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Abstract

In this paper, existence and multiplicity results to the following nonlinear

elliptic equation

−∆pu = λ|u|q−2u + |u|p∗−2u, u > 0 in Ω ⊂ RN ,

together with mixed Dirichlet-Neumann or Neumann boundary conditions,

are established. Here, ∆pu denotes the p-Laplacian operator, 1 < q < p < N ,

p∗ = Np
N−p

and λ is a positive real parameter. The study is based on the

extraction of Palais-Smale sequences in the Nehari manifold.
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1 Introduction

In this paper, we deal with the existence of multiple solutions to the boundary

value problems




−∆pu = λ|u|q−2u + |u|p∗−2u in Ω,
u = 0 on Γ,
∂u
∂ν

= 0 on Σ,
(1.1)




−∆pu = λ|u|q−2u + |u|p∗−2u in Ω,

|∇u|p−2 ∂u
∂ν

= −a(x)|u|p−2u on ∂Ω,
(1.2)

with respect to the real parameter λ. Here, Ω is a bounded domain in RN

with smooth boundary ∂Ω = Γ∪Σ, where Γ, Σ are smooth (N-1)-dimensional

submanifolds of ∂Ω with positive measures such that Γ ∩ Σ = ∅, ∆p is the

p-Laplacian, ∂
∂ν

is the outer normal derivative, and p∗ = Np
N−p

. Throughout

this paper, the function a is assumed to be in L∞(∂Ω), a(s) ≥ a0 > 0 almost

everywhere on a subset of ∂Ω with positive measure.

In a recent paper, K. J. Brown & Y. Zhang [6] have studied a subcritical

semilinear elliptic equation with a sign-changing weight function and a

bifurcation real parameter in the case p = 2 and Dirichlet boundary

conditions. Exploiting the relationship between the Nehari manifold and

fibering maps (i.e., maps of the form t 7→ Jλ(tu) where Jλ is the Euler function

associated with the equation), they gave an interesting explanation of a well

known bifurcation result. In fact, the nature of the Nehari manifold changes

as the parameter λ crosses the bifurcation value. In Tarantello [16], using

the same type of approach the critical case has been studied also assuming

p = 2, q = 2 and Neumann boundary conditions.

In this work, we exploit similar facts to show the existence of multiple

nontrivial positive solutions to (1.1) and (1.2). The idea of our approach can

be summarized as follows: Let Iλ (resp. Jλ) the Euler functional associated to

Problem (1.1) (resp. Problem (1.2)) defined on W 1,p
Γ (Ω) (resp. on W 1,p(Ω)),
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where

W 1,p
Γ (Ω) = {u ∈ W 1,p(Ω); u|Γ = 0}

is the closure of C1
0(Ω∪Γ) with respect to the norm of W 1,p(Ω) (we refer the

reader to the paper by Colorado & Peral [8] for a complete study in the case

p = 2).

For each u ∈ W 1,p
Γ (Ω) \ {0} (resp. W 1,p(Ω) \ {0}) λ > 0, we determine the

real values of t (in terms of u and λ) such that tu belongs to the Nehari

manifold:

NIλ
=

{
v ∈ W 1,p

Γ (Ω) \ {0} : I ′λ(v)(v) = 0
}

(resp. NJλ
=

{
v ∈ W 1,p(Ω) \ {0} : J ′λ(v)(v) = 0

}
).

Then, the variable t is substituted by these special values to obtain new

Euler functionals defined on the Nehari manifold. On shows easily that these

functionals are bounded below, which allows to find possible critical points by

minimization. Moreover, this approach allows the simultaneous construction

of Palais-Smale sequences, in the Nehari manifold, giving directly existence

and multiplicity results [10].

Let us mention that in the case p = 2 and with a subcritical concave-

convex nonlinearity, this problem was studied recently by Colorado & Peral

[8]. The authors showed that there is a special value Λ of the parameter λ

such that Problem (1.1) admits at least two positive solutions for λ ∈ (0, Λ),

admits at least one positive solution for λ = Λ and admits no positive solution

for λ > Λ. In our opinion, an interesting question which is not treated

in our paper, is to characterize Λ as a bifurcation value via the dynamic

of the Nehari manifold with respect to the parameter λ (see [6]). Some

results involving the p-Laplacian operator, concave-convex nonlinearity and

Dirichlet boundary conditions can be found in the papers of Garcia Azorero

& Peral Alonso [11] and Ambrosetti, Garcia Azorero & Peral Alonso [4].

