
Incremental Class Learning approach and its

application to Handwritten Digit Recognition

Jacek Mańdziuk a,∗,1, Lokendra Shastri b

aFaculty of Mathematics and Information Science, Warsaw University of
Technology, Plac Politechniki 1, 00-661 Warsaw, POLAND

bInternational Computer Science Institute, 1947 Center St., Suite 600, Berkeley,
CA 94704, USA

Abstract

Incremental Class Learning (ICL) provides a feasible framework for the development
of scalable learning systems. Instead of learning a complex problem at once, ICL
focuses on learning subproblems incrementally, one at a time — using the results
of prior learning for subsequent learning — and then combining the solutions in an
appropriate manner. With respect to multi-class classification problems, the ICL
approach presented in this paper can be summarized as follows. Initially the system
focuses on one category. After it learns this category, it tries to identify a compact
subset of features (nodes) in the hidden layers, that are crucial for the recognition of
this category. The system then freezes these crucial nodes (features) by fixing their
incoming weights. As a result, these features cannot be obliterated in subsequent
learning. These frozen features are available during subsequent learning and can
serve as parts of weight structures built to recognize other categories. As more
categories are learned, the set of features gradually stabilizes and learning a new
category requires less effort. Eventually, learning a new category may only involve
combining existing features in an appropriate manner. The approach promotes the
sharing of learned features among a number of categories and also alleviates the well-
known catastrophic interference problem. We present promising results of applying
the ICL approach to the unconstrained Handwritten Digit Recognition problem,
based on a spatio-temporal representation of patterns.

Key words: Incremental Class Learning, catastrophic interference problem,
supervised learning, spatio-temporal representation, Handwritten Digit
Recognition, pattern recognition, neural network

∗ Corersponding author. Fax: (48 22) 625-74-60
Email addresses: mandziuk@mini.pw.edu.pl (Jacek Mańdziuk),

shastri@icsi.berkeley.edu (Lokendra Shastri).
1 This research was performed while the author was visiting International Computer

Article published in Information Sciences 141 (3-4), 2002

1 Introduction

The catastrophic interference problem [1–3] remains a significant impediment
in building large, scalable learning systems based on neural networks. In its
simplest form, the problem may be stated as follows: when a network trained to
solve task A is subsequently trained to solve task B, it “forgets” the solution to
task A. In other words, the network is unable to acquire new knowledge with-
out destroying previously acquired knowledge structures. A seemingly simple
solution to this problem is to retrain the network on a cumulative training
set containing examples from all previously learned categories. However, for
large-scale problems this approach is not practical.

Incremental training methods are especially important for the fast or real-
time control problems (e.g. ATM traffic control). Due to the large amount
of noisy on-line data the Multilayer Perceptron-type networks with relatively
slow retraining schemes are not suitable for such tasks. While there exist neural
network models with learning schemes not prone to catastrophic interference
(e.g. ART-type networks [4]), their effectiveness in dealing with large-scale and
noisy problem domains is still under research. Some promising results have
been obtained for the hybrid neuro-fuzzy ART models, e.g. Fuzzy ARTMAP,
FasArt or PROBART.

The Incremental Class Learning (ICL) approach [5] attempts to address the
catastrophic interference problem and at the same time offers a learning frame-
work that promotes the sharing of previously learned knowledge structures.
With respect to object recognition and classification problems, the approach
may be summarized as follows: The system starts off with all the nodes and
links it will ever have, but initially, it focuses on only a small number of cate-
gories. After it learns to recognize these categories, it tries to identify which of
the features formed in the “hidden layers” play a critical role in the recogni-
tion of these categories. The system “freezes” these critical features by fixing
their input weights. As a result, they cannot be obliterated by subsequent
learning. These frozen features, however, can participate in structures that
are learned subsequently to recognize other categories. As the system learns
to recognize more and more categories, it is hoped that the set of features
will gradually stabilize and eventually, learning a new category will primarily
consist of combining existing features in novel ways.

The paper is organized as follows. In Section 2, the proposed ICL approach is
described and its relation to some of the existing incremental learning methods
is discussed. Section 3 presents computer simulation results of the ICL for the
handwritten digit recognition problem. Conclusions and directions for future

Science Institute and EECS Dept. University of California at Berkeley, Berkeley,
CA, USA, thanks to the support of Senior Fulbright Research Grant no. 20895.

2

work appear in Section 4.

2 Incremental Class Learning

The ICL approach is a supervised learning procedure for neural networks that
can be described as follows:

• Subproblems are learned incrementally
• Structures playing a critical role in solving a subproblem are frozen
• The above structures are available for subsequent learning
• Solutions to subproblems are combined in an appropriate manner to solve

the complete problem.

The success of the approach depends on four key factors. First, it should be
possible to decompose the problem into subproblems in an effective manner.
Second, the learning algorithm must develop relatively sparse (compact) struc-
tures to solve a subproblem. Third, it should be possible to identify features
that play a critical role in solving a particular subproblem so that such fea-
tures may be frozen. Fourth, it should be possible to combine solutions to
subproblems whereby frozen features are shared among various solutions.

The proposed method can be viewed as a member of the general class of
constructive algorithms since the functional structure of the network is con-
structed incrementally during learning by freezing appropriate nodes and links.
There is, however, a significant difference between most constructive approaches
and ICL. Typically, constructive methods (e.g. Cascade-Correlation [6] or Up-
start Algorithm [7]) start with a minimal network and expand its structure by
adding new nodes and links in order to minimize the overall network’s error.
In our approach, the network starts off with all the nodes and links it will
ever have. Consequently, the representational capacity of the whole network
is available right from the very start of the learning process (as is the case
of backpropagation nets). This in turn allows more efficient search for the
winning nodes in the competitive learning process.

