

A Multi-tiered Model for Context-Aware
Systems

Abstract
Context awareness is considered one of the most
important challenges to be tackled in the field of
ubiquitous computing (ubicomp). In this perspective,
this paper describes a general model for context-aware
systems. The model is organized in multiple tiers, each
one addressing a specific design characteristic related
to the area. The proposition can be applied in the
design and assessment of context-aware systems.

Author Keywords
Context awareness; sensors; context management.

ACM Classification Keywords
D.2.11. Software Architectures: Domain-specific
architectures.

Introduction
Context awareness is one of the challenges that must
be addressed when developing ubiquitous computing
(ubicomp) systems. The idea consists in the perception
of characteristics related to the users and their
surroundings. These characteristics are normally
referred to as context, i.e. any information that can be
used to describe the circumstances concerning an
entity (persons, places, or objects) [1].

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
UbiComp '14 Adjunct, September 13-17, 2014, Seattle, WA, USA
ACM 978-1-4503-3047-3/14/09.
http://dx.doi.org/10.1145/2638728.2638769

Cristiano André da Costa
Universidade do Vale do Rio
dos Sinos
Av. Unisinos, 950 São Leopoldo
Brasil
cac@unisinos.br

Adenauer Corrêa Yamin
Universidade Federal de Pelotas
Campus Porto Pelotas Brasil
adenauer@inf.ufpel.edu.br

Cláudio Resin Geyer
Universidade Federal do Rio
Grande do Sul
Av. Bento Gonçalves, 9500
Porto Alegre Brasil
geyer@inf.ufrgs.br

Jorge Luis Victoria Barbosa
Universidade do Vale do Rio
dos Sinos
Av. Unisinos, 950 São Leopoldo
Brasil
jbarbosa@unisinos.br

Rodrigo da Rosa Righi
Universidade do Vale do Rio
dos Sinos
Av. Unisinos, 950 São Leopoldo
Brasil
rrrighi@unisinos.br

31

UBICOMP '14 ADJUNCT, SEPTEMBER 13 - 17, 2014, SEATTLE, WA, USA

 Context is generally acquired using embedded
computers or sensors. However, most devices today
cannot sense their environment, and neither can
software react to these changes. To help dealing with
these and other limitations related to the subject, there
are special kinds of software commonly known as
context-aware systems [2]. They are in charge of
inferring context to supply information when the
availability of services is limited or intermittent.

Based on perceived context, the software can modify
the behavior of the system. This process, in which
software modifies itself according to sensed data, is
named adaptation. This constitutes the core of a
ubicomp challenge identified as context management.
This article does not include an analysis of the
adaptation process, since many other articles cover this
subject [1,3].

In this article, we present a general model that can be
used to assess and design context-aware systems.
These systems usually have a set of services to deal
with context, including a service that can notify a
component in the occurrence of some event, a
mechanism to find suitable information or services, the
conversion of low-level data into high-level information,
and the aggregation of context information to generate
a more precise or detailed context.

The Multi-tiered Model
The proposed model is presented in Figure 1, which
includes the main components found in context-aware
systems. Various systems have been proposed, which
differ in architecture, scope, aim, and also in the name
they use for the tiers. Additionally, some systems do

not include all the layers presented in our model, while
others integrate some tiers into fewer components.

The bottom-most tier (sensor) consists of a collection of
sensors that gather the raw data. These sensors are
coordinated, parameterized, and controlled by the
acquisition layer. The next tier carries out the
transformation of data obtained from sensors into
higher-level information. The following layer is
responsible for synthesis, i.e. aggregating the context
information, generating a more detailed context. Then,
the model presents a discovery layer that is employed
in the finding of sensors and other resources. The sixth
tier represents a storage that accumulates the context
data. Normally, there is inference atop of this data (or
at least straightforward queries) which is accomplished
by the subsequent tier, named query / inference. Next,
the subscription and delivery layer offers event-
communication mechanisms for notification of context
events. And finally, the top-most tier represents the
context-aware application.

The model shows two common flows of interaction
among the tiers. The first one, represented by a line
with a filled shape on both ends, represents the context
subscription action and the subsequent occurrence of
the event. Note that some tiers are not used
(represented by a dotted line) in the top-down path,
only in the return of the gathered context data.
Furthermore, there are tiers that are not used in this
flow. The second showed flow, denoted by a line with a
hollow shape on both ends, indicates a query on the
database. This is usually used to obtain historical data
or, in some systems, to apply a reasoning engine to the
available context information.

Figure 1. Multi-tiered model for
context-aware systems.

32

UBICOMP '14 ADJUNCT, SEPTEMBER 13 - 17, 2014, SEATTLE, WA, USA

It is a noteworthy matter that these two flows are not
the only possibilities in a context-aware system;
however, they represent the two most common
operations related to the subject. The next subsections
describe the main design principles involved in each
tier.