This paper is organized as follows: Section 2 is devoted to Problem (1.1)

and Section 3 is the subject of Problem (1.2).
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2 The mixed Dirichlet-Neumann Problem

(1.1)

It is well known that weak solutions of (1.1) correspond to critical points of

the C1 functional Iλ : W 1,p
Γ (Ω) −→ R, given by

Iλ(u) =
1

p
P (u)− λ

q
Q(u)− 1

p∗
P ∗(u),

where

P (u) =

∫

Ω

|∇u|pdx, Q(u) =

∫

Ω

|u|qdx and P ∗(u) =

∫

Ω

|u|p∗dx.

Using the fact that Γ has strictly positive measure, the Poincaré inequality is

still available in the space W 1,p
Γ (Ω), hence it can endowed with the following

norm

‖u‖ =
{ ∫

Ω

|∇u|pdx
} 1

p
,

(see some commentaries in Kesavan’s book [12, page 125], for the case p=2).

In the sequel, || ||, || ||q and || ||p∗ will denote the norms on W 1,p
Γ (Ω), Lq(Ω)

and Lp∗(Ω) respectively. We introduce the modified functional Ĩλ defined on

R ×W 1,p
Γ (Ω) by Ĩλ(t, u) := Iλ(tu), (see [19, 9, 10]). For every u ∈ W 1,p

Γ (Ω),

∂tĨλ(., u) (resp. ∂ttĨλ(., u)) is the first (resp. second) derivative of the real

valued function: t 7→ Ĩλ(t, u).

2.1 Preliminary results

Since the functional Ĩλ is even in t and that we are interested by the nontrivial

solutions of (1.1), we limit our study for t > 0 and u ∈ W 1,p
Γ (Ω) \ {0}.

Lemma 2.1 For every u ∈ W 1,p
Γ (Ω) \ {0}, there is a unique λ(u) > 0 such

that the real valued function t 7→ ∂tĨλ(t, u) has exactly two positive zeros

(resp. one positive zero) if 0 < λ < λ(u) (resp. λ = λ(u)). This function

has no zero for λ > λ(u).
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Proof. Let u be an arbitrary element of W 1,p
Γ (Ω) \ {0} and let us write

∂tĨλ(t, u) = tq−1Hλ(t, u), where Hλ(t, u) = tp−qP (u)− λQ(u)− tp
∗−qP ∗(u).

Then

∂ttĨλ(t, u) = (q − 1)tq−2Hλ(t, u) + tq−1∂tHλ(t, u),

holds true, with

∂tHλ(t, u) = tp−q−1
{
(p− q)P (u)− (p∗ − q)tp

∗−pP ∗(u)
}

.

The real valued function Hλ(., u) is increasing on (0, t(u)), decreasing on

(t(u), +∞) and attains its unique maximum for t = t(u), where

t(u) =

(
p− q

p∗ − q

P (u)

P ∗(u)

) 1
p∗−p

. (2.3)

Thus, the function Hλ(., u) has two positive zeros (resp. one positive zero) if

Hλ(t(u), u) > 0 (resp. if Hλ(t(u), u) = 0) and has no zero if Hλ(t(u), u) < 0.

On the other hand, a direct computation gives

Hλ(t(u), u) =
p∗ − p

p− q

(
p− q

p∗ − q

P (u)

P ∗(u)

) p∗−q
p∗−p

P ∗(u)− λQ(u).

Similarly, Hλ(t(u), u) > 0 (resp. Hλ(t(u), u) < 0) if λ < λ(u) (resp.

λ > λ(u)) and Hλ(u)(t(u), u) = 0, where

λ(u) = Θ
P

p∗−q
p∗−p (u)

Q(u) P ∗ p−q
p∗−p (u)

, (2.4)

with

Θ =
p∗ − p

p− q

(
p− q

p∗ − q

) p∗−q
p∗−p

.

It follows that if λ ∈]0, λ(u)[, the real valued function ∂tĨλ(., u) has two

positive zeros, denoted by t1(u, λ) and t2(u, λ), verifying 0 < t1(u, λ) <
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t(u) < t2(u, λ).