The ICL method also shares some common features with modular approaches
(e.g. [8–10]) in that both approaches make use of problem decomposition. In
modular approaches, however, the subproblems are learned independently by
separate modules, and then the solutions to the subproblems are combined
to yield the solution for the initial problem. In the ICL method, subprob-
lems are not learned independently and the structures learned for solving one
subproblem are available for solving subsequent subproblems. Thus, unlike
the modular approach, ICL allows considerable sharing of structure across

3

subnetworks. Consequently, in case of the ICL, the resulting knowledge rep-
resentation is expected to be more compact and less redundant compared to
modular approaches.

The ICL approach resonates with the notion of competitive learning (cf. [11,12])
and also lifelong learning (cf. [13,14]) wherein learning new tasks becomes
relatively easier when the number of tasks that have already been learned
increases.

The current system implementation does not involve any relearning. However,
it is possible to include some form of interleaved learning [2] within the ICL
paradigm.

3 ICL application to Handwritten Digit Recognition problem

In this section we present the application of the proposed ICL method to
the handwritten digit recognition (HDR) problem. The main objective of the
work reported here is to show the efficacy of the proposed learning scheme
in the context of a non-trivial and real-world problem domain involving noisy
data. While we strive for a solid recognition performance, it is not our objec-
tive to develop a state-of-the-art HDR system. Such systems achieve higher
recognition rates by incorporating sophisticated and specialized post- and pre-
processing steps that are extrinsic to the core recognition and learning method-
ology.

First we briefly describe the spatio-temporal representation of patterns that
was used in computer simulations. Then we present the architecture of the
neural networks system used to implement the ICL method, and discuss exper-
imental results that provide evidence for the effectiveness of the ICL approach
in solving the classification task.

3.1 Spatio-temporal representation of patterns

In the spatio-temporal representation used in this work (cf. [9]) a two di-
mensional static pattern is converted into a time-varying sequence of signals
by sliding a window over the pattern (see Figure 1). Doing so converts the
spatial dimension of the pattern along the direction of scan into a temporal
dimension. We will refer to the direction of scan as the temporal axis. At time
t = 0, the window is positioned at the beginning of the pattern, and for each
subsequent t it moves by one pixel column along the temporal axis. At each

4

o o o o o o

time

o o o 1 h.l.

INPUT

i

sp
ac

e

j

W
N

R
 =

 N
R

WNC << NC

t t+1 t+2

Fig. 1. Spatio-temporal pattern representation. A two dimensional input pattern is
converted into a sequence of signals generated by a window sliding over the pattern
along the temporal axis. At each window position (at each time t) all nodes in the
first hidden layer (1hl) receive the normalized signal generated by the part of the
pattern which is currently covered by the window. NR and NC denote the number
of rows and columns, respectively, in the input pattern, WNR and WNC denote
the number of rows and columns, respectively, in the window being moved along
the pattern.

window position all nodes in the first hidden layer receive the input signal
generated exactly by the part of the pattern covered by the window. Note
that since the width of the window along the temporal axis is greater than 1,
the areas covered by neighboring windows overlap.

Advantages of the spatio-temporal representation: The proposed rep-
resentation has some important advantages over the two dimensional spatial
representation. First, it ensures shift invariance along the temporal axis. Since
the window generates input signals only when the actual content of the pat-
tern is reached, the generated input sequence is independent of the location
of the pattern along the temporal axis. Second, the spatio-temporal repre-
sentation provides a natural framework for dealing with patterns of arbitrary
extent along the temporal axis. Finally, the spatio-temporal representation
simplifies a model’s architecture. Usually, the extent of local features along
the temporal direction is much smaller than the extent of the pattern itself.

5

Therefore, the sliding window mechanism allows detection of local features
with a much smaller number of links between the input layer and the first
(hidden) layer of a network. For a detailed discussion of the advantages of the
spatio-temporal approach please refer to [9]. Several other ways of representing
off-line handwritten characters are discussed in [15].

3.2 System architecture

The system is composed of two modules operating simultaneously and in-
dependently on the input data. One module performs scanning of the input
pattern along columns and the other one along rows - Figure 2. Each module
is a feed-forward neural network with two hidden layers and an output layer.
In the testing phase, an additional output layer is used to combine evidence
from the two modules, and to generate the final output of the system. The
only difference between the modules is the direction of scan. Therefore, for
the sake of brevity, the detailed description of the system will, henceforth, be
based only on the Column Scan Module (CSM).

The CSM is composed of the input layer, two hidden layers and the module-
output layer.

Input layer: In the input layer of the CSM, a sliding window of size WNR×
WNC, (WNR = NR,WNC � NC, where NR and NC denote numbers of
rows and columns in an input pattern, respectively) moves from left to right
along the temporal axis - one pixel-column at a time.

First hidden layer (1hl): Each node in 1hl is fully connected to the sliding
window in the input layer with random initial weights. The role of the 1hl
nodes is to find the representation of local features pertaining to the training
patterns. These nodes are not tied to a particular class.

Second hidden layer (2hl): Higher level features composed of lower level
features formed in 1hl are represented in this layer. Each node in 1hl is fully
connected to nodes in 2hl with random initial weights. The role of a 2hl node
is to find a complex feature pertaining to a specific class.

