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Abstract. We prove existence and numerical stability of numerical solutions of three
fully discrete interior penalty discontinuous Galerkin (IPDG) methods for solving non-
linear parabolic equations. Under some appropriate regularity conditions, we give the
l2(H1) and l∞(L2) error estimates of the fully discrete symmetric interior penalty dis-
continuous Galerkin (SIPG) scheme with the implicit θ-schemes in time, which include
backward Euler and Crank-Nicolson finite difference approximations. Our estimates are
optimal with respect to the mesh size h. The theoretical results are confirmed by some
numerical experiments.
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1. Introduction

Although the definition of discontinuous polynomial spaces emerged in the 1970s [19,
28, 29], it was in the recent decade that discontinuous Galerkin (DG) methods have
become attractive as a powerful simulation tool for solving partial differential equations
(see e.g. [5, 6, 10, 13, 25]). The mixed DG and the primal DG are two main families of
DG. The local discontinuous Galerkin scheme (LDG) [4] is a representative of the mixed
DG. The primal DG method depends on the appropriate choice of penalty terms for the
discontinuous shape functions and has a different treatment of the diffusion term [7, 29,
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16], which can be referred to as Interior Penalty Discontinuous Galerkin (IPDG) methods.
There are four primal DG versions, Symmetric Interior Penalty Galerkin (SIPG) [29, 25],
Nonsymmetric Interior Penalty Galerkin (NIPG) [21, 25], Incomplete Interior Penalty
Galerkin (IIPG) [25] and Oden-Babuska-Baumann DG (OBB-DG) methods [16].

DG methods possess a few important features over other types of finite element meth-
ods. For example, they naturally handle inhomogeneous boundary conditions and inter-
element continuity with a weak enforcement; they allow the use of nonuniform and un-
structured meshes and have local conservation properties. In addition, they appear to be
non-oscillatory in the presence of high gradients and rough solutions. But they seem to in-
troduce a relatively large number of degrees of freedom over inter-elements. Fortunately,
two-level and multilevel preconditioners tend to remedy this disadvantage [3, 8].

The hp version [2] works efficiently and the accuracy is achieved if one geometrically
refines the mesh by grading towards the corners of the polygonal boundary where in
general singularities of the exact solution occur, and if one appropriately chooses the
polynomial degree p on each subdivision. Arnold [1] first analyzed a semidiscrete IPDG
method for solving nonlinear parabolic boundary value problems and stated optimal order
error estimates in the energy and L2 norms. For reaction-diffusion equations, Georgoulis
and Süli [9] presented fully hp-optimal error bounds in the energy norm by introducing
an augmented Sobolev space. Optimal convergence in L2(L2) for SIPG has also been
established for reactive transport in porous media, but sometimes NIPG and IIPG do
not have L2(L2) optimality [25]. For NIPG and IIPG, l∞(L2) optimal error estimates
were given for a three-dimensional parabolic equation in a rectangular domain [27] and
the L2 optimality was established for polynomials of odd degrees for one-dimensional
elliptic equations [14]. Rivière and Wheeler [22] derived a priori error estimates in the
l2(H1) and l∞(L2) norms for a fully discrete NIPG scheme with a θ scheme for nonlinear
parabolic equations. Recently, Ohm et al. [17] obtained an optimal l2(H1) and L∞(L2)
error estimates of a semi-discrete SIPG scheme for nonlinear parabolic equations, and
generalized the l∞(L2) error estimate to the backward Euler SIPG method in [18]. But
there are no related numerical experiments presented.

We consider the following nonlinear parabolic equation:

ut −∇ · (a(x, u)∇u) = f(x, u), in Ω × (0, T ),(1.1)

a(x, u)∇u · n = 0, in ∂Ω × (0, T ),(1.2)

u|t=0 = ψ(x), on Ω × {0},(1.3)

where Ω is an open interval in R
1, or a convex polygonal domain in R

2, n is the unit
outward normal vector to ∂Ω, and T > 0 is arbitrary but fixed. The equation (1.1),
supplemented with the boundary condition (1.2) and the initial condition (1.3), describes
the diffusion of a chemical species of the concentration u in a porous medium with a
source term f(x, u).

We assume that a and f are uniformly Lipschitz continuous with respect to the variable
u, namely, there exist positive constants La and Lf such that

|a(x, u1) − a(x, u2)| ≤ La|u1 − u2|, for u1, u2 ∈ R,(1.4)

|f(x, u1) − f(x, u2)| ≤ Lf |u1 − u2|, for u1, u2 ∈ R.(1.5)
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Moreover, we assume that for any compact set S in R, there exist positive constants K0

and K1 such that

(1.6) 0 < K0 ≤ a(x, p) ≤ K1, 0 < K0 ≤
∂

∂p
a(x, p) ≤ K1, in Ω × S.

For the sake of simplicity, we also assume that

f(·, 0) = 0.(1.7)

In our study, u is assumed to be a strong solution. That is, u ∈ C2(Ω × [0, T ]), a
solution of the problem (1.1)-(1.3), satisfies the regularity conditions below:

(1.8)

{
u, ut ∈ L∞(0, T ;Hs(Ω)), for some s ≥ 2;

∇u ∈ L∞(Ω × (0, T )).

In this present work, the interior penalty discontinuous Galerkin schemes for approxi-
mating solutions of the problem (1.1)-(1.3) are analyzed, and for a fully discrete θ scheme
in time the optimal l∞(L2) error estimates are derived under some appropriate regularity
conditions. Our analysis focuses on the following issues which have not yet been ade-
quately considered in the literature:
• Based on an implicit θ scheme, existence of solutions of the fully discrete IPDG schemes
will be proven.
• When implicit θ time-integration techniques are considered in order to avoid rigid CFL
stability conditions associated with the mesh size, numerical stability of these fully dis-
crete IPDG schemes will be analyzed.
• In the hp version, optimal l2(H1) and l∞(L2) error estimates will be given for the fully
discrete SIPG scheme with implicit time-integration schemes.
• Some numerical results are presented in our work. As we know, few numerical results
from an implicit time-stepping IPDG scheme have been published for solving nonlinear
parabolic equations.

The content of this article is summarized as follows. In Sect. 2 we recall a few definitions
and the formulation of the interior penalty DG formulations in a semi-discrete form and
in fully discrete forms with a θ scheme. For the semi-discrete DG scheme, we state some
properties for IPDG schemes in Sect. 3, and derive existence and numerical stability for
the fully discrete IPDG schemes in Sect. 4 and Sect. 5, respectively. In Sect. 6 we give
a unified analysis of optimal a priori error estimates in the l2(H1) and l∞(L2) norms for
the fully-discrete SIPG scheme with implicit θ time-integration techniques. Finally, the
numerical results are presented to show the effectiveness of the DG methods in Sect. 7.

2. The discontinuous Galerkin method

We subdivide the domain Ω into elements E1, E2, · · · , ENh
, where Ei is an interval in

1D or a triangle in 2D and Nh is the number of all elements. Here h > 0 denotes the
maximal diameter of all elements. For each h > 0, we write the resulting subdivision in
the form:

Eh := {E1, E2, · · · , ENh
}.
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Note that Ω̄ =
⋃Nh

i=1 Ēi, for each h > 0. We set, for each element of Eh,

(2.1)

{
hi = the diameter of Ei, 1 ≤ i ≤ Nh,

ρi = the radius of the largest ball inscribed in Ei, 1 ≤ i ≤ Nh.

We impose a regularity assumption on the mesh Eh, i.e., there exists a constant ζ > 0,
independent of h, such that

h

min ρi

≤ ζ.

Moreover, we assume that the mesh Eh is quasi-uniform: there exists a constant τ > 0,
independent of h, such that

h

minhi
≤ τ.(2.2)

We introduce the set Fh of edges of the mesh Eh:

Fh := {e1, e2, · · · , ePh
, ePh+1, · · · , eMh

},

where {
ei ⊂ Ω, if 1 ≤ i ≤ Ph,

ei ⊂ ∂Ω, if Ph + 1 ≤ i ≤Mh.