Since, Hλ(t1(u, λ), u) = Hλ(t2(u, λ), u) = 0, ∂tHλ(t, u) > 0 for t < t(u) and

∂tHλ(t, u) < 0 for t > t(u), it follows that

∂ttĨλ(t1(u, λ), u) > 0 and ∂ttĨλ(t2(u, λ), u) < 0.

This means that the real valued function Ĩλ(., u), defined for t > 0, achieves

its unique local minimum (resp. unique local maximum) at t = t1(u, λ) (resp.

t = t2(u, λ)). ¤
Notice that for every u ∈ W 1,p

Γ (Ω) \ {0} and λ ∈ (0, λ(u)), t1(u, λ)u and

t2(u, λ)u belong to the Nehari manifold [19] defined by

NIλ
:= {u ∈ W 1,p

Γ (Ω) \ {0} : I ′λ(u)u = 0}.

Now, we introduce

λ∗1 := inf
{
λ(u) : u ∈ W 1,p

Γ (Ω) \ {0}} . (2.5)

If SΓ,q (resp. SΓ) denotes the best Sobolev constant of the embedding

W 1,p
Γ (Ω) ⊂ Lq(Ω) (resp. W 1,p

Γ (Ω) ⊂ Lp∗(Ω)), then

λ∗1 ≥ ĈS
q/p
Γ,q SΓ

N
p

(1−q/p) > 0.

Since ∂tĨλ(t1(u, λ), u) = 0 (resp. ∂tĨλ(t2(u, λ), u) = 0) for every u ∈
W 1,p

Γ (Ω) \ {0}, it follows that the functional u 7−→ Ĩλ(t1(u, λ), u) (resp.

u 7−→ Ĩλ(t2(u, λ), u)) is bounded below on W 1,p
Γ (Ω) \ {0}. Thus, for every

λ ∈ (0, λ∗1), we define

α1(λ) = inf
{

Ĩλ(t1(u, λ), u) : u ∈ W 1,p
Γ (Ω) \ {0}

}
, (2.6)

α2(λ) = inf
{

Ĩλ(t2(u, λ), u) : u ∈ W 1,p
Γ (Ω) \ {0}

}
. (2.7)
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Remark 2.1 For every real number γ > 0, we have

Ĩλ

(
γt,

u

γ

)
= Ĩλ(t, u),

∂tĨλ

(
γt,

u

γ

)
=

1

γ
∂tĨλ(t, u),

∂ttĨλ

(
γt,

u

γ

)
=

1

γ2
∂ttĨλ(t, u),

it follows that

t1(u, λ) =
1

γ
t1

(
u

γ
, λ

)
, (2.8)

t2(u, λ) =
1

γ
t2

(
u

γ
, λ

)
. (2.9)

Therefore, α1(λ) and α2(λ) can be rewritten as follows

α1(λ) = inf
u∈S Ẽλ(t1(u, λ), u), (2.10)

α2(λ) = inf
u∈S Ẽλ(t2(u, λ), u), (2.11)

where S is the unit sphere of W 1,p
Γ (Ω).

Lemma 2.2 Let (un) ⊂ S be a minimizing sequence of (2.10) (resp. of

(2.11)) and Un := t1(un, λ)un (resp. Vn := t2(un, λ)un). Then

(i) lim sup
n→+∞

||Un|| < +∞ (resp. lim sup
n→+∞

||Vn|| < +∞),

(ii) lim inf
n→+∞

||Un|| > 0 (resp. lim inf
n→+∞

||Vn|| > 0).

Proof.

(i) Let (un) ⊂ S be a minimizing sequence of (2.10). Since

∂tĨλ(t1(un, λ), un) = 0, it follows that

||Un||p = λ||Un||qq + ||Un||p
∗

p∗ . (2.12)
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Similarly, since ∂ttĨλ(t1(un, λ), un) > 0, it follows that

(p− 1)||Un||p − λ(q − 1)||Un||qq − (p∗ − 1)||Un||p
∗

p∗ > 0. (2.13)

Combining (2.12) and (2.13), we get Iλ(Un) < 0, for every n.

Suppose that there is a subsequence of (Un), still denoted by (Un) such

that lim
n→+∞

||Un|| = +∞. It is well known that there is some constant Cp∗,q

such that ||Un||q ≤ Cp∗,q||Un||p∗ for every n, then lim
n→+∞

||Un||p∗ = +∞. Using

the fact that 0 < q < p∗ we get ||Un||qq = on

(
||Un||p

∗
p∗

)
, and consequently

||Un||p = ||Un||p
∗

p∗(1 + on(1)).