Module-output layer (m-ol): The module-output layer is composed of K
nodes - one per class — where K denotes the number of classes in the train-
ing set. The final response of the module is expressed in this layer. At the
beginning of the training process the connections between 2hl and the m-ol
are extremely weak. The appropriate connections are strengthened during the
learning process.

6

o o o

o o o

o o o

o o o

o o o

o o o

o o o

OUTPUTCOLUMN
SCAN

ROW
SCAN

OUTPUT OUTPUT
SEMI SEMI

1 h.l.

2 h.l. 2 h.l.

1 h.l.

INPUT INPUT

Fig. 2. System overview. In the training phase the system is composed of two inde-
pendently operating modules - Column Scan Module (CSM) and Row Scan Module
(RSM). Each module is a feed-forward neural network composed of the input layer,
two hidden layers and the module-output layer (denoted by “module-output” in the
figure). In the testing phase the additional output layer is placed above the modules
to combine evidence from both of them to produce the final output of the system.

3.2.1 Terminology and notation

The training set is composed of K classes Ck, k = 0, . . . , K − 1, of binary
{0, 1} patterns. Each class Ck is composed of M exemplars each of which is
a matrix of NR rows and NC columns. The items in the training set will be
referred to as Xk

m[p][q], m = 1, . . . ,M ; p = 0, . . . , NR− 1; q = 0, . . . , NC− 1.

Let w1[r][c][i] denote the weight between the [r][c] element in the input window
and the i-th node in the 1hl, let w2[i][j] denote the weight between the i-th
1hl node and the j-th 2hl node, and let w3[i][j] denote the weight between the
i-th 2hl node and the j-th output node.

Moreover, let FR1[k] and FR2[k] denote sets of frozen nodes for class Ck in
the 1hl and the 2hl, respectively, and let Ir

1 [n], Ir
2 [n], and Ir

3 [n], for r = tr and
r = ts denote input activations to the n-th node in the 1hl, the 2hl and the m-
ol, in the training and testing phases, respectively. Similarly, let Or

1[n], Or
2[n],

and Or
3[n] stand for the respective output activations of the n-th node in the

7

1hl, the 2hl and the m-ol, respectively in the training (r = tr) and testing
(r = ts) phases.

Finally, let H1SIZE and H2SIZE denote the numbers of nodes in the 1hl
and the 2hl, respectively.

3.2.2 Training phase

Learning overview: First, all weights between input and 1hl nodes and
between 1hl and 2hl nodes are initialized with small random values and then
normalized so that the sum of squares of incoming weights of all 1hl and 2hl
nodes equals 1. Initially the weights on connections between the 2hl and the
m-ol nodes are also set close to zero. The following pseudo-code presents the
learning overview:

initialize 1hl weights();
initialize 2hl weights();
for (k = 0; k < K; k + +)
{
learn 1hl representation(k);
learn 2hl representation(k);
connect module output(k);
}

3.2.3 Learning the 1hl feature representation of a class

The following discussion assumes that the system is currently learning the
k-th class, 0 ≤ k < K.

The learning of 1hl features for class k occurs as a result of the repeated
presentation of all patterns of class k. The presentation of a patternXk

m during
a given epoch involves the following steps:

• the input window is positioned over a part of the image
• activation within the window is normalized
• a node in the 1hl with the highest input activation - called the winner - is

found
• its incoming weights are updated and normalized
• the window is moved one step in the direction of scan and the above steps

repeated until the image is fully scanned.

Window positioning: A window of WNR rows and WNC columns is ini-
tially positioned at the extreme left of the pattern (in the experiments reported
here, WNR was set equal to NR. Thereafter, the window shifts right, one step

8

at a time, until the image is fully scanned.

Normalizing window’s activation: Y k
m, the activity resulting from the im-

age at a given step of the scan is obtained by normalizing the image pixel
values under the window in the following way:

Y k
m[r][t+ c] :=

Xk
m[r][t+ c]√∑p=WNR−1

p=0

∑q=WNC−1
q=0 Xk

m[p][t+ q]
, (1)

r = 0, . . . ,WNR− 1, t = scan step, c = 0, . . . ,WNC − 1

Finding the winner: Each node i in the 1hl computes its input activation
I tr
1 [i](t):

I tr
1 [i](t) =

WNR−1∑
r=0

WNC−1∑
c=0

Y k
m[r][t+ c] · w1[r][c][i] (2)

and the winner, i.e. the node whose weight vector is closest to Y k
m is found 2 :

winner = arg maxi=0,...,H1SIZE−1 I tr
1 [i](t) (3)

Updating the winner’s weights: The change in the weights of a 1hl node
depends on the degree of match between the node and window’s content. The
weight change procedure consists of the following three cases:

α): The winning node has a high degree of match with the window’s content,
but the node has already been frozen during the learning of some prior class
j. That is,

WNR−1∑
r=0

WNC−1∑
c=0

Y k
m[r][t+ c] · w1[r][c][winner] > θshar (4)

and ∃ j < k : winner ∈ FR1[j]. In this case, the weights of the winner are not
changed. Note that, the winner has a high match with the current pattern,
and hence, will automatically be shared between classes k and j (and any
other classes with which the winner has a high degree of match). θshar is a
predefined (high) threshold value for sharing nodes between classes.

2 Recall that both the incomming weights’ vector and input window’s vector are
normalized.

9

β): The winning node has a low degree of match with the window’s content,
and the node has already been frozen during the learning of some prior class
j. That is,

WNR−1∑
r=0

WNC−1∑
c=0

Y k
m[r][t+ c] · w1[r][c][winner] ≤ θshar (5)

and ∃ j < k : winner ∈ FR1[j]. In this case, the unfrozen node that best
matches the window’s content is found and its weights are changed as in case
γ below.

