques: A Short

Survey," International Journal of Computer Science Issues

(IJCSI), vol. 8 (no. 1), 2011, pp. 113-121.

[5] W. Wong and M. Stamp, "Hunting for metamorphic engines,"

Journal in Computer Virology, vol. 2 (no. 3), 2006, pp. 211-229,

doi: 10.1007/s11416-006-0028-7.

[6] P. Mishra, Taxonomy of Uniqueness Transformations, in The

Faculty of the Department of Computer Science. 2003, San

Jose State University: San Jose, CA. p. 110.

[7] S. Govindaraj, Practical Detection of Metamorphic Computer

Viruses, in Faculty of the Department of Computer Science.

2008, San Jose State University: San Jose, CA.

[8] A. Karnik, S. Goswami, and R. Guha, "Detecting obfuscated

viruses using cosine similarity analysis," AMS 2007: First Asia

International Conference on Modelling & Simulation Asia

Modelling Symposium, Proceedings, 2007, pp. 165-170.

[9] D. Lin and M. Stamp, "Hunting for undetectable metamorphic

viruses," Journal in Computer Virology, 2010, pp. 1-14, doi:

10.1007/s11416-010-0148-y.

[10] B.B. Rad and M. Masrom, "Metamorphic Virus Variants

Classification Using Opcode Frequency Histogram," Proc. 14th

WSEAS International Conference on COMPUTERS, WSEAS

Press, 2010, pp. 147-155.

[11] B.B. Rad and M. Masrom, "Metamorphic Virus Detection in

Portable Executables Using Opcodes Statistical Feature," Proc.

International Conference on Advanced Science, Engineering

and Information Technology 2011 (ICASEIT 2011), 2011, pp.

403-408.

[12] P. Szor, The Art of Computer Virus Research and Defense.

Addison-Wesley Professional, 2005.

[13] D. Bruschi, L. Martignoni, and M. Monga, "Code normalization

for self-mutating malware," IEEE Security & Privacy, vol. 5,

2007, pp. 46-54.

[14] VXHeavens. VX Heavens - Computer Virus Information,

Library, Collection, and Sources. 2009; Available from:

http://vx.netlux.org/vl.php.

[15] G. Shakhnarovich, T. Darrell, and P. Indyk, Nearest-Neighbor

Methods in Learning and Vision: Theory and Practice (Neural

Information Processing). The MIT Press, 2006.