Thus,

Iλ(Un) = ||Un||p
∗

p∗

(
1

N
+ on(1)

)
,

which implies that Iλ(Un) tends to +∞ as n goes to +∞ and this is

impossible. Hence, we conclude that lim sup
n→+∞

||Un|| < +∞.

The same arguments with a minimizing sequence (un) of (2.11) show that

lim sup
n→+∞

||Vn|| < +∞.

(ii) Let (un) ⊂ S be a minimizing sequence of (2.10) and suppose that there

is a subsequence of (Un), still denoted by (Un) such that lim
n→+∞

||Un|| = 0.

It follows that lim
n→+∞

Iλ(Un) = 0 i.e. α1(λ) = 0, which is impossible since

Ĩλ(t1(un, λ), un) < 0 for every n.

Let (un) ⊂ S be a minimizing sequence of (2.11). Since

∂tĨλ(t2(un, λ), un) = 0 and ∂ttĨλ(t2(un, λ), un) < 0 it follows that

{ ||Vn||p − λ||Vn||qq − ||Vn||p
∗

p∗ = 0,

(p− 1)||Vn||p − λ(q − 1)||Vn||qq − (p∗ − 1)||Vn||p
∗

p∗ < 0.

Combining the two last inequalities we obtain, for every n,

(p− q)||Vn||p < (p∗ − q)||Vn||p
∗

p∗ ≤ (p∗ − q)SΓ
p∗/p||Vn||p∗ ,
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via the continuous embedding W 1,p
Γ (Ω) ⊂ Lp∗(Ω). Then (p − q) ≤ (p∗ −

q)SΓ
p∗/p||Vn||p∗−p. Now, suppose that there is a subsequence of (Vn), still

denoted by (Vn) such that lim
n→+∞

||Vn|| = 0. This implies that p − q ≤ 0,

which is impossible. ¤

Lemma 2.3 Let (un) ⊂ S be a minimizing sequence of (2.10) (resp. of

(2.11)). Then, (Un) := (t1(un, λ)un) (resp. (Vn) := (t2(un, λ)un)) are Palais-

Smale sequences for the functional Iλ.

Proof. We will show this lemma only for the sequence (Un), the proof for

(Vn) can be done in the same way.

First, according to the previous lemma, it is clear that (Un) is bounded in

W 1,p
Γ (Ω). On the other hand, notice that for every u ∈ W 1,p

Γ (Ω) \ {0} and

λ ∈ (0, λ∗1), we have ∂tĨλ(t1(u, λ), u) = 0 and ∂ttĨλ(t1(u, λ), u) 6= 0. The

implicit function theorem implies that t1(u, λ) is C1 with respect to u since

Ĩ is. Let us introduce the C1 functional Iλ defined on S by

Iλ(u) = Ĩλ(t1(u, λ), u) ≡ Iλ(t1(u, λ)u).

Then

α1(λ) = inf
u∈S Iλ(u) and lim

n→+∞
Iλ(un) = α1(λ).

Using the Ekeland variational principle on the complete manifold (S, || ||) to

the functional Iλ, we conclude that

|I ′λ(un)(ϕn)| ≤ 1

n
||ϕn||, for every ϕn ∈ TunS,

where TunS is the tangent space to S at the point un. Moreover, for every

ϕn ∈ TunS, one has

I ′λ(un)(ϕn) = ∂tĨλ(t1(un, λ), un)t′1(un, λ)(ϕn) + ∂uĨλ(t1(un, λ), un)(ϕn),

= ∂uĨλ(t1(un, λ), un)(ϕn),
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since ∂tĨλ(t1(un, λ), un) ≡ 0, where t′1(un, λ) denotes the derivative of t1(., λ)

with respect to its first variable at the point (un, λ).

Furthermore, let

π : W 1,p
Γ (Ω) \ {0} −→ (0, +∞)× S

u 7−→
(
||u||, u

||u||

)
:= (π1(u), π2(u)).

Applying Hölder’s inequality, we get for every (u, ϕ) ∈ (
W 1,p

Γ (Ω) \ {0}) ×
W 1,p

Γ (Ω): {
|π′1(u)(ϕ)| ≤ ||ϕ||,
||π′2(u)(ϕ)|| ≤ 2 ||ϕ||||u|| .