γ): The winning node has not been frozen during the learning of prior classes.
That is, ∀j < k : winner �∈ FR1[j].

In this case the weights of the winner are updated as follows:

∆w1[r][c][winner] := η(Y k
m[r][t+c]−w1[r][c][winner])

log(mass[winner])

mass[winner] := mass[winner] + 1

(6)

where mass[i], i = 0, . . . , H1SIZE − 1 is the “inertia” of node i and η is a
predefined learning rate 3 . A node’s inertia increases each time it is a winner,
and hence, nodes tend to develop into stable feature detectors. A node’s inertia
is reset (set to 3) at the beginning of each training epoch.

Intuitively, the term mass refers to the inertia or resistance of a node to weight
changes. As the node develops into a more stable feature detector its mass
(inertia) increases and it becomes more resistive to changes in its incoming
weights.

Normalizing winner’s incoming weights: The winning node’s incoming
weights are normalized in the following way:

w1[r][c][winner] :=
w1[r][c][winner]√∑p=WNR−1

p=0

∑q=WNC−1
q=0 (w1[p][q][winner])2

, (7)

r = 0, . . . ,WNR− 1, c = 0, . . . ,WNC − 1

Freezing relevant nodes: All the 1hl nodes, that became winners in the last
epoch form the set of features, FR1[k], associated with class Ck in the 1hl. All

3 In the experiments presented in the paper η was set to 0.05.

10

o o oo o o o o o

time

1 h.l.

sp
ac

e

W
N

R
 =

 N
R

WNC << NC

i j

MEM MEMi j

t t+1 t+2

0 1 ... t ... 0 1 ... t ...

Fig. 3. Training of the 2hl. First the 1hl representation of the pattern is found. Each
1hl node i, at each window position, stores its incoming activation in the auxiliary
memory MEMi. The 1hl pattern representation is defined as the set of nodes with
the highest activations for all instances t - one “winning” node per one window
position.

of these nodes are frozen.

3.2.4 Learning the class representation in the 2hl

The learning of complex features for class k in the 2hl also occurs as a result
of the repeated presentation of patterns of class k over several epochs. In each
epoch, for each pattern Xk

m, the following steps are performed:

• 1hl representation of a pattern is found
• some number of winners are found in the 2hl
• winners’ weights are updated
• winners’ weights are normalized

Finding 1hl representation of a pattern: For each window position t,
each 1hl node i calculates its incoming activation I tr

1 [i](t). These activations
are stored in the auxiliary memories MEMi, i = 0, . . . , H1SIZE − 1 (see
Figure 3).

11

After the scanning of the pattern is completed, the 1hl representation of the
pattern is defined by the set of nodes with the highest input activations across
the layer, for each instance t. In other words, WINk

m, the representation of
pattern Xk

m in 2hl is defined as:

WINk
m =

⋃
t

argmaxi=0,...,H1SIZE−1 MEMi(t) (8)

Output activations of the 1hl nodes are defined as:

Otr
1 [i] =

1√
|WINk

m| , if i ∈WINk
m

0, otherwise
(9)

Finding winners in the 2hl: Having the 1hl representation of the pattern
activated, the input activations to the 2hl nodes are calculated:

I tr
2 [p] =

H1SIZE−1∑
i=0

Otr
1 [i] · w2[i][p], p = 0, . . . , H2SIZE − 1 (10)

and the first ρ nodes with the highest input activations are chosen - denoted
by win1, . . . , winρ in the eqs. below 4 . Namely,

wins = argmaxp=0,...,H2SIZE−1,p �=win1,...,p �=wins−1,p �∈FR2 I tr
2 [p], s = 1, . . . , 5(11)

Note, that the winning nodes are chosen only among not yet frozen nodes.
Therefore, there is no sharing of nodes between classes in the 2hl.

Updating winners’ weights: Weights between the 1hl nodes and the win-
ning nodes in the 2hl are updated in the following way:

∆w2[i][wins] :=
ψ(Otr

1 [i] − w2[i][wins])

scale[s]
, (12)

i = 0, . . . , H1SIZE − 1, s = 1, . . . , 5, scale = [1, 2, 2, 3, 3],

where ψ is a predefined learning rate 5 . The degree of weights change is scaled
by coefficient scale based on the “winning position” of the winning node.
Scaling of learning coefficients adds some flexibility in assigning 2hl nodes

4 In the current implementation, ρ is set to 5.
5 In the experiments presented in the paper ψ was set to 0.05.

12

semi-output layer

second hidden layer

3 6 7 8 92 50 1 4

i j

w3 [i][2] = 1 w3 [j][6] = 1

FR 2 [6] FR 2 [2]

Fig. 4. Building connections between the 2hl and the m-ol layer. For the currently
learned class k, connection weights between nodes in the 2hl that represent class
k (nodes from the set FR2[k]) and the node representing class k in the mo-l are
strenghtened to be equal to 1.

to particular 1hl representations in the learning process. Some nodes develop
into precise detectors of 1hl representations, while others detect ”average” 1hl
representations of patterns from class k.

Normalizing winners’ weights: The incoming weights of the winning nodes
are normalized in a manner similar to that used for normalizing the incoming
weights of the 1hl nodes.

w2[i][wins] :=
w2[i][wins]√∑

j=0,...,H1SIZE−1(w2[j][wins])2
, (13)

i = 0, . . . , H1SIZE − 1, s = 1, . . . , 5

Freezing relevant nodes: All 2hl nodes, which became winners in the last
epoch form a representation FR2[k] of class Ck in the 2hl. All of them are
frozen.