On each ei (1 ≤ i ≤ Mh) of Eh, we fix a unit outer normal vector ni:

ni =

{
the unit normal vector on ei, pointing from Ek to Ej , if ei = ∂Ek ∩ ∂Ej ,

the unit normal vector on ei, pointing outward of Ω, if Ph + 1 ≤ i ≤Mh,

then we denote the average and jump operators below: For v ∈ Hs(Eh), s >
1
2
,

{v}ei
:=

{
1
2
(v|Ej

)|ei
+ 1

2
(v|Ek

)|ei
, if ei = ∂Ej ∩ ∂Ek, 1 ≤ i ≤ Ph,

(v|Ek
)|ei

, if ei = ∂Ek ∩ ∂Ω, Ph + 1 ≤ i ≤Mh.

[v]ei
:=

{
(v|Ek

)|ei
− (v|Ej

)|ei
, if ei = ∂Ej ∩ ∂Ek, 1 ≤ i ≤ Ph,

(v|Ek
)|ei

, if ei = ∂Ek ∩ ∂Ω, Ph + 1 ≤ i ≤ Mh.

For brevity, we drop the subscript ei of these two operators throughout this paper.
Along this article, the Hm Sobolev norm on ω is defined by ‖·‖m,ω for a positive integer

m, i.e.,

‖ · ‖m,ω := | · |Hm(ω), ∀ 0 ≤ m <∞, ∀ω ⊂ R
1(or R

2).(2.3)

Note that, by default, H0(ω) denotes L2(ω) with the L2 inner product (·, ·) and ‖ · ‖∞, ω

is the standard L∞-norm on ω. Then using (2.3), we introduce the broken Sobolev space
for any real number s:

Hs(Eh) =
{
v ∈ L2(Ω) : v|Ei

∈ Hs(Ei), 1 ≤ i ≤ Nh

}
,

which is equipped with the broken space norm:

‖|v‖|s := |v|Hs(Eh) =
( Nh∑

i=1

‖v‖2
s,Ei

)1/2

.
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Also, given a time interval [a, b], we use the broken Sobolev L2(Hs) and L∞(Hs) norms:

‖|v‖|2L2(a,b;Hs) =

∫ b

a

‖|v(·, t)‖|2s dt, ‖|v‖|L∞(a,b;Hs) = ess sup
t∈(a,b)

‖|v(·, t)‖|s.

We also introduce a space of test functions

Dr(Eh) =
{
v ∈ L2(Ω) : v|Ei

∈ Pr(Ei), 1 ≤ i ≤ Nh

}
,(2.4)

where, for each 1 ≤ i ≤ Nh,

Pr(Ei) := {the space of polynomials of (total) degree at most r on Ei} .

It is clear that

Dr(Eh) ⊂ H1(Eh) ⊂ L2(Ω).

However, since the test functions in Dr(Eh) are discontinuous along the edges ei, 1 ≤ i ≤
Ph in Ω, we notice that Dr(Eh) 6⊂ H1(Ω). We thus introduce the interior penalty term
Jσ

0 : Dr(Eh) ×Dr(Eh) → R in the form:

Jσ
0 (v, w) =

Ph∑

k=1

σk

|ek|

∫

ek

[v][w]ds,(2.5)

which penalizes the jump of the functions across the edges ek, 1 ≤ k ≤ Ph. Here the
penalty parameter σk is a nonnegative real number to be chosen and |ek| is the Lebesgue
measure of the edge ek. It is easy to see that

|ei| ≤ hi ≤ h, ∀ 1 ≤ i ≤ Nh.(2.6)

We also define the energy norm on Dr(Eh) throughout this paper:

‖v‖DG =
( Nh∑

k=1

‖∇v‖2
0,Ek

+ Jσ
0 (v, v)

)1/2

, ∀ v ∈ Dr(Eh).(2.7)

Aiming to study the strong solution u ∈ C2(Ω × [0, T ]), satisfying the regularity con-
ditions (1.8), of the problem (1.1)-(1.3), we proceed element by element as appears in
[23]. As a result, we obtain the following consistent weak formulation of the problem
(1.1)-(1.3):
Find u(t) ∈ Hs(Eh), s >

3
2
, such that

(ut, v) + Aǫ(u; u, v) = (f(u), v), ∀ v ∈ Hs(Eh),(2.8)

(u(0), v) = (ψ, v),(2.9)

where Aǫ(ρ; v, w) is bilinear in the last two terms:

(2.10)

Aǫ(ρ; v, w) =

Nh∑

j=1

∫

Ej

a(ρ)∇v · ∇wdx−

Ph∑

k=1

∫

ek

{a(ρ)∇v · nk}[w]ds

+ ǫ

Ph∑

k=1

∫

ek

{a(ρ)∇w · nk}[v]ds+ Jσ
0 (v, w), v, w ∈ Hs(Eh).

Here, the parameter ǫ in Aǫ may take the value −1, 0 or 1; see Remark 2.1.
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To discretize the problem (2.8), we first introduce the following notations. For any
smooth function φ : Ω × [0, T ] → R, we set

φn := φ(x, tn), tn = n△t ∀ 0 ≤ n ≤ N,(2.11)

where N is a positive integer and △t = T/N . Then for an arbitrary but fixed 0 ≤ θ ≤ 1,
we set

(2.12) φn
θ =

1 − θ

2
φn +

1 + θ

2
φn+1, 0 ≤ n ≤ N − 1.

To discrete (2.8), by (2.10)-(2.12), we use the discontinuous Galerkin method for the
spatial variable, and the θ−scheme for the time variable. Now the fully discrete IPDG
formulation is to seek a sequence {un

h}
N
n≥0 of functions in Dr(Eh) such that ∀n ≥ 0,

(un+1
h − un

h

△t
, v

)
+ Aǫ(u

n
h,θ; u

n
h,θ, v) = (f(un

h,θ), v), ∀ v ∈ Dr(Eh),(2.13)

u0
h = ũ0h,(2.14)

where ũ0h is a L2 projection of ψ onto Dr(Eh) and un
h,θ = 1−θ

2
un

h + 1+θ
2
un+1

h .

Remark 2.1. Note that for a fixed function ρ, Aǫ appearing in (2.10) is symmetric if
ǫ = −1, and is non-symmetric if ǫ = 0 or 1. Moreover, depending on the value of ǫ, the
discontinuous Galerkin method considered in (2.13) is referred to SIPG if ǫ = −1; NIPG
if ǫ = 1; or IIPG if ǫ = 0. For the choice of penalty parameters σk of these discontinuous
formulations, see Georgoulis and Süli [9], Rivière et al. [21], and the references therein.

Remark 2.2. If θ = 0, (2.13) yields the Crank-Nicolson discontinuous Galerkin approx-
imation; If θ = 1, (2.13) becomes the backward Euler discontinuous Galerkin approxima-
tion.

3. Some estimates of the IPDG schemes

In this section, we mainly state some approximation results in the space of polynomials
of degree r, which will be used later. And we denote by C a generic positive constant.

Lemma 3.1. Assume that u ∈ Hs(Ω), for s ≥ 2 and let r ≥ 2 and assume that ā is a
given positive constant. Then there exists an interpolant û ∈ Dr(Eh) of u satisfying that
(see [20])

∫

ek

{ā∇(û− u) · nk}ds = 0, ∀ k = 1, · · · , Ph,(3.1)

‖û− u‖∞,Ej
≤ C

hµ

rs−1
‖u‖s,Ej

, ∀Ej ∈ Eh,(3.2)

‖∇(û− u)‖0,Ej
≤ C

hµ−1

rs−1
‖u‖s,Ej

, ∀Ej ∈ Eh,(3.3)

‖∇2(û− u)‖0,Ej
≤ C

hµ−2

rs−2
‖u‖s,Ej

, ∀Ej ∈ Eh,(3.4)

‖û− u‖0,Ej
≤ C

hµ

rs−1
‖u‖s,Ej

, ∀Ej ∈ Eh,(3.5)

‖∇û‖∞,ek
≤ C‖∇u‖∞,Ei∪Ej

, for ek = ∂Ei ∩ ∂Ej ,(3.6)

where µ = min(r + 1, s) and C is independent of h, s and r.
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Lemma 3.2. For each Ek ∈ Eh, let ek be an edge of Ek and let nk be a unit vector normal
to ek. Then there exists a positive constant C depending only on τ and r (defined in (2.2)
and (2.4)) such that the following two trace inequalities are valid [1]:

‖v‖2
0,ek

≤ C(h−1
Ek
‖v‖2

0,Ek
+ hEk

‖∇v‖2
0,Ek

), ∀ v ∈ H1(Ek),(3.7)
∥∥∥∥
∂v

∂nk

∥∥∥∥
2

0,ek

≤ C(h−1
Ek
‖∇v‖2

0,Ek
+ hEk

‖∆v‖2
0,Ek

), ∀ v ∈ H2(Ek).(3.8)

Lemma 3.3. For each Ek ∈ Eh and v ∈ Pr(Ek), let ek be an edge of Ek and let nk be
a unit vector normal to ek. Then there exists a positive constant C depending only on r
and τ such that the following two local inverse inequalities hold [1]:

(3.9) ‖∇jv‖0,Ek
≤ Ch−j

Ek
‖v‖0,Ek

, ∀ 0 ≤ j ≤ r,

∥∥∥∥
∂v

∂nk

∥∥∥∥
0,ek

≤ Ch
− 1

2

Ek
‖∇v‖0,Ek

.