From Lemma 2.2, there is a positive constant C such that

t1(un, λ) ≥ C, ∀ n ∈ N.

Then for every ϕ ∈ W 1,p
Γ (Ω), there are ϕ1

n ∈ R and ϕ2
n ∈ TunS such that

|ϕ1
n| ≤ ||ϕ||, ||ϕ2

n|| ≤ 2
C
||ϕ|| and

I ′λ(t1(un, λ)un)(ϕ) = ∂tĨλ(t1(un, λ), un)(ϕ1
n) + ∂uĨλ(t1(un, λ), un)(ϕ2

n),

= ∂uĨλ(t1(un, λ), un)(ϕ2
n),

= I ′λ(un)(ϕ2
n).

Therefore,

I ′λ(t1(un, λ)un)(ϕ) ≤ 1

n
||ϕ2

n||

≤ 2

nC
||ϕ||.

We easily conclude that

lim
n→∞

||I ′λ(Un)||∗ = 0,

where || ||∗ denotes the norm in the dual space of W 1,p
Γ (Ω). ¤
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Remark 2.2 Until now, the minimizing sequences we consider are not

nonnegative. Notice that for every u ∈ W 1,p
Γ (Ω) \ {0} and 0 < λ < λ∗1, one

has Ĩλ(t, |u|) = Ĩλ(t, u), t1(|u|, λ) = t1(u, λ) and t2(|u|, λ) = t2(u, λ). Thus,

every minimizing sequence (un) ⊂ S of (2.10) or (2.11) can be considered as

a sequence of nonnegative functions.

Hereafter, we will assume the sequences Un and Vn, defined in Lemma 2.3,

to be nonnegative.

Since we consider mixed Dirichlet-Neumann boundary conditions in

Problem (1.1), we will need the following estimate, due to Cherrier [7]:

Lemma 2.4 For each τ > 0, there exists Mτ > 0 such that

[ S

2
p
N

− τ
]
‖u‖p

p∗ ≤ ‖∇u‖p
p + Mτ‖u‖p

p, ∀u ∈ W 1,p(Ω).

At this stage, we will state a version of the Concentration Compactness

Lemma due P. L. Lions [13, 14], which follows using similar arguments

explored in the case W 1,p
0 (Ω) together with the Cherrier’s inequality. In

the W 1,p(Ω) case, we can refer the reader to [15] by Medeiros.

Lemma 2.5 Let {un} be a weakly convergent sequence in W 1,p
Γ (Ω) with weak

limit u, and such that:

i) ‖∇un‖p
p → µ weakly-* in the sense of measure,

ii) ‖un‖p∗
p∗ → ν weakly-* in the sense of measure.

Then, for some finite index set I we have:




1) ν = ‖u‖p∗
p∗ +

∑
j∈I νjδxj

, νj > 0,

2) µ ≥ ‖∇u‖p
p +

∑
j∈I µjδxj

, µj > 0,

3) if xj ∈ Ω then Sν
p

p∗
j ≤ µj,

4) if xj ∈ Σ then S

2
p
N

ν
p

p∗
j ≤ µj.

Finally, adapting well know arguments found in [2], [11], and the previous

lemma, we can prove the following lemma.
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Lemma 2.6 If {un} ⊂ W 1,p
Γ (Ω) is a Palais-Smale Sequence to Iλ with

un ⇀ u in W 1,p
Γ (Ω), then the set I∗ = {i; xi ∈ Ω} ⊂ I given in Lemma

2.5 is finite or empty and for some subsequence

∇un(x) → ∇u(x) a.e. in Ω.

Now, we establish that the Euler functional Iλ satisfies the Palais-Smale

condition under some condition on the level of Palais-Smale sequences.

Lemma 2.7 There exists a constant K depending only on p, q, N and

Ω such that for every λ > 0, the functional Iλ satisfies the Palais-Smale

condition in the interval (−∞, 1
2N

S
N
p −Kλ

p∗
p∗−q ).

Proof. Let {un} ⊂ W 1,p
Γ (Ω) be a Palais-Smale sequence for Iλ. Using

standard arguments it follows that the sequence {un} is bounded. Thus,

from the above lemmas there exists a subsequence still denoted by {un}
and a function u ∈ W 1,p

Γ (Ω) such that un ⇀ u. Using the same arguments

explored in Alves [3], there is a constant K depending only on p, q, N and

Ω such that

Iλ(u) ≥ −Kλ
p∗

p∗−q .