3.2.5 Building connections between the 2hl and the m-ol:

Once the 2hl training phase for class k is completed the connections between
all 2hl nodes which were frozen for that class and a node representing class k
in the m-ol are strenghtened to be equal to 1 (Figure 4).

13

3.2.6 Pruning the network

Once the training process is completed the network structure is minimized
by pruning irrelevant nodes and links. All nodes (along with their respective
links) in the 1hl and the 2hl, which were not frozen by any class are deleted.

Pruning operation has no impact on system’s performance. The main reason
for pruning is to make the system more compact, and hence, computationally
efficient. However, prunning should not be done if the system is going to be
exposed to other learning tasks in the future since unfrozen nodes may be
required for capturing new features created during subsequent learning.

3.2.7 Testing phase

In the testing phase (Figure 5), the unknown pattern is presented to the input
layer, and scanned left-to-right by the CSM, and top-to-bottom by the RSM,
using a scanning window. While a pattern is being scanned, each node in 1hl
maintains a cumulative “winning activation”. In other words, at each scan
step t, the node i in the 1hl that receives the highest input activation in that
step increases its cumulative input activation I ts

1 [i] by the current activation
value MEMi(t). More formally,

I ts
1 [i] =

∑
t∈T (i)

MEMi(t), i = 0, . . . , H1SIZE − 1 (14)

where

T (i) = {t : argmaxm=0,...,H1SIZE−1 MEMm(t) = i} (15)

Output activations from the 1hl nodes are normalized:

Ots
1 [i] =

I ts
1 [i]√∑H1SIZE−1

j=0 (I ts
1 [j])2

, i = 0, . . . , H1SIZE − 1 (16)

The input activations to all 2hl nodes are calculated:

I ts
2 [i] =

H1SIZE−1∑
j=0

w2[j][i] ·Ots
1 [j], i = 0, . . . , H2SIZE − 1 (17)

and the set WIN2 composed of p nodes with the p highest input activations
is defined (p is a system parameter). Then the output activations from 2hl

14

MAX

time

INPUT

1 h.l.

2 h.l.

0 1 2 3 4 5 6 7 8 9 SEMI
OUTPUT

Fig. 5. Overview of the testing procedure - Column Scan Module. See text for
description.

nodes are calculated in the following way:

Ots
2 [i] =

I ts
2 [i], if i ∈WIN2

0, otherwise
(18)

Input to each of the m-ol nodes is calculated as the maximum input among
the 2hl nodes contributing to this m-ol node. Namely,

I ts
3 [k] = max

i=0,...,H2SIZE−1
(w3[i][k] ·Ots

2 [i]), k = 0, . . . , K − 1 (19)

Finally,

Ots
3 [k] = I ts

3 [k], k = 0, . . . , K − 1 (20)

The evidence from the CSM and the RSM in the testing phase is combined in
the final output layer (Figure 6) in the following way:

OUT [k] = α ·OUT c[k] + β ·OUT r[k] (21)

15

COLUMN SCAN MODULE ROW SCAN MODULE

OUTPUT LAYER

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

βα

Fig. 6. Testing phase. Each output layer node’s value is a linear combination of
respective evidence from CSM and RSM. All links between the m-ol nodes in the
CSM and in the RSM and the output layer nodes are equal to α and β, respectively.

where OUT c[k], OUT r[k] denote outputs from the k-th nodes in the module-
output layers in the CSM and RSM, respectively, and OUT [k] is the input
(and output) activation of the k-th node in the final output layer.

Several schemes for combining classifiers in the HDR domain has been pro-
posed in the literature [16,17]. Some of them does not involve any knowledge
about the nature of the classifiers (e.g. voting) others incorporate additional
information (e.g. Dempster-Shafer, mixture of experts). A linear combination
(weighted sum) classifier used in this paper assumes independence of the two
combined classifiers on one hand, but at the same time allows adding some
confidence (parameters α and β) in the quality of their classifications. Based
on our experience with HDR [9] we put more confidence into column scanning
than into row scanning (α > β).

3.3 Experimental results

The efficacy of proposed ICL approach was tested on the HDR problem by
computer simulations of the neural network architecture and learning scheme
described above. The set of binary {0, 1} patterns representing handwritten
digits was extracted from the USPS CEDAR database 6 . The database is

6 The database is officially known as the “United States Postal Service Office of
Advanced Technology Handwritten ZIP Code Database (1987)” and was made avail-

16

composed of approximately 2400 handwritten zip codes collected from pieces of
mail. Both five and nine digit zip codes are included. The zip codes were broken
down into individual digits by making linear divisions between consecutive
digits without removing stray marks or extended strokes. The data used in
our experiment was composed of ten classes Ck, k = 0, . . . , 9 (one class per
digit) each of which contained 600 training and 600 test patterns Xk

m[][], m =
0, . . . , 599, 600, . . . , 1199. An additional set of 100 patterns was used for cross-
validation.

3.3.1 Preprocessing

Size normalization: Patterns, originally of various sizes, were normalized
[18] by resizing from rectangle to square, sampling with a regular interval,
comparing the normalized sum of activations of pixels in the surrounding
square with the threshold value (= 0.5) and, if greater or equal than the
threshold, setting the corresponding pixel in the resulting image to 1, or setting
it to 0, otherwise. The size of patterns after normalization was equal to 17×17.
Some exemplar digits before and after size normalization are presented in
Figure 7.