Squaring the second inequality (3.9), multiplying it by |ek| and summing for k = 1 to
Ph, we obtain

Lemma 3.4. There exists a positive constant CΩ,τ depending on Ω and τ such that

Ph∑

k=1

|ek|

∥∥∥∥
{
∂v

∂nk

}∥∥∥∥
2

0,ek

≤ CΩ,τ‖|∇v‖|
2
0, ∀ v ∈ H1(Eh).(3.10)

We define a new bilinear form:

Aǫ,λ(ρ; v, w) = Aǫ(ρ; v, w) + λ(v, w),

with a positive real number λ.

In [24], we note that Aǫ is coercive. If the positive constant δ is such that
K0

2CΩ,τ
> δ >

(1 − ǫ)2K2
1

4 mink{σk}
and the penalty parameters σk satisfy min

k
{σk} > CΩ,τ

(1 − ǫ)2K2
1

2K0
, then for

any v, ρ ∈ Dr(Eh),

Aǫ(ρ; v, v) ≥ α0

(
‖|∇v‖|20 +

Ph∑

k=1

|ek|

∥∥∥∥
{
∂v

∂nk

}∥∥∥∥
2

0,ek

+ Jσ
0 (v, v)

)
,(3.11)

where α0 = min
{

K0

2
, K0

2CΩ,τ
− δ, 1 −

(1−ǫ)2K2
1

4δ min{σk}

}
. Thus, if we consider an NIPG method

(ǫ = 1), then we can choose σk > 0 and α0 = min{K0, 1}. For the SIPG and IIPG

methods, the penalty parameters σk will be chosen sufficiently large, as the ratio
K2

1

K0
or

K2
1

δ
becomes extremely large. Based on the estimate (3.11) and the definition of Aǫ,λ,

Then we have the following lemma:

Lemma 3.5. Assume that K0

2CΩ,τ
> δ >

(1−ǫ)2K2
1

4min{σk}
and mink{σk} > CΩ,τ

(1−ǫ)2K2
1

2K0
, then there

exists a positive constant κ independent of h and r such that

Aǫ,λ(ρ; v, v) ≥ κ‖v‖2
DG, ∀ ρ, v ∈ Dr(Eh).(3.12)

Here one can choose κ = α0. The following lemma can be proven similarly as in [24].



8 L.J. SONG, G.M. GIE, AND M.C. SHIUE

Lemma 3.6. There exists a positive constant C independent of h and r such that

|Aǫ,λ(ρ; v, w)| ≤ C‖v‖DG‖w‖DG, ∀ ρ, v, w ∈ Dr(Eh).(3.13)

By Lemma 3.6, we notice that Aǫ is continuous: there exists a constant β0 > 0 such
that

Aǫ(ρ; v, u) ≤ β0‖v‖DG‖u‖DG, ∀ ρ, v, u ∈ Dr(Eh).(3.14)

The Aubin-Nitsche lift technique is well suited to the analysis of the DG method for
linear problems, since the SIPG scheme is symmetric. But for the nonlinear parabolic
equation, we will use the following projection and lemma as in [17]. Let u ∈ H2(Ω). The
Galerkin projection πhu ∈ Dr(Eh) of u is defined by requiring that

(3.15) A−1,λ(u; u, v) = A−1,λ(u; πhu, v), ∀ v ∈ Dr(Eh).

πhu is a function mapping from (0, T ) onto Dr(Eh) and its unique existence follows by
the Lax-Milgram Theorem. We denote

(πhu)t =
∂

∂t
(πhu),

and state the following estimates.

Lemma 3.7. For the SIPG scheme (ǫ = −1) and r, s ≥ 2, there exists a constant C
satisfying

‖u− πhu‖DG ≤C
hµ−1

rs−2
‖|u‖|s,(3.16)

‖|u− πhu‖|0 ≤C
hµ

rs−2
‖|u‖|s,(3.17)

‖ut − (πhu)t‖DG ≤C
hµ−1

rs−2
(‖|u‖|s + ‖|ut‖|s),(3.18)

‖|ut − (πhu)t‖|0 ≤C
hµ

rs−2
(‖|u‖|s + ‖|ut‖|s),(3.19)

where µ = min(r + 1, s).

A straightforward modification of the analysis of Theorem 4.1 in [17] yields the proof
of Lemma 3.7, and we omit the proof.

4. Existence of a fully discrete solution

The existence of the fully discrete IPDG formulation (2.13) is to find a sequence {un
h}

N
n=0

of functions in Dr(Eh). We need the following Lemma in [26] to show the existence of a
fully discrete solution un+1

h in (2.13).

Lemma 4.1. Let X be a finite dimensional Hilbert space with scalar product (·, ·) and
norm ⌈·⌉ and let P be a continuous mapping from X into itself such that

(P (ξ), ξ) > 0, for ⌈ξ⌉ = K > 0,(4.1)

then there exists ξ̄ ∈ X, ⌈ξ̄⌉ ≤ K such that P (ξ̄) = 0.
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Let M be the dimension of Dr(Eh) corresponding to the number of degrees of freedom

(DOF). We choose a basis {φi}
M
i=1 of Dr(Eh) made of polynomials φ

Ej

i with supp φ
Ej

i ⊂ Ej ,

Ej ∈ Eh, and degree of φ
Ej

i less than r, for 1 ≤ i ≤ M, 1 ≤ j ≤ Nh. Then, thanks to
Lemma 4.1, we state and prove the following existence result of a discrete solution un

h,
0 ≤ n ≤ N , of (2.13).

Theorem 4.1. Under the assumptions of Lemma 3.5, and if

△t <
1

2Lf

,(4.2)

then there exists a solution un+1
h ∈ Dr(Eh), 0 ≤ n ≤ N−1 of the parabolic equation (2.13)

in weak form.

Proof. We first observe that u0
h ∈ Dr(Eh) by the definition of u0

h in (2.14).
To complete the proof, we assume that there exists un

h ∈ Dr(Eh), 0 ≤ n ≤ l, solution of
the IPDG formulation (2.13). Then, to show the existence of un+1

h ∈ Dr(Eh), we consider

(2.13) with n = l. Aiming to find ul+1
h =

∑M
i=1 ξiφi, we set a mapping

P (ξ) = (P1(ξ), P2(ξ), · · · , PM(ξ)),(4.3)

where

ξ = (ξ1, ξ2, · · · , ξM)T ,

Pi(ξ) :=
(ul+1

h − ul
h

△t
, φi

)
+ Aǫ(u

l
h,θ; u

l
h,θ, φi) − (f(ul

h,θ), φi), 1 ≤ i ≤M.

We apply Lemma 4.1 with X = R
M which is equipped with the inner product (·, ·)

and the l2 norm | · |l2. Then we find

(P (ξ), ξ) =

M∑

i=1

Pi(ξ)ξi

=
(ul+1

h − ul
h

△t
, ul+1

h

)
+ Aǫ(u

l
h,θ; u

l
h,θ, u

l+1
h ) −

(
f(ul

h,θ), u
l+1
h

)

=
(ul+1

h − ul
h

△t
, ul+1

h

)
−

(
f
(1 − θ

2
ul

h +
1 + θ

2
ul+1

h

)
, ul+1

h

)

+ Aǫ

(1 − θ

2
ul

h +
1 + θ

2
ul+1

h ;
1 − θ

2
ul

h +
1 + θ

2
ul+1

h , ul+1
h

)
.