Let vn = un − u. Then by Brézis & Lieb [5], we have

‖vn‖p = ‖un‖p − ‖u‖p + on(1),

‖vn‖p∗
p∗ = ‖un‖p∗

p∗ − ‖u‖p∗
p∗ + on(1),

and by Sobolev embedding

∫

Ω

|un|qdx →
∫

Ω

|u|qdx.

The above limits imply

‖vn‖p − ‖vn‖p∗
p∗ = on(1)
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and
1

p
‖vn‖p − 1

p∗
‖vn‖p∗

p∗ = c− Iλ(u) + on(1).

Since the sequence (vn)n is bounded in W 1,p
Γ (Ω), there exist l ≥ 0 and a

subsequence, still denote by {vn}, verifying

‖vn‖p → l.

Hence,

‖vn‖p∗
p∗ → l.

Using Cherrier’s inequality and passing to the limit n →∞, we obtain

[ S

2
p
N

− τ
]
l

p
p∗ ≤ l ∀τ > 0,

that is,
S

2
p
N

l
p

p∗ ≤ l.

Now, we claim that l = 0. Indeed in one hand, if l > 0 the last inequality

implies

l ≥ S
N
p

2
.

On the other hand,
1

N
l = c− Iλ(u),

and then

c ≥ 1

2N
S

N
p −Kλ

p∗
p∗−q ,

which contradicts the hypothesis. Therefore, l = 0 and we conclude that

un → u in W 1,p
Γ (Ω).

¤
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Lemma 2.8 Let β := p∗
p∗−q

. There exist v ∈ W 1,p
Γ (Ω) and λ∗2 > 0 such that

for λ ∈ (0, λ∗2), we have

sup
t≥0

Iλ(tv) <
1

2N
S

N
p −Kλβ.

In particular,

α2(λ) <
1

2N
S

N
p −Kλβ,

where K is the constant found in Lemma 2.7.

Proof. Let us denote by {wε} the family of functions given by

wε(x) = CNε
N−p

p2

(
ε + |x| p

p−1

) p−N
p

which attains the best constant S of the Sobolev embedding

D1,p(IRN) ↪→ Lp∗(IRN).

Without loss of generality, we can consider that 0 ∈ Σ. Moreover, the set

∂Ω satisfies the following property (see more details in Adimurthi, Pacella

and Yadava [1]):

There exist δ > 0, an open neighborhood V of 0 and a diffeomorphism

Ψ : Bδ(0) −→ V which has a jacobian determinant equal to one at 0, with

Ψ(B+
δ ) = V ∩ Ω, where B+

δ = Bδ(0) ∩ {x ∈ RN : xN > 0}.
Let φ ∈ C∞

0 (RN) such that φ(x) = 1 in a neighborhood of the origin.

We define uε(x) = φ(x)wε(x). Taking vε = uε

‖uε‖p∗
and using the same

type of arguments developed in Medeiros [15], we get the following estimates

(see Tarantello [16] and Wang [18] for the case p = 2)

‖∇vε‖p
p =





S

2
p
N
− Cε

p−1
p + o(ε

p−1
p ) + O

(
ε

N−p
p

)
if N ≥ p2

S

2
p
N
− Cε

N−p
p f(ε) + O

(
ε

N−p
p

)
if N < p2
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where C is a positive constant and limε→0 f(ε) = +∞. Let δ2 > 0 be such

that
1

2N
S

N
p −Kλβ > 0, ∀λ ∈ (0, δ2).

Using the definition of Iλ , we get

Iλ(tvε) ≤ tp

p
‖vε‖p

p, ∀ t ≥ 0,

which implies that there exists t0 ∈ (0, 1) satisfying

sup
0≤t≤t0

Iλ(tvε) <
1

2N
S

N
p −Kλβ, ∀λ ∈ (0, δ2).

Analyzing the case N ≥ p2, we have

Iλ(tvε) ≤ 1

2N
S

N
p − Cε

p−1
p + o(ε

p−1
p ) + O

(
ε

N−p
p

)
− λtq

q

∫
vq

ε , ∀ t > 0.

Therefore,

sup
t≥t0

Iλ(tvε) ≤ 1

2N
S

N
p − Cε

p−1
p + o(ε

p−1
p ) + O(ε

N−p
p )− λtq0

q

∫
vq

ε .