Sensors
There are three types of sensors that can be used in a
context-aware system: physical (or hardware) sensors,
virtual (or software) sensors, and logical sensors,
indicating that data can be provided either by a
physical or a virtual sensor. Individual nodes, usually
physical sensors, can be combined in a more complex
arrangement, generating a sensor network, which
mingles relatively simple sensors with real-time, low-
level manipulation and analysis.

Acquisition
The main purpose of this tier is to isolate the top layers
of the system from the complexity of gathering data.
Some systems do not present acquisition as a separate
layer, reducing the possibility of reusing sensors, and
jointly handling both the obtaining of data and its use
or representation. In the design of the acquisition tier
we must deal with the following concerns related to
sensors: installation, configuration, ways of
communication, and type of sensed data.

Transformation
This tier, also called context interpretation, transforms
the information received from the acquisition layer into
a machine processable format. The main concern in this
process is which context model to use in the
representation of context.

There are various data-structure modeling approaches
employed in the representation of context [4]: key-
value models – using pairs of values to represent
context; markup-scheme models – applying a
hierarchical data structure with markup tags, such as
XML; graphical models – utilizing a visual
representation, e.g. UML; object-oriented models –
exploiting OOP techniques in context representation;
logic-based models – employing a logical definition,
defining context as facts, expressions, and rules;
ontology-based models – applying ontology for
denoting context.

Synthesis
Synthesis or aggregation is the process of composing
individual context information related to a specific
entity. The module identifies different sources of
information and combines contexts to produce a result
that is more precise and easier to use. The main design
principle in this tier is related to the process of
aggregation: what the rules are, or what the domain is,
for combining context information.

Discovery
This tier is responsible for dynamic search and finding
resources at run time. When addressing context
awareness, the resources we are particularly interested
in are sensors. Some systems offer services or
components that accomplish this process, while others
need to employ built-in sensors or to rely on a pre-
configuration. In this case, failures and the addition of
new sensors need to be manually managed. One
characteristic of the discovery mechanism is the
method used for detecting the dynamic availability of a
resource. It is common to employ leases or some

33

SESSION: UBICOMP POSTERS

pooling mechanism. Another design principle is the
method that is used to look up resources.

Storage
The storage tier keeps the context information. Some
systems maintain historical context data that “may be
used to establish trends and predict future context
values”. The main design principle is related to
distribution and placement. The solutions vary from
centralized to totally distributed storage. Trade-off
alternatives are also possible, such as employing
hierarchical or partially distributed solutions.

Query and inference
This layer comprises the management of context
information. It can vary from simple mechanisms for
querying the data, to powerful reasoning, including the
inference of deduced context. This option constitutes
the first design characteristic of the tier: presence or
absence of an inference engine and a knowledge base.
This characteristic has an influence on the type of
generated context. The tier could infer only explicit
context, or it could also infer implicit context, i.e.
context generated from reasoning.

Subscription and delivery
Normally associated with context-aware systems, is the
capability of subscribing to specific context change.
Typically, this operation is based on a publish-
subscriber model. Because of that, we chose
subscription and delivery for the tier’s name. This layer
gives asynchronous communication to the context-
aware system, while the former tier generally
constitutes a synchronous operation.

When subscribing to a context change, some systems
allow the specification of certain conditions to be
observed for the occurrence of an event. Furthermore,
particular attributes that are of interest may be
indicated. Another design issue is whether it is possible
to subscribe to changes related to specific entities or
only to individual sensors. This defines the subscription
element: a sensor or an entity-related context.

Application
The last tier is represented by the context-aware
application. The main design principle in this layer is
connected to the way programs make use of context.
This is strictly related to the context management
method, and particularly to the adaptation strategy.

Conclusion
We believe that the proposed model could be useful in
assessing and designing context-aware systems. The
model covers many aspects related to the field. To
evaluate our model, we are currently developing a
software infrastructure specifically aimed at context
awareness.

References
[1] Zhang, Daqiang et al. Survey on context-
awareness in ubiquitous media. Multimedia tools and
applications 67, 1 (2013), 179-211.

[2] Bauer, Jared et al. Thinking about context: Design
practices for information architecture with context-
aware systems (2014).

[3] Salah, A. et al. Understanding and Changing
Behavior. Pervasive Computing 12, 3 (2013). 18-20.

[4] Bettini, C. et al. A survey of context modelling and
reasoning techniques. Pervasive and Mobile Computing
6,.2 (2010), 161-180.

34

UBICOMP '14 ADJUNCT, SEPTEMBER 13 - 17, 2014, SEATTLE, WA, USA