Assume that ‖ul
h‖DG is finite. The operator P is continuous and there remains to check

(4.1); for this purpose, we consider the scalar product (P (ξ), ξ). We have

(ul+1
h − ul

h

△t
, ul+1

h

)
=

1

2△t
(‖|ul+1

h ‖|20 − ‖|ul
h‖|

2
0 + ‖|ul+1

h − ul
h‖|

2
0),

and

Aǫ

(1 − θ

2
ul

h +
1 + θ

2
ul+1

h ;
1 − θ

2
ul

h +
1 + θ

2
ul+1

h , ul+1
h

)

=
1 − θ

2
Aǫ

(1 − θ

2
ul

h +
1 + θ

2
ul+1

h ; ul
h, u

l+1
h

)
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+
1 + θ

2
Aǫ

(1 − θ

2
ul

h +
1 + θ

2
ul+1

h ; ul+1
h , ul+1

h

)

≥ −
1 − θ

2
β0‖u

l
h‖DG‖u

l+1
h ‖DG +

1 + θ

2
α0‖u

l+1
h ‖2

DG

≥
1 + θ

2
α0‖u

l+1
h ‖2

DG −
1 − θ

4
α0‖u

l+1
h ‖2

DG −
1 − θ

4α0

β2
0‖u

l
h‖

2
DG

≥
1 + 3θ

4
α0‖u

l+1
h ‖2

DG −
1 − θ

4α0
β2

0‖u
l
h‖

2
DG,

where the first inequality is derived by the coercivity (3.11) and the continuity (3.14) and
the second inequality holds by the Cauchy-Schwarz inequality. We bound the third term

∣∣∣
(
f
(1 − θ

2
ul

h +
1 + θ

2
ul+1

h

)
, ul+1

h

)∣∣∣ =
∣∣∣
(
f
(ul

h + ul+1
h

2
+ θ

ul+1
h − ul

h

2

)
, ul+1

h

)∣∣∣

≤ Lf‖|
ul

h + ul+1
h

2
+ θ

ul+1
h − ul

h

2
‖|0‖|u

l+1
h ‖|0

≤
Lf

2
‖|ul+1

h ‖|20 +
Lf

8
‖|ul

h + ul+1
h + θ(ul

h − ul+1
h )‖|20

≤
Lf

2
‖|ul+1

h ‖|20 +
Lf

4
‖|ul

h + ul+1
h ‖|20 +

θ2Lf

4
‖|ul+1

h − ul
h‖|

2
0

≤ Lf‖|u
l+1
h ‖|20 +

Lf

2
‖|ul

h‖|
2
0 +

θ2Lf

4
‖|ul+1

h − ul
h‖|

2
0

≤ Lf‖|u
l+1
h ‖|20 + C2

0

Lf

2
‖ul

h‖
2
DG +

θ2Lf

4
‖|ul+1

h − ul
h‖|

2
0.

The last inequality is derived by a generalization of Poincaré inequality to the broken
Sobolev space H1(Eh) (see [23]). Then, we have

(P (ξ), ξ) ≥
1

2△t
(1 − 2Lf△t)‖|u

l+1
h ‖|20 +

1

2△t

(
1 −

θ2

2
Lf△t

)
‖|ul+1

h − ul
h‖|

2
0

+
1 + 3θ

4
α0‖u

l+1
h ‖2

DG −
(β2

0(1 − θ)

4α0
+
C2

0Lf

2
+

C2
0

2△t

)
‖ul

h‖
2
DG.

Therefore, using the assumption (4.2) gives

(P (ξ), ξ) ≥
1 + 3θ

4
α0‖u

l+1
h ‖2

DG −
(β2

0(1 − θ)

4α0
+
C2

0Lf

2
+

C2
0

2△t

)
‖ul

h‖
2
DG.(4.4)

We need to find a suitable ξ ∈ R
M to make the right hand side of (4.4) positive. To do

this, since ul+1
h =

∑M
i=1 ξiφi, we set

ξ = (ξ1, 0, 0, · · · , 0) ∈ R
M ,

and write

‖ul+1
h ‖DG = ‖ξ1φ1‖DG = |ξ1|‖φ1‖DG.

Then we choose ξ1 = K > 0 large enough so that

1 + 3θ

4
α0K

2 −
(β2

0(1 − θ)

4α0
+
C2

0Lf

2
+

C2
0

2△t

)
‖ul

h‖
2
DG > 0.



IMPLICIT IPDG METHODS FOR NONLINEAR PARABOLIC EQUATIONS 11

This shows that there exists a vector ξ ∈ R
M with |ξ|l2 = K > 0 such that (P (ξ), ξ) > 0.

By Lemma 4.1, this implies the existence of ul+1
h ∈ Dr(Eh), which completes the proof. �

5. Numerical stability of the fully discrete IPDG schemes

Now we prove a new stability result for these fully discrete IPDG schemes (2.13)-(2.14).

Theorem 5.1. Under the same assumptions of Lemma 3.5, and let the source term f
satisfy the conditions (1.5) and (1.7). If a time step △t satisfies that

△t <
1

2Lf

,(5.1)

then numerical solution of the fully discrete problem (2.13)-(2.14) is stable in the following
sense:

‖|un
h‖|

2
0 ≤ e4Lf T‖|u0

h‖|
2
0, ∀ 0 ≤ n ≤ N,(5.2)

△t
N−1∑

n=0

‖un
h,θ‖

2
DG ≤

1

2α0

e4Lf T‖|u0
h‖|

2
0, θ ∈ [0, 1].(5.3)

Proof. Taking v = un
h,θ in (2.13), we get

(un+1
h − un

h

△t
, un

h,θ

)
+ Aǫ(u

n
h,θ; u

n
h,θ, u

n
h,θ) = (f(un

h,θ), u
n
h,θ).(5.4)

We recall the following two identities:

2(a− b, a) = |a|2 − |b|2 + |a− b|2,

2(a− b, b) = |a|2 − |b|2 − |a− b|2.

Using the two identities, it is easily proved that
(un+1

h − un
h

△t
, un

h,θ

)
=

1

2△t

(
‖|un+1

h ‖|20 − ‖|un
h‖|

2
0 + θ‖|un+1

h − un
h‖|

2
0

)
.(5.5)

Using (5.5), (3.11) and the Cauchy-Schwarz inequality, we infer from (5.4) that

1

2△t

(
‖|un+1

h ‖|20 − ‖|un
h‖|

2
0 + θ‖|un+1

h − un
h‖|

2
0

)
+ α0‖u

n
h,θ‖

2
DG ≤ ‖|f(un

h,θ)‖|0‖|u
n
h,θ‖|0.

(5.6)

On the other hand, using (1.5) and (1.7), we estimate the right hand side of (5.6)

‖|f(un
h,θ)‖|0‖|u

n
h,θ‖|0 ≤ Lf‖|u

n
h,θ‖|

2
0(5.7)

≤ Lf‖|
1 + θ

2
un+1

h +
1 − θ

2
un

h‖|
2
0

≤
Lf

4
‖|(un+1

h + un
h) + θ(un+1

h − un
h)‖|

2
0

≤
Lf

2
‖|un+1

h + un
h‖|

2
0 +

θ2

2
Lf‖|u

n+1
h − un

h‖|
2
0

≤ Lf‖|u
n+1
h ‖|20 + Lf‖|u

n
h‖|

2
0 +

θ2

2
Lf‖|u

n+1
h − un

h‖|
2
0.
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Combining (5.6) and (5.7), after multiplying by 2△t on both sides, we find

(5.8)
(1 − 2Lf△t)‖|u

n+1
h ‖|20 + θ(1 − θLf△t)‖|u

n+1
h − un

h‖|
2
0 + 2α0△t‖u

n
h,θ‖

2
DG

≤ (1 + 2Lf△t)‖|u
n
h‖|

2
0,

Due to the assumption that △t < 1
2Lf

, the above inequality (5.8) can be rewritten in the

form:

‖|un+1
h ‖|20 + A‖|un+1

h − un
h‖|

2
0 +B‖un

h,θ‖
2
DG ≤ D‖|un

h‖|
2
0,(5.9)

where

A =
θ(1 − θLf△t)

1 − 2Lf△t
> 0, B =

2α0△t

1 − 2Lf△t
> 0, D =

1 + 2Lf△t

1 − 2Lf△t
> 0.