Hence,

sup
t≥t0

Iλ(tvε) <
1

2N
S

N
p − Cε

p−1
p + o(ε

p−1
p ) + O

(
ε

N−p
p

)
−Kλβ, ∀λ ∈ (0, δ3),

where

δ3 =

(
tq0

∫
vq

ε

2Kq

) 1
β−1

.

We fix ε > 0 such that

−Cε
p−1

p + o(ε
p−1

p ) + O
(
ε

N−p
p

)
< 0,

this is possible since N−p
p
− p−1

p
≥ (p−1)2

p
> 0. If we set λ∗2 = min{δ2, δ3}, we

obtain

sup
t≥0

Iλ(tvε) <
1

2N
S

N
p −Kλβ, ∀λ ∈ (0, λ∗2),
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and finally

α2(λ) <
1

2N
S

N
p −Kλβ, ∀λ ∈ (0, λ∗2).

The case N < p2 follows with the same type of arguments. ¤

Theorem 2.1 Let 1 < q < p and λ̂ = min{λ∗1, λ∗2}. Then for λ ∈ (0, λ̂),

problem (1.1) has at least two nonnegative solutions.

Proof. Using the above lemmas, there exist two sequences of positive

functions {Un} and {Vn} in W 1,p
Γ (Ω) such that

Iλ(Un) → α1(λ), ||I ′λ(Un)||∗ → 0 as n → +∞

and

Iλ(Vn) → α2(λ), ||I ′λ(Vn)||∗ → 0 as n → +∞.

Notice that for every λ ∈ (0, λ̂), one has

α1(λ) ≤ α2(λ) <
1

2N
S

N
p −Kλβ.

Then, there exist two nonnegative functions Uλ, Vλ ∈ W 1,p
Γ (Ω) verifying

Un −→ Uλ in W 1,p
Γ (Ω) as n →∞

and

Vn −→ Vλ in W 1,p
Γ (Ω) as n →∞.

Finally, the solutions {Uλ} and {Vλ} satisfy the inequalities

∂ttĨλ(1, Uλ) > 0 and ∂ttĨλ(1, Vλ) < 0,

which imply that Uλ 6= Vλ. Finally, applying the Harnack’s inequality (see

Trudinger [17]), we conclude that {Uλ} and {Vλ} are positive in Ω. This

achieves the proof. ¤.
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3 The Neumann Problem (1.2)

In this section, we will state similar results for the Neumann problem (1.2):




−∆pu = λ|u|q−2u + |u|p∗−2u in Ω,

|∇u|p−2 ∂u
∂ν

= −a(x)|u|p−2u on ∂Ω.

Let us recall that the function a is assumed to be in L∞(∂Ω), a(s) ≥ a0 > 0

almost everywhere on on a subset of ∂Ω with positive measure.

The Euler functional Jλ : W 1,p(Ω) −→ R related to the above problem is

given by

Jλ(u) =
1

p

∫

Ω

|∇u|p +
1

p

∫

∂Ω

a(x)|u|p − λ

q

∫

Ω

|u|q − 1

p∗

∫

Ω

|u|p∗ .

As in the previous section, for solutions of (1.2) we understand critical points

of the C1(W 1,p(Ω)) functional Jλ. Hereafter, we will denote by ‖ ‖ the

following norm

‖u‖ =
( ∫

Ω

|∇u|p +

∫

∂Ω

a(x)|u|p
) 1

p

on W 1,p(Ω). As in the previous section, P Q and P ∗ stand for the following

functionals

P (u) = ‖u‖p, Q(u) =

∫

Ω

|u|qdx and P ∗(u) =

∫

Ω

|u|p∗dx.

Now, we are able to state the following

Theorem 3.1 Let 1 < q < p, there exists λ̂ such that Problem (1.2) has at

least two positive solutions for λ ∈ (0, λ̂).

Proof. With slight changes in the proofs of the last section we obtain the

result. ¤



18 Alves and El Hamidi

References

[1] Admurthi, F. Pacella & S.L. Yadava, Interaction between the geometry

of the boundary and positive solutions of a semilinear Neumann problem

with critical nonlinearity, J. funct. Analysis 113 (1993), 318-350.

[2] C.O. Alves, Existência de solução Positiva de Equações Eĺıpticas não-
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