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Abstract. Vessel groundings cause severe, persistent gaps in seagrass beds. Varying
degrees of natural recovery have been observed for grounding injuries, limiting recovery
prediction capabilities, and therefore, management’s ability to focus restoration efforts where
natural recovery is unlikely. To improve our capacity for predicting seagrass injury recovery,
we used an information-theoretic approach to evaluate the relative contribution of specific
injury attributes to the natural recovery of 30 seagrass groundings in Florida Keys National
Marine Sanctuary, Florida, USA. Injury recovery was defined by three response variables
examined independently: (1) initiation of seagrass colonization, (2) areal contraction, and (3)
sediment in-filling. We used a global model and all possible subsets for four predictor
variables: (1) injury age, (2) original injury volume, (3) original injury perimeter-to-area ratio,
and (4) wave energy. Successional processes were underway for many injuries with fast-
growing, opportunistic seagrass species contributing most to colonization. The majority of
groundings that exhibited natural seagrass colonization also exhibited areal contraction and
sediment in-filling. Injuries demonstrating colonization, contraction, and in-filling were on
average older and smaller, and they had larger initial perimeter-to-area ratios. Wave energy
was highest for colonizing injuries. The information-theoretic approach was unable to select a
single ‘‘best’’ model for any response variable. For colonization and contraction, injury age
had the highest relative importance as a predictor variable; wave energy appeared to be
associated with second-order effects, such as sediment in-filling, which in turn, facilitated
seagrass colonization. For sediment in-filling, volume and perimeter-to-area ratio had similar
relative importance as predictor variables with age playing a lesser role than seen for
colonization and contraction. Our findings confirm that these injuries naturally initiate
seagrass colonization with the potential to recover to pre-injury conditions, but likely on a
decadal scale given the slow growth of the climax species (Thalassia testudinum), which is often
the most severely injured. Our analysis supports current perceptions that sediment in-filling is
critical to the recovery process and indicates that in order to stabilize injuries and facilitate
seagrass recovery, managers should consider immediate restorative filling procedures for
injuries having an original volume .14–16 m3.

Key words: Florida Keys National Marine Sanctuary; Halodule: information-theoretics; seagrass gap
dynamics; seagrass recovery; Syringodium; Thalassia; vessel groundings.

INTRODUCTION

Natural disturbances have the ability to produce open

spaces (gaps) within an otherwise continuous seagrass

meadow (see review by Short and Wyllie-Echeverria

1996, Holmquist 1997, Fonseca and Bell 1998,

Townsend and Fonseca 1998, Rose et al. 1999, Nelson

and Lee 2001, Nakaoka et al. 2006). These Type I

patches (sensu Sousa 1985) are common features in

many seagrass landscapes (den Hartog 1971, Patriquin

1975, Bell et al. 1999, Tewfik et al. 2007) and represent

the lower end of a range of patchiness often associated

with physical disturbance of seagrasses by waves and

currents (den Hartog 1971, Patriquin 1975, Fonseca et

al. 1983, Fonseca and Bell 1998). Our knowledge of the

role of these gaps in seagrass ecosystems has improved

by comparisons to terrestrial examples. Sprugel (1976),

Reiners and Lang (1979), Sprugel and Bormann (1981),

and Iwasa et al. (1991) discuss the role of wind-mediated

canopy gap dynamics in high-altitude balsam fir forest

ecosystems where vegetation gradients resulting from

’’wave regeneration’’ bear substantial similarity to

successional processes associated with wave/current-

generated ’’migrating’’ seagrass blowouts (e.g.,

Patriquin 1975, Tewfik et al. 2007). Similarly, physical

displacement or burial of vegetation by mound-building

organisms in serpentine terrestrial grasslands creates

small-scale gaps (Wu and Levin 1994) akin to ghost

shrimp excavation mounds in seagrass beds (Suchanek

1983, Duarte et al. 1997, Dumbauld and Wyllie-

Echeverria 2003). Bioturbation activities such as these
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can substantially influence plant population dynamics

and landscape patterns (Suchanek 1983, Hobbs and

Mooney 1985, 1991, Wu and Levin 1994, Duarte et al.

1997, Dumbauld and Wyllie-Echeverria 2003), illustrat-

ing similarities in gap dynamics across ecosystems.

Field studies on the persistence and recovery dynam-

ics of both natural and anthropogenic seagrass land-

scape gaps have considered the influence of many factors

including hydrodynamics (Patriquin 1975, Kirkman

1985, Whitfield et al. 2002), gap orientation (Patriquin

1975, Whitfield et al. 2002), competitive interactions

among seagrass species (Kirkman 1985), contributions

of different seagrass species (Olesen et al. 2004), roles of

clonal vs. sexual propagation (Peterken and Conacher

1997, Olesen et al. 2004, Whitfield et al. 2004), rates of

belowground biomass recovery (Di Carlo and

Kenworthy 2008), seagrass morphological plasticity

(Nakaoka and Aioi 1999), as well as initial gap size

(Bell et al. 1999). Manipulative studies, generally

conducted over small spatial extents, have also provided

additional data regarding limits to seagrass gap closure,

including the role of nutrient and light availability

(Williams 1987, 1988a, 1990), competitive interactions

among seagrass species (Williams 1990), recruitment

limitation arising from gap geometry (Kenworthy et al.