Other preprocessing techniques: Several other preprocessing techniques
are commonly used in the statistical or neural-nets based HDR methods
[17,15]. Examples of such techniques include low pass filtering, skeletonization,
skew normalization, thinning, line regularization, discarding “empty” patterns,
and more.

Therefore, for the fair comparison with other published HDR results it is worth
noting that except size normalization no other preprocessing techniques
were applied to the data. Consequently, preprocessed digits preserved high
variations in thickness and skewness. Additional examples of size-normalized
input patterns are presented in Figure 8.

3.3.2 Defining system’s parameters

Most of system’s parameters (e.g. the learning rate, inertia coefficients, sizes
of layers, numbers of winners, numbers of training epochs) were chosen based
on pilot simulations, as well as on intuition and past experience of the au-
thors. General guidelines for the number of nodes in the first and the second
hidden layer are to allow sufficient nodes in the 1hl to make the repertoire of
potential features as extensive and comprehensive as possible. Moreover, the
process of feature development in the 1hl should be continued long enough
to allow the development of reliable feature detectors. In contrast, learning in

able for research by the Office of Advanced Technology, United States Postal Service.

17

(a) (b)

Fig. 7. Examples of training patterns before (a) and after (b) size normalization.
Figures have the same scale.

the 2hl can be performed relatively easily, since the main objective here is the
aggregation of already recognized 1hl features into class representatives (these
can be viewed as exemplars or templates). Moreover, learning in the 2hl can
be performed relatively fast if proper feature detectors have been learned in
the 1hl.

3.3.3 Simulation results

One of the observations from preliminary simulations was that the order in
which classes are presented during learning has some influence on the quality of
results. This effect is due to the fact that order of presentation influences which
features are learned first. This in turn shapes the rest of the learning process
since these primarily developed features are available for representations of
subsequent classes.

Therefore, in the final system setup four modules - two CSMs and two RSMs
were used. Combining evidence from four (instead of two) independent mod-
ules resulted in greater flexibility and reliability in the system’s behavior. One
CSM and one RSM used the ascending order of classes, that is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

18

Fig. 8. Examples of training patterns from the CEDAR database, after size normal-
ization, used in the simulations.

The order of learning was chosen independently for the remaining two mod-
ules ({9, 4, 1, 6, 5, 7, 3, 8, 2, 0} for the other CSM, and {9, 7, 6, 5, 0, 4, 3, 8, 2, 1}
for the other RSM). In the final output layer both CSMs were treated equally
(with the same weight). Similarly, the respective links between each of the
RSMs and the final output layer were pairwise equal. In general, links between

19

CSMs and the final output layer were different from those between RSMs and
the final output layer. Hence, the input to node k in the final output layer,
denoted by OUT [k] in (22) was equal to

OUT [k] = α ·OUT c1[k] + β ·OUT r1[k] + α ·OUT c2[k] + β ·OUT r2[k](22)

where OUT c1[k], OUT c2[k], OUT r1[k] and OUT r2[k] denote outputs from the
respective module-output layers of the four modules. The final output of the
system was the class number corresponding to the maximum valueOUT [k], k =
0, . . . , 9.

The number of nodes in each layer was established empirically based on some
preliminary simulations, and for each of the four modules was equal to 5000,
1200 and 10 for the 1hl, the 2hl and the m-ol, respectively.

Among the 20,000 and 4,800 available nodes in the 1hl and the 2hl of the four
modules, respectively, the system froze 10,442 and 1,840 nodes, respectively,
during the training phase. The system effectively used about 2.1 ∗ 106 out of
about 2.5 ∗ 107 available links.

As described above, learning in the 1hl and in the 2hl was based on multiple
presentation of all exemplars from the currently learned class. The numbers
of training epochs per class were equal to 50 and 10 for the 1hl and the 2hl,
respectively. Based on preliminary simulations we observed that increasing
1hl training epochs to 75 or 100 had no particular impact on the system
efficiency. On the other hand, reducing the number of epochs below 30 resulted
in degraded system performance.

Several alternative schemes for computing the network’s output were consid-
ered. Two of these are described below.

Raw performance: The output was computed under the following condition:

• α = β = 1,
• p = 1 (i.e. one winner was selected in the 2hl in the testing phase in each

of the four modules).

The system’s performance was 97.87% on the training set and 92.55% on the
test set.

Enhanced performance: We experimented with a small set of alternate
values for α, β and p and observed that the system’s performance could be
improved by differentially weighting the responses of the row and column

20

0 5 10 15 20 25 30
93

94

95

96

97

98

99

100

Rejection rate

P
er

fo
rm

an
ce

 r
at

e

Performance vs. Rejection

Training Set
Testing Set

Fig. 9. A plot of system’s performance on the training and test sets with rejection.

networks. For example, the choice of

• α = 0.9, β = 1.3,
• p = 8 for CSMs and p = 3 for RSMs

improved the system’s performance on the test set to 93.13%.

Results with rejection: In the experiments reported thus far, a pattern was
rejected if the ratio between the second and the first best choices in the final
output layer was relatively high, that is if

k1 := arg maxk {OUT [k]} and k2 := arg maxk �=k1
{OUT [k]},(23)

then

OUT [k2]

OUT [k1]
> threshold =⇒ reject pattern (24)

The plot of system’s performance with various levels of rejection is presented
in Figure 9.

21

The performance on the test set exceeded 94%, 95%, 96% and 97% with 1.9%, 4.4%, 6.9%
and 9.9% rejection, respectively. The performance on the training set exceeded
98% and 99% with 2.1% and 5.4% rejection, respectively.

Misclassified patterns: In the experiment without rejection, the perfor-
mance on the test set was equal to 93.13%, that is, 412 out of 6000 patterns
were incorrectly classified. Some of these misclassified patterns were highly
ambiguous. Examples of misclassified patterns are presented in Figure 10.
The confusion matrix for the test set is presented in Table I.

— 0 1 2 3 4 5 6 7 8 9
∑

0 — 2 1 1 0 1 6 0 15 0 26

1 0 — 0 0 10 0 0 1 3 2 16

2 7 4 — 11 3 4 1 14 9 4 57

3 0 0 6 — 0 13 0 10 15 4 48

4 0 22 5 0 — 1 0 1 3 13 45

5 0 2 4 27 0 — 0 1 7 3 44

6 4 9 9 1 5 8 — 1 7 0 44

7 1 10 2 0 11 8 0 — 2 12 46

8 7 9 1 16 3 9 0 0 — 3 48

9 0 7 1 1 17 0 0 10 2 — 38
∑

19 65 29 57 49 44 7 38 63 41 412

Table I. Misclassification table for the test set in the experiment without rejec-
tion. In each row of the table, the number of misclassifications of the respective
digit (the first value in a row) with all other classes is presented. The rightmost
column presents a sum of all misclassifications for this digit. For example, digit 3
was misclassified with digit 5 in 13 cases, and digit 5 with digit 3 in 27 cases.

Several conclusions can be drawn from analysis of Table I. In general the
observations are qualitatively not surprising due to some shape resemblance
between exemplars of particular (handwritten) digits. For example any two
classes from the set {3, 5, 8} are often misclassified each with other. Similarily
class 1 is often confused with class 4 and vice versea.

Significance of experimental results:

The simulation results obtained for the CEDAR USPS database suggest that
the ICL approach outlined in this paper is an effective and plausible method

22

Fig. 10. Some examples of misclassified patterns from the test set.

of solving classification problems involving a large number of classes.

In evaluating the results it may be appropriate to note that our goal was
to evaluate the efficacy of the ICL learning scheme on a real-life and non-
trivial problem domain involving noisy data. The above results suggest that
the ICL approach in quite effective in solving the handwritten digit recognition

23

problem. It seems reasonable to assume that the performance of the system
could be improved further by using larger training sets and performing more
sophisticated preprocessing (e.g. skew normalization and skeletonization). We
did not pursue these possibilities since we are not interested in developing a
state-of-the-art HDR system.

The performance of the ICL based HDR system was compared with that of
Nearest Neighbor Classifier (NNC) using the training patterns used in the
ICL experiment. The NNC is widely used as a benchmark for other classifiers
mainly because in most applications it proved to provide reasonably good
classifications. Its other advantages include implementation and problem in-
dependence [17].

The recognition rate of NNC on the test set was 86.36%.

The quality of ICL results is comparable to the other published results on the
CEDAR database. For example in [19] an accuracy of 95.42% with 0% rejection
on a test set composed of 2007 digits was reported and in [9] a 96.0% accuracy
with no rejection and 99.0% accuracy with 9.5% rejection was reported on the
test set containing 2700 images. Knerr et al. [20] have reported an accuracy
of 95.8% with 2.4% rejections for the pixel-based representation of digits and
an improved performance of 97.47% with 1% rejections for the feature-based
representation.

In the context of the above results the accuracy of 93.13% with 0% rejection
in case of totally unconstrained images seems significant.

Possible directions for improvement: The system’s performance may be
improved by refining the ICL approach and we are pursuing several possibili-
ties. These include:

• selection of multiple winning nodes in 2hl,
• propagation of negative evidence from the 1hl nodes to the 2hl nodes, and
• the fine tuning of shared (frozen) nodes by allowing such nodes to modify

their input weights — albeit with very high inertia.

Based on pilot simulations we believe that the fine tuning of shared nodes can
improve the system’s performance.

3.3.4 Stabilization of feature set in the 1hl

One of the expected properties of the system is the asymptotic stabilization
of the feature set in the 1hl. One would expect that after the network has
learned a sufficient number of classes, learning would become relatively easy
and primarily involve the use of features from previously learned tasks.

24

The numbers of recruited nodes per class for the two orders used in the training
of CSM are presented in Table II. These results suggest that such asymptotic
behavior was not observed in the current set of experiments and subsequent
classes still recruit many new nodes (e.g. digit 8). It appears that the number
of classes will have to be increased beyond ten in order to observe the expected
convergence of the feature set. In order to verify the hypothesis that there will
be a gradual decrease in the number of nodes frozen for a new class we plan
to extend the experiment to the set of all alphanumeric characters. The other
possibility is to continue training the existing “trained system” on another
handwritten digits database and see if there is significant overlap between the
nodes frozen in response to the new set of exemplars of a given class and those
frozen in response to the old set of exemplars of that class.

CLASS NEW NODES ALL NODES CLASS NEW NODES ALL NODES

0 176 176 9 352 352

1 60 111 4 292 497

2 416 564 1 72 238

3 390 648 6 243 464

4 312 612 5 348 704

5 346 856 7 125 511

6 255 778 3 419 919

7 107 527 8 563 1254

8 546 1265 2 332 1077

9 291 951 0 174 790

2899 2920

Table II. Numbers of nodes recruited by subsequent classes in the CSM based
training in two different orders of classes. For each CSM learning order, columns
from left to right denote: the class number, number of new nodes for this class,
number of all (new and shared with previous classes) nodes for the class.

An interesting observation from Table II is that the overall number of nodes
frozen by all classes is independent of the class order (the same holds for
RSMs).

25

4 Conclusions

In this work we have proposed the Incremental Class Learning approach
based on freezing relevant features and sharing common (similar) features
among multiple classes. The ICL approach not only takes advantage of exist-
ing knowledge when learning a new problem, it also offers immunity from the
catastrophic interference problem. Promising results obtained for the uncon-
strained Handwritten Digit Recognition problem suggest that the approach
may be a suitable framework for building large, scalable learning systems. We
conjecture that the sharing of relevant features among classes will make sub-
sequent learning more effective (easier and faster), especially when a new task
exhibits a degree of similarity to previously learned tasks. Hence, the ICL
approach is also the promise of dealing with large-scale and life-long learn-
ing. The above conjecture requires further experimental evaluation in other
problem domains.

One of the key factors in the potential success of this approach is the abil-
ity to decompose a problem into subproblems. While such a decomposition
may not be easily achievable for certain problem, many naturally occurring
problem domains such as child language acquisition and development seem
to have a structure that lends itself to problem decomposition. For example,
children acquire a few basic nouns and verbs and master a few basic gram-
matical constructs before moving onto learning more complex nouns, verbs,
and constructions [21].

Another important issue is the observed influence of the presentation order on
the quality of results. Several other incremental learning systems (e.g. ART
networks) suffer from the same problem. One possibility to alleviate this in-
fluence is combining several modules using different presentation orders as
was done in this research. However, in general case this aspect requires more
experimental and theoretical studies.

In future we plan to verify the efficacy of the ICL method in other problem
domains and to work on developing more compact representations of learned
tasks in 1hl, mainly by involving other criteria for the selection of frozen
features. At the same time, we are interested in using alternate criteria for
combining evidence from multiple network modules. Finally, we are also in-
vestigating effective methods for problem decomposition.

26

References

[1] M. McCloskey, N. J. Cohen, Catastrophic interference in connectionist
networks: the sequential learning problem, In G. Bower (Ed.), The psychology
of learning and motivation, Academic Press, 1989, pp. 109–165.

[2] J. L. McClelland, B. L. McNaughton, R. C. O’Reilly, Why there are
complementary learning systems in the hippocampus and neocortex: insights
from the successes and failures of connectionist models of learning and memory,
Technical Report: PDP.CNS.94.1, 1994.

[3] E. Pessa, M. P. Pennaand, Catastrophic interference in learning process by
neural networks, Proc. of the ICANN’94, Sorrento, Italy, 1994, pp. 589–592.

[4] G. A. Carpenter, S. Grossberg, A massively parallel architecture for a self-
organizing neural pattern recognition machine, Computer Vision, Graphics, and
Image Processing 37 (1987) 54–115.

[5] L. Shastri, Attribution learning as a solution to the catastrophic interference
problem in learning with neural nets, Working Paper, International Computer
Science Institute, 1994.

[6] S. E. Fahlman, C. Lebiere, The cascade-correlation learning architecture, In
D. Touretzky (Ed.), Advances in Neural Information Processing Systems, 2,
Morgan Kaufmann, 1990, pp. 524–532.

[7] M. Frean, The upstart algorithm: a method for constructing and training
feedforward neural networks, Neural Computation 2 (1990) 198–209.

[8] A. Waibel, Consonant recognition by modular construction of large phonemic
time-delay neural networks, In D. Touretzky (Ed.), Advances in Neural
Information Processing Systems, 1, Morgan Kaufmann, 1989, pp. 215–223.

[9] L. Shastri, T. Fontaine, Recognizing handwritten digit strings using modular
spatio-temporal connectionist networks, Connection Science 7(3) (1995) 211–
235.

[10] P. Mitra, S. Mitra, S. K. Pal, Staging of cervical cancer using Soft Computing,
IEEE Transactions on Biomedical Engineering, 47(7) (2000) 934–940.

[11] D. Rumelhart, D. Zipser, Feature discovery by competitive learning, Cognitive
Science 9 (1985) 75–112.

[12] T. Kohonen, Self-organized formation of topologically correct feature maps,
Biological Cybernetics 43 (1982) 59–69.

[13] S. Thrun, T.M. Mitchell, Learning one more thing, Technical Report: CMU-
CS-94-184, 1994

[14] S. Thrun, Explanation based neural network learning. A lifelong learning
approach, Kluwer Academic Publishers, Boston / Dordrecht / London, 1996.

27

[15] R. Plamondon, S. N. Srihari, On-line and off-line handwriting recognition: a
comprehensive survey, IEEE Transactions on Pattern Analysis and Machine
Intelligence 22(1) (2000) 63–84.

[16] L. Xu, A. Krzyzak, C. Y. Suen, Methods for combining multiple classifiers and
their applications in handwritten character recognition, IEEE Transactions on
Systems, Man, and Cybernetics 22 (1992) 418–435.

[17] A. K. Jain, R. P. W. Duin, J. Mao, Statistical pattern recognition: a review,
IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1) (2000)
4–37.

[18] H. Hou, Digital Document Processing, J. Willey & Sons, 1983

[19] Y. Le Cun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard,
L. Jackel, Handwritten digit recognition with a back-propagation network, In
D. Touretzky (Ed.), Advances in Neural Information Processing Systems, 2,
Morgan Kaufmann, 1990, pp. 396–404.

[20] S. Knerr, L. Personnaz, G. Dreyfus, Handwritten digit recognition by neural
networks with single-layer training, IEEE Transactions on Neural Networks
3(6) (1992) 962–968.

[21] M. Tomassello (Ed.), Beyond names for things: young children’s acquisition of
verbs, Lawrence Erlbaum, Hillsdale, NJ, 1995.

28