Multiplying (5.9) by D−n and summing on n from n = 0 to m− 1 for all 0 ≤ m ≤ N , we
get

D−(m−1)‖|um
h ‖|

2
0 +

m−1∑

n=0

AD−n‖|un+1
h − un

h‖|
2
0 +

m−1∑

n=0

BD−n‖un
h,θ‖

2
DG ≤ D‖|u0

h‖|
2
0.(5.10)

Since D > 1, (5.10) gives that

‖|um
h ‖|

2
0 +

m−1∑

n=0

A‖|un+1
h − un

h‖|
2
0 +

m−1∑

n=0

B‖un
h,θ‖

2
DG ≤ DN‖|u0

h‖|
2
0, ∀ 1 ≤ m ≤ N.(5.11)

Due to the fact that 1+v
1−v

≤ e2v, ∀ 0 < v < 1, we observe that

DN‖|u0
h‖|

2
0 ≤ e4Lf N△t‖|u0

h‖|
2
0 ≤ e4Lf T‖|u0

h‖|
2
0.(5.12)

Combining (5.11) and (5.12), we find that

‖|um
h ‖|

2
0 ≤ e4Lf T‖|u0

h‖|
2
0, ∀ 1 ≤ m ≤ N,(5.13)

m−1∑

n=0

B‖un
h,θ‖

2
DG ≤ e4Lf T‖|u0

h‖|
2
0, ∀ 1 ≤ m ≤ N.(5.14)

The above second inequality follows

△t

N−1∑

n=0

‖un
h,θ‖

2
DG ≤

1

2α0
(1 − 2Lf△t)e

4Lf T‖|u0
h‖|

2
0 ≤

1

2α0
e4Lf T‖|u0

h‖|
2
0,

which concludes the theorem. �

Remark 5.1. Under the same condition as that in the existence Theorem 4.1, we have
proved numerical stability for the fully discrete implicit IPDG methods. Also, the anal-
ogous proof can be given for a fully discrete explicit IPDG scheme. If the source term
f = f(x, u) is locally Lipschitz continuous in its argument u as in [15], one can give a
similar numerical stability.



IMPLICIT IPDG METHODS FOR NONLINEAR PARABOLIC EQUATIONS 13

6. Error estimates of the fully discrete SIPG scheme

In this section, we restrict our attention to the SIPG case. Choosing ǫ = −1 in (2.13)
and no constraints on grid sizes and time steps required, we will show an error estimate
of the implicit time stepping SIPG method, while the time derivative is discretized in
time by the θ scheme.

Define the fully discrete l∞(L2) and l2(H1) norms

‖|vh‖|l∞(L2) = max
j=0,··· ,N

‖|vj
h‖|0, ‖|vh‖|l2(H1) =

( N−1∑

j=0

‖|∇vj
h‖|

2
0

)1/2

.(6.1)

Using the notation (2.12), we set

tjθ =
1 − θ

2
tj +

1 + θ

2
tj+1, 0 ≤ θ ≤ 1, 0 ≤ j ≤ N − 1.(6.2)

Then, we first give the following lemmas.

Lemma 6.1. For a sufficiently regular u = u(x, t), we consider πhu
j ∈ Dr(Eh) where

πhu
j = πhu(tj), 0 ≤ j ≤ N . Then we have

πhu
j+1 − πhu

j

△t
= (πhu)t(t

j
θ) + △tρj,θ, 0 ≤ j ≤ N − 1, ∀x ∈ Ω,(6.3)

where for t∗ ∈ (tjθ, tj+1), t
∗∗ ∈ (tj , t

j
θ),

ρj,θ =
1

2

((1 − θ

2

)2

−
(1 + θ

2

)2)
(πhu)tt(t

j
θ) +

1

6

(1 − θ

2

)3

△t(πhu)ttt(t
∗)

+
1

6

(1 + θ

2

)3

△t(πhu)ttt(t
∗∗),

and for s ≥ 2,

‖|ρj,θ‖|0 ≤ C1‖|utt‖|L∞(tj ,tj+1;Hs).

In the case θ = 0, we also have

‖|ρj,θ‖|0 ≤ C2△t‖|uttt‖|L∞(tj ,tj+1;Hs), s ≥ 2,

where C1 and C2 are two constants independent of u, πhu, △t and h.

Proof. By applying the Taylor expansion to πhu at t = tjθ, (6.3) easily follows. More
results can be found similarly in [22]. �

Lemma 6.2. For any edge ek of Fh and any element Ek of Eh, ∇πhu in the L∞ norm
is bounded by a positive constant C depending on u and independent of h, △t, r, and s,
i.e.,

‖∇πhu(t)‖∞,ek
< C, ∀ t ∈ [0, T ],(6.4)

‖∇πhu(t)‖∞,Ek
< C, ∀ t ∈ [0, T ].(6.5)
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Proof. We consider a given edge ek = ∂Em ∩ ∂En and Emn = Em ∪En, then we have
by using Lemmas 3.1-3.3

(6.6)

‖∇πhu‖∞,ek

≤ ‖∇û‖∞,ek
+ ‖∇(πhu− û)‖∞,ek

≤ C‖∇u‖∞,Emn
+ Ch−

1

2‖∇(πhu− û)‖0,ek

≤ C‖∇u‖∞,Emn
+ Ch−

1

2

(
h−

1

2‖∇(πhu− û)‖0,Emn
+ h

1

2‖∇2(πhu− û)‖0,Emn

)

≤ C‖∇u‖∞,Emn
+ Ch−1‖∇(πhu− û)‖0,Emn

≤ C‖∇u‖∞,Emn
+
c

h
(‖∇(u− πhu)‖0,Emn

+ ‖∇(u− û)‖0,Emn
)

≤ C‖∇u‖∞,Emn
+
c

h
(‖|∇(u− πhu)‖|0 + ‖|∇(u− û)‖|0)

≤ C‖∇u‖∞,Emn
+ C

hµ−2

rs−2
‖|u‖|s

<∞,

which leads to (6.4).
For u ∈ H2(Ω), one can bound

‖∇πhu‖∞,Ek
≤ ‖∇πhu−∇u‖∞,Ek

+ ‖∇u‖∞,Ek

≤ C(meas(Ek))
− 1

2‖∇πhu−∇u‖0,Ek
+ ‖∇u‖∞,Ek

≤ C
hµ−2

rs−2
‖|u‖|s + ‖∇u‖∞

< C.

Consequently, (6.5) is proven. �

We now state a priori l∞(L2) and l2(H1) error estimates, which is optimal, for the finite
element system (2.13) given by the fully discrete implicit time-stepping discontinuous
Galerkin method. Note that our result below is a generation of Theorem 4.2 in [17],
which is not involved in any time discretization. However, as appears in A, the main idea
in [1, 17] can be adapted in our current situation.

Theorem 6.1. Let the solution u of the nonlinear parabolic equation (1.1)-(1.3) satisfy
the regularity properties

∇u ∈ L∞(Ω × (0, T )), and u, ut ∈ L∞(0, T ;Hs(Ω)), s ≥ 2.

In addition, we assume that for θ ∈ (0, 1],

∂2u

∂t2
∈ L∞(0, T ;Hs(Ω)),

and in the case θ = 0,

∂3u

∂t3
∈ L∞(0, T ;Hs(Ω)).

Moreover, we assume that the initial condition u0
h(x, 0) = ũ0h ∈ Dr(Eh) satisfies

‖|u0
h − πhu

0‖|0 ≤ C
hµ

rs−2
‖|ψ‖|s, µ = min(r + 1, s).(6.7)
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Under the same assumptions of Theorem 4.1, then {uj
h}

N
j=1 the numerical solution of the

fully-discrete time SIPG scheme (ǫ = −1) in (2.13) satisfies

(6.8)

‖|uh − u‖|2l∞(L2) + h2△t‖|uh − u‖|2l2(H1)

≤C
h2µ

r2s−4

(
‖|ψ‖|2s + △t

N∑

j=0

(
‖|u(tj)‖|

2
s + ‖|ut(tj)‖|

2
s

))

+ △t2
N−1∑

j=0

△t‖|utt‖|
2
L∞(tj ,tj+1;Hs), 0 < θ ≤ 1,

and

(6.9)

‖|uh − u‖|2l∞(L2) + h2△t‖|uh − u‖|2l2(H1)

≤C
h2µ

r2s−4

(
‖|ψ‖|2s + △t

N∑

j=0

(
‖|u(tj)‖|

2
s + ‖|ut(tj)‖|

2
s

))

+ △t3
N−1∑

j=0

△t‖|uttt‖|
2
L∞(tj ,tj+1;Hs), θ = 0,

where µ = min(r+1, s), r ≥ 2 and C is depending on u and independent of h, r and △t.

Remark 6.1. We conclude that in the case 0 < θ ≤ 1, the error is O( h2µ

r2s−4 +△t2), so as

to get an optimal convergence order, we need the restriction △t2 = O( h2µ

r2s−4 ). The similar

restriction △t3 = O( h2µ

r2s−4 ) appears to the other case θ = 0. Due to µ > 1, so we can
choose the case △t ≤ Ch2 numerically.

Remark 6.2. For the fully implicit SIPG schemes, in addition to the regularity setting
(1.8), Theorem 6.1 requires the solution u satisfying utt ∈ L∞(0, T ;Hs(Ω)) and uttt ∈
L∞(0, T ;Hs(Ω)) corresponding to the cases of 0 < θ ≤ 1 and θ = 0, respectively, to assure
the temporal accuracy. Compared to the fully implicit SIPG schemes, in the interior of
each element, the fully explicit SIPG scheme in [24] only requires a less smooth solution
satisfying u ∈ L2(0, T ;Hs(Ω)), ut ∈ L2(0, T ;Hs−1(Ω)) and utt ∈ L∞(0, T ;H1(Ω)). It
appears that the fully implicit schemes need more regularity assumptions in time than the
fully explicit one.

7. Numerical results

In this section we present some numerical experiments to illustrate the performance of
our fully discrete SIPG methods for nonlinear parabolic equations. We will also show the
performance of Euler backward and Crank-Nicolson schemes in the time discretization.

We consider the following nonlinear equation on the domain Ω = (0, 1)2

ut −∇ · (u2∇u) = f(x, u), in Ω × (0, T ).(7.1)

The exact solution is given by u = (2+cos(πx) cos(πy))exp(−t). The initial and boundary
conditions and the right-hand side function f can be obtained by using the exact solution.
The final time T = 1 is taken and the penalty parameter σk is uniformly defined by
σk = 20(r + 1)2 on each edge.
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The error of the solution is evaluated over the domain Ω in the L2(0, T ;H1(Ω)) semi-
norm

‖error‖2
L2(H1) = △t‖|uh − u‖|2l2(H1).

We use the SIPG method in various quasi-uniform meshes for spatial discretization
respectively, and the backward Euler and Crank-Nicolson methods for time integration
with a uniform time step △t. We compute the errors corresponding to the exact solution
u(x; t) in the l∞(L2) and L2(0, T ;H1(Ω)) norms. Tables 1-3 demonstrate the errors and
order of convergence of the fully discrete schemes, which confirm optimality as shown in
Theorem 6.1. Table 3 shows that convergence order of the numerical solution decreases
in the l∞(L2) norm and almost keeps invariant in the L2(0, T ;H1(Ω)) norm, while θ
increases from 0 to 1. Figure 1 illustrates that the isolines of the numerical solutions do
not have spurious overshoots as the polynomial degree increases.

Table 1. Convergence order of the SIPG method (2.13) with Crank-Nicolson
discretization in time. Here the mesh size is h = 0.288 and the time step is

△t = 0.0001.

‖error‖l∞(L2) ‖error‖L2(H1)

h h
2

order h h
2

order
r = 1 5.78E − 02 1.12E − 02 2.37 3.62E − 01 1.13E − 01 1.68
r = 2 3.43E − 03 1.92E − 04 4.16 5.19E − 02 1.31E − 02 1.98
r = 3 3.40E − 04 2.53E − 05 3.75 1.79E − 02 2.13E − 03 3.07
r = 4 3.89E − 05 1.28E − 06 4.92 3.67E − 03 1.78E − 04 4.37

Table 2. Convergence order of the SIPG method (2.13) with Euler backward
discretization in time. Here the mesh size is h = 0.288 and the time step is

△t = 0.0001.

‖error‖l∞(L2) ‖error‖L2(H1)

h h
2

order h h
2

order
r = 1 5.79E − 02 1.12E − 02 2.37 3.62E − 01 1.13E − 01 1.68
r = 2 3.45E − 03 2.01E − 04 4.10 5.19E − 02 1.31E − 02 1.98
r = 3 3.34E − 04 6.91E − 05 2.27 1.79E − 02 2.13E − 03 3.07
r = 4 7.02E − 05 3.32E − 06 4.40 3.67E − 03 1.76E − 04 4.38

To weaken the condition of a(u), we consider another analytic solution u =
sin(πx) sin(πy) exp(−t), which satisfies the Neumann boundary condition, but does not
satisfy the condition a(u) > 0 on the boundary. From Tables 4-6, we observe that these
IPDG schemes are convergent and confirm the effectiveness of the fully discrete schemes.
Table 6 shows that convergence order of the numerical solution decreases in the l∞(L2)
norm and almost keeps invariant in the L2(0, T ;H1(Ω)) norm, while θ increases from 0 to
1. In Figure 2, the approximate solutions do not have spurious overshoots in P 1 element
and appear more smooth on the boundary with increasing polynomial degree r.
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Table 3. Convergence order of the SIPG method (2.13) with θ schemes in
time for second order polynomial approximation (r = 2). Here the mesh size is
h = 0.288 and the time step is △t = 0.01.

‖error‖l∞(L2) ‖error‖L2(H1)

h h
2

order h h
2

order
θ = 0 3.40E − 03 1.91E − 04 4.15 5.17E − 02 1.31E − 02 1.98
θ = 0.1 3.43E − 03 2.02E − 04 4.09 5.17E − 02 1.31E − 02 1.98
θ = 0.2 3.45E − 03 2.42E − 04 3.83 5.18E − 02 1.31E − 02 1.98
θ = 0.3 3.47E − 03 3.00E − 04 3.53 5.18E − 02 1.31E − 02 1.98
θ = 0.4 3.50E − 03 3.66E − 04 3.26 5.18E − 02 1.31E − 02 1.98
θ = 0.5 3.52E − 03 4.37E − 04 3.01 5.18E − 02 1.31E − 02 1.98
θ = 0.6 3.55E − 03 5.09E − 04 2.80 5.19E − 02 1.31E − 02 1.99
θ = 0.7 3.58E − 03 5.83E − 04 2.62 5.19E − 02 1.31E − 02 1.99
θ = 0.8 3.61E − 03 6.58E − 04 2.46 5.19E − 02 1.31E − 02 1.99
θ = 0.9 3.64E − 03 7.34E − 04 2.31 5.20E − 02 1.31E − 02 1.99
θ = 1 3.67E − 03 8.10E − 04 2.18 5.20E − 02 1.31E − 02 1.99
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Figure 1. Isolines of the numerical solutions for P 1(top left), P 2(top right),
P 3(bottom left) and P 4(bottom right) elements on the mesh, SIPG formulation
with Crank-Nicolson time discretization.
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Table 4. Convergence order of the SIPG method (2.13) with Crank-Nicolson
discretization in time. Here the mesh size is h = 0.288 and the time step is

△t = 0.001.

‖error‖l∞(L2) ‖error‖L2(H1)

h h
2

order h h
2

order
r = 1 4.55E − 02 1.03E − 02 2.14 3.44E − 01 1.31E − 01 1.39
r = 2 6.91E − 03 6.50E − 04 3.41 1.24E − 01 2.41E − 02 2.36
r = 3 2.56E − 03 1.77E − 04 5.32 7.91E − 02 1.22E − 02 2.70
r = 4 4.78E − 04 1.31E − 05 5.19 2.78E − 02 1.61E − 03 4.11

Table 5. Convergence order of the SIPG method (2.13) with Euler backward
discretization in time. Here the mesh size is h = 0.288 and the time step is

△t = 0.001.

‖error‖l∞(L2) ‖error‖L2(H1)

h h
2

order h h
2

order
r = 1 4.55E − 02 1.03E − 02 2.14 3.45E − 01 1.32E − 01 1.39
r = 2 6.86E − 03 6.45E − 04 3.41 1.24E − 01 2.43E − 02 2.35
r = 3 2.56E − 03 1.88E − 04 3.77 7.89E − 02 1.23E − 02 2.68
r = 4 4.94E − 04 1.76E − 05 4.81 2.80E − 02 1.61E − 03 4.12

Table 6. Convergence order of the SIPG method (2.13) with θ schemes in
time for second order polynomial approximation (r = 2). Here the mesh size is
h = 0.288 and the time step is △t = 0.01.

‖error‖l∞(L2) ‖error‖L2(H1)

h h
2

order h h
2

order
θ = 0 6.72E − 03 6.53E − 04 3.36 1.21E − 01 2.37E − 02 2.35
θ = 0.1 6.67E − 03 6.49E − 04 3.36 1.21E − 01 2.38E − 02 2.35
θ = 0.2 6.62E − 03 6.56E − 04 3.34 1.21E − 01 2.38E − 02 2.35
θ = 0.3 6.58E − 03 6.90E − 04 3.25 1.22E − 01 2.39E − 02 2.35
θ = 0.4 6.53E − 03 7.76E − 04 3.07 1.22E − 01 2.39E − 02 2.35
θ = 0.5 6.49E − 03 8.95E − 04 2.86 1.22E − 01 2.40E − 02 2.35
θ = 0.6 6.45E − 03 1.03E − 03 2.65 1.23E − 01 2.40E − 02 2.35
θ = 0.7 6.42E − 03 1.17E − 03 2.46 1.23E − 01 2.41E − 02 2.35
θ = 0.8 6.38E − 03 1.31E − 03 2.28 1.23E − 01 2.42E − 02 2.35
θ = 0.9 6.34E − 03 1.46E − 03 2.12 1.23E − 01 2.42E − 02 2.35
θ = 1 6.31E − 03 1.61E − 03 1.97 1.24E − 01 2.43E − 02 2.34

8. Conclusions

We have analyzed the fully discrete IPDG method with a class of implicit θ schemes in
time for a class of nonlinear parabolic equations in 1D or 2D. The existence of numerical
solutions and the numerical stability of these fully discrete IPDG schemes are proven and
they have the same restricted condition in time step. It is interesting that the stability
condition is not associated with the mesh size. Using a nonlinear elliptic projection
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Figure 2. Isolines of the numerical solutions for P 1(top left), P 2(top right),
P 3(bottom left) and P 4(bottom right) elements on the mesh, SIPG formulation
with Crank-Nicolson time discretization.

and the interpolant approximation for the SIPG scheme, we have proved a priori error
estimates in the discrete l2(H1) semi-norm and in the l∞(L2) norm, which are optimal in
h. The numerical results have confirmed the presented theory. The approximation spaces
are considered on a quasi-uniform triangular mesh, but our results can be extended to
quadrilateral meshes. Analogously, error estimates and stability analysis can also be
carried out in 3D.

Appendix A. Proof of Theorem 6.1

Proof. To this end, we proceed in the following steps.
Step 1 (representation of an identity for πhu

j − uj
h).

For n = j, we write (2.13) in an equivalent form

(uj+1
h − uj

h

△t
, v

)
+ A−1,λ(u

j
h,θ; u

j
h,θ, v) = (f(uj

h,θ), v) + λ(uj
h,θ, v), ∀ v ∈ Dr(Eh).(A.1)
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At t = tjθ, defined by (6.2), we notice that the exact solution u(tjθ) satisfies that ∀ v ∈
Dr(Eh),

(A.2)
(∂u(tjθ)

∂t
, v

)
+ A−1,λ(u(t

j
θ); u(t

j
θ), v) = (f(u(tjθ)), v) + λ(u(tjθ), v).

Subtracting (A.1) from (A.2), we find

(A.3)

(∂u(tjθ)
∂t

, v
)

+ A−1,λ(u(t
j
θ); u(t

j
θ), v) − A−1,λ(u

j
h,θ; u

j
h,θ, v) −

(uj+1
h − uj

h

△t
, v

)

= (f(u(tjθ)) − f(uj
h,θ), v) + λ(u(tjθ) − uj

h,θ, v), ∀ v ∈ Dr(Eh).

By taking û ∈ Dr(Eh) as an interpolant of u, which satisfies Lemma 3.1, we define

ηj
θ = u(tjθ) − πhu(t

j
θ), βj

θ = πhu(t
j
θ) − ûj

θ, ξj
θ = πhu(t

j
θ) − uj

h,θ.

We also write ξj = πhu
j − uj

h. Then, it follows from (A.3)

(A.4)

(ξj+1 − ξj

△t
, v

)
+ A−1,λ(u

j
h,θ; ξ

j
θ, v)

=(
πhu

j+1 − πhu
j

△t
− ut(t

j
θ), v) + A−1,λ(u

j
h,θ; πhu(t

j
θ), v) −A−1,λ(u(t

j
θ); u(t

j
θ), v)

+ (f(u(tjθ)) − f(uj
h,θ), v) + λ(u(tjθ) − uj

h,θ, v).

Thanks to Lemma 6.1, it is easy to see that

(A.5)
πhu

j+1 − πhu
j

△t
− ut(t

j
θ) = (πhu)t(t

j
θ) − ut(t

j
θ) + △tρj,θ = −(ηt)

j
θ + △tρj,θ.

Moreover, using (3.15) and the identity that A−1,λ(u(t
j
θ); η

j
θ, v) = 0, we get

(A.6)

A−1,λ(u
j
h,θ; πhu(t

j
θ), v) − A−1,λ(u(t

j
θ); u(t

j
θ), v)

=

Nh∑

k=1

∫

Ek

(a(uj
h,θ) − a(u(tjθ)))∇πhu(t

j
θ)∇v dx

−

Ph∑

k=1

∫

ek

{
(a(uj

h,θ) − a(u(tjθ)))∇πhu(t
j
θ) · nk

}
[v] ds

−

Ph∑

k=1

∫

ek

{
(a(uj

h,θ) − a(u(tjθ)))∇v · nk

}
[πhu(t

j
θ)] ds.
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Substituting (A.5) and (A.6) into (A.4), and taking v = ξj
θ, we obtain

(A.7)

(ξj+1 − ξj

△t
, ξj

θ

)
+ A−1,λ(u

j
h,θ; ξ

j
θ, ξ

j
θ)

=
(
−(ηt)

j
θ, ξ

j
θ

)
+

Nh∑

k=1

∫

Ek

(a(uj
h,θ) − a(u(tjθ)))∇πhu(t

j
θ)∇ξ

j
θdx

−

Ph∑

k=1

∫

ek

{
(a(uj

h,θ) − a(u(tjθ)))∇πhu(t
j
θ) · nk

}
[ξj

θ]ds

−

Ph∑

k=1

∫

ek

{
(a(uj

h,θ) − a(u(tjθ)))∇ξ
j
θ · nk

}
[πhu(t

j
θ)]ds

+ (f(u(tjθ)) − f(uj
h,θ), ξ

j
θ) + λ(u(tjθ) − uj

h,θ, ξ
j
θ) + △t(ρj,θ, ξ

j
θ)

≡ I1 + I2 + I3 + I4 + I5 + I6 + I7.

Step 2 (estimates on Ii, 1 ≤ i ≤ 7). Now we derive the bounds for each Ii, 1 ≤ i ≤ 7.
We bound the first term I1 by the Cauchy-Schwarz inequality

(A.8)
|I1| =

∣∣(−(ηt)
j
θ, ξ

j
θ

)∣∣ ≤ ‖|(ηt)
j
θ‖|0‖|ξ

j
θ‖|0

≤ C
(
‖|(ηt)

j
θ‖|

2
0 + ‖|ξj

θ‖|
2
0

)
.

Using (6.5), we estimate the term I2:

(A.9)

|I2| ≤ C

Nh∑

k=1

∫

Ek

|uj
h,θ − u(tjθ)||∇πhu(t

j
θ) · ∇ξ

j
θ|dx

≤ C‖∇πhu(t
j
θ)‖∞,Eh

Nh∑

k=1

(
‖ηj

θ‖0,Ek
+ ‖ξj

θ‖0,Ek

)
‖∇ξj

θ‖0,Ek

≤ C
(
‖|ηj

θ‖|
2
0 + ‖|ξj

θ‖|
2
0

)
+ α‖|∇ξj

θ‖|
2
0.

To deal with I3, we consider a given edge ek = ∂Em ∩ ∂En and Emn = Em ∪ En. Then
using (1.4) and (6.4), we first notice that

(A.10)

∣∣∣∣
∫

ek

{
(a(uj

h,θ) − a(u(tjθ)))∇πhu(t
j
θ) · nk

}
[ξj

θ]ds

∣∣∣∣

≤ C‖∇πhu(t
j
θ)‖∞,ek

‖{u(tjθ) − uj
h,θ}‖0,ek

‖[ξj
θ]‖0,ek

≤ C
(
‖{ηj

θ}‖0,ek
+ ‖{ξj

θ}‖0,ek

)
‖[ξj

θ]‖0,ek

≤ α
σk

|ek|
‖[ξj

θ]‖
2
0,ek

+ C
(
‖ηj

θ‖
2
0,Emn

+ h2‖∇ηj
θ‖

2
0,Emn

+ ‖ξj
θ‖

2
0,Emn

)
,



22 L.J. SONG, G.M. GIE, AND M.C. SHIUE

and hence, a bound of the third term I3 follows:

(A.11)

|I3| =

∣∣∣∣∣

Ph∑

k=1

∫

ek

{
(a(uj

h,θ) − a(u(tjθ)))∇πhu(t
j
θ) · nk

}
[ξj

θ]ds

∣∣∣∣∣

≤ αJσ
0 (ξj

θ, ξ
j
θ) + C

Nh∑

k=1

(‖ηj
θ‖

2
0,Emn

+ h2‖∇ηj
θ‖

2
0,Emn

+ ‖ξj
θ‖

2
0,Emn

)

≤ α‖ξj
θ‖

2
DG + C(‖|ηj

θ‖|
2
0 + h2‖|∇ηj

θ‖|
2
0 + ‖|ξj

θ‖|
2
0).

To estimate I4, we observe that

(A.12)

∣∣∣∣
∫

ek

{
(a(uj

h,θ) − a(u(tjθ)))∇ξ
j
θ · nk

}
[ηj

θ]ds

∣∣∣∣

≤C‖∇ξj
θ‖∞,ek

‖{uj
h,θ − u(tjθ)}‖0,ek

‖[ηj
θ]‖0,ek

≤Ch−
1

2‖∇ξj
θ‖0,ek

(
‖{ηj

θ}‖0,ek
+ ‖{ξj

θ}‖0,ek

) (
h−

1

2‖ηj
θ‖0,Emn

+ h
1

2‖∇ηj
θ‖0,Emn

)

≤Ch−1‖∇ξj
θ‖0,ek

(
h−

1

2‖ηj
θ‖0,Emn

+ h
1

2‖∇ηj
θ‖0,Emn

+ h−
1

2‖ξj
θ‖0,Emn

)

×
(
‖ηj

θ‖0,Emn
+ h‖∇ηj

θ‖0,Emn

)

≤Ch−
3

2‖∇ξj
θ‖0,ek

(
‖ηj

θ‖0,Emn
+ h‖∇ηj

θ‖0,Emn
+ ‖ξj

θ‖0,Emn

)

×
(
‖|ηj

θ‖|0 + h‖|∇ηj
θ‖|0

)

≤Ch−2‖∇ξj
θ‖0,Emn

(
‖ηj

θ‖0,Emn
+ h‖∇ηj

θ‖0,Emn
+ ‖ξj

θ‖0,Emn

)
h2‖|u(tjθ)‖|2

≤C‖∇ξj
θ‖0,Emn

(
‖ηj

θ‖0,Emn
+ h‖∇ηj

θ‖0,Emn
+ ‖ξj

θ‖0,Emn

)
,

and thus, we get the bound of the fourth term I4

(A.13)
|I4| =

∣∣∣∣∣

Ph∑

k=1

∫

ek

{
(a(uj

h,θ) − a(u(tjθ)))∇ξ
j
θ · nk

}
[ηj

θ]ds

∣∣∣∣∣

≤α‖ξj
θ‖

2
DG + C

(
‖ηj

θ‖
2
0 + h2‖∇ηj

θ‖
2
0 + ‖ξj

θ‖
2
0

)
.

The terms I5, I6, I7 are easy to estimate:

(A.14)
|I5| =

∣∣(f(u(tjθ)) − f(uj
h,θ), ξ

j
θ)

∣∣

≤C‖|u(tjθ) − uj
h,θ‖|0‖|ξ

j
θ‖|0 ≤ C

(
‖|ηj

θ‖|
2
0 + ‖|ξj

θ‖|
2
0

)
.

(A.15)
|I6| =

∣∣λ(u(tjθ) − uj
h,θ, ξ

j
θ)

∣∣

≤C‖|u(tjθ) − uj
h,θ‖|0‖|ξ

j
θ‖|0 ≤ C

(
‖|ηj

θ‖|
2
0 + ‖|ξj

θ‖|
2
0

)
.

(A.16) |I7| =
∣∣△t(ρj,θ, ξ

j
θ)

∣∣ ≤ C
(
△t2‖|ρj,θ‖|

2
0 + ‖|ξj

θ‖|
2
0

)
.

Step 3 (summing up). To make the estimates on Ii, 1 ≤ i ≤ 7 useful, we first notice
the following inequality holds true:

1

2△t

(
‖|ξj+1‖|20 − ‖|ξj‖|20

)
≤

(ξj+1 − ξj

△t
, ξj

θ

)
.
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Then, using the bounds of I1, I2, · · · , I7 and the coercivity (3.12) of A−1,λ, we obtain
from (A.7)

(A.17)

1

2△t

(
‖|ξj+1‖|20 − ‖|ξj‖|20

)
+ κ‖ξj

θ‖
2
DG

≤C
(
‖|(ηt)

j
θ‖|

2
0 + ‖|ξj

θ‖|
2
0 + ‖|ηj

θ‖|
2
0 + h2‖|∇ηj

θ‖|
2
0 + △t2‖|ρj,θ‖|

2
0

)

+ α
(
‖|∇ξj

θ‖|
2
0 + ‖|ξj

θ‖|
2
0 + ‖ξj

θ‖
2
DG

)
.

By using the definition of ‖ · ‖DG, we infer from (A.17) that

(A.18)

1

2△t

(
‖|ξj+1‖|20 − ‖|ξj‖|20

)
+
κ

2
‖ξj

θ‖
2
DG

≤C
(
‖|(ηt)

j
θ‖|

2
0 + ‖|ξj

θ‖|
2
0 + ‖|ηj

θ‖|
2
0 + h2‖|∇ηj

θ‖|
2
0 + △t2‖|ρj,θ‖|

2
0

)
,

for a sufficiently small α.
Multiplying (A.18) by 2△t and summing up for j = 0, · · · , m − 1, ∀ 1 ≤ m ≤ N , we

find

(A.19)

‖|ξm‖|20 − ‖|ξ0‖|20 + △tκ

m−1∑

j=0

‖|∇ξj
θ‖|

2
0

≤ C△t

m∑

j=0

‖|ξj‖|20 + C△t

m−1∑

j=0

(
‖|(ηt)

j
θ‖|

2
0 + ‖|ηj‖|20 + h2‖|∇ηj‖|20

)

+ C△t3
m−1∑

j=0

‖|ρj,θ‖|
2
0, ∀ 1 ≤ m ≤ N.

By discrete Gronwall’s lemma, we find that, for sufficiently small △t,

(A.20)

‖|ξm‖|20 + C△t
m−1∑

j=0

‖|∇ξj
θ‖|

2
0

≤C‖|ξ0‖|20 + C△t
m−1∑

j=0

(
‖|(ηt)

j
θ‖|

2
0 + ‖|ηj‖|20 + h2‖|∇ηj‖|20

)

+ C△t3
m−1∑

j=0

‖|ρj,θ‖|
2
0.

Under the assumption (6.7), we obtain, for θ ∈ (0, 1], that

(A.21)

‖|ξm‖|20 + C△t
m−1∑

j=0

‖|∇ξj
θ‖|

2
0

≤C
h2µ

r2s−4
‖|ψ‖|2s + C

h2µ

r2s−4
△t

m∑

j=0

(
‖|u(tj)‖|

2
s + ‖|ut(tj)‖|

2
s

)

+ C△t2
m−1∑

j=0

△t‖|utt‖|
2
L∞(tj ,tj+1;Hs), ∀ 1 ≤ m ≤ N,
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and, in the case θ = 0,

(A.22)

‖|ξm‖|20 + C△t

m−1∑

j=0

‖|∇ξj
θ‖|

2
0

≤C
h2µ

r2s−4
‖|ψ‖|2s + C

h2µ

r2s−4
△t

m∑

j=0

(
‖|u(tj)‖|

2
s + ‖|ut(tj)‖|

2
s

)

+ C△t3
m−1∑

j=0

△t‖|uttt‖|
2
L∞(tj ,tj+1;Hs), ∀ 1 ≤ m ≤ N.

Inequalities (A.21) and (A.22) conclude the proof with the use of Lemma 3.7. �
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