2002, Fonseca et al. 2004, Hammerstrom et al. 2007),

gap size (Rollon et al. 1998, Creed and Amado Filho

1999), the comparative capacity for recovery among

seagrass species (Williams 1988a, Holmquist 1997,

Uhrin et al. 2005), and the importance of sexual vs.

vegetative colonization (Rasheed 1999, Olesen et al.

2004).

From these studies, a number of generalizations can

be made regarding seagrass Type I gap recovery. Small,

shallow gaps tend to recover faster than large, deep gaps

(Rollon et al. 1998, Bell et al. 1999). In tropical seagrass

communities, gap colonization typically follows the

long-standing paradigm of seagrass succession

(Williams 1990, Rollon et al. 1998, Kenworthy et al.

2002). Regrowth of the climax species is often disrupted

along gap edges (Kenworthy et al. 2002, Whitfield et al.

2002, Olesen et al. 2004, Hammerstrom et al. 2007, Di

Carlo and Kenworthy 2008), while the most effective

gap colonizers are species present in the margins (border

effect) with high rates of rhizome elongation (Nakaoka

and Aioi 1999, Olesen et al. 2004, Hammerstrom et al.

2007). Even so, these colonizing species appear effective

only in the near term (months to years) and for small

gaps (,10 m2; Bell et al. 1999, Olesen et al. 2004);

complete recovery of large gaps will rely upon the

eventual recruitment of fragments or seedlings from the

local climax species into the gap center and may require

many years (Inglis 2000, Kenworthy 2000, Olesen et al.

2004, Whitfield et al. 2004). Moreover, chronic high-

wave energy conditions can form and maintain a

landscape of physically unstable ‘‘migrating’’ seagrass

blowouts (sensu Patriquin 1975) and, depending upon

the orientation of gaps with respect to prevailing flow,

can scour and further destabilize existing gaps, exacer-

bating bed fragmentation (Whitfield et al. 2002; A. V.

Uhrin, unpublished data).

A number of human-induced disturbances create gaps

in seagrass landscapes as well, and consideration of both

natural processes and manipulative studies provide

heuristic guidance as to how such disturbances may

recover; understanding and forecasting recovery from

anthropogenic disturbances is of great interest to many

decision-makers. Common gap-forming anthropogenic

activities include dredge and fill operations, dock and

boat-mooring installation (Walker et al. 1989, Short et

al. 1991, Burdick and Short 1999), anchor/chain drags

(Williams 1988b, Walker et al. 1989, Francour et al.

1999), certain fishing practices (Fonseca et al. 1984,

Peterson et al. 1987, Orth et al. 2002, Neckles et al.

2005), trampling (Eckrich and Holmquist 2000), pro-

peller scarring by outboard motors (see review by

Sargent et al. 1995, Dawes et al. 1997), and motorized-

vessel-grounding events (Sargent et al. 1995, Kenworthy

et al. 2002, Olesen et al. 2004, Kirsch et al. 2005,

SFNRC 2008). For this study, we focused on the

seagrass beds of the Florida Keys National Marine

Sanctuary (FKNMS), where .600 motorized-vessel

groundings occur annually, causing widespread damage

to subtropical seagrasses (Sargent et al. 1995, Kirsch et

al. 2005, SFNRC 2008). These disturbances create some

of the most severe Type I gaps that can occur in seagrass

beds (Kenworthy et al. 2002, Kirsch et al. 2005).

Vessel-grounding events result in readily identifiable

injury features (Fig. 1), occurring singly or in combina-

tion, including: (1) propeller scar (narrow, excavated

trench caused by propeller penetration into the sediment

while the vessel is still moving); (2) blowhole (deep

excavation caused by propeller wash as the operator

attempts to free the vessel); and (3) berm (excavated

material ejected from the blowhole by propeller wash that

is deposited over, and often buries the seagrass sur-

rounding the blowhole). By directly removing above- and

belowground seagrass biomass, vessel groundings cause

acute environmental modification on a local scale, which

has been shown to result in sediment instability, loss of

organic matter and nutrients, and progressive erosion of

adjacent seagrass habitat far beyond the extent of the

original injury (Kenworthy et al. 2002, Whitfield et al.

2002, Di Carlo and Kenworthy 2008; A. V. Uhrin,

unpublished data). Vessel-grounding events clearly have

the potential to increase the frequency of persistent gaps

in seagrass beds beyond that of natural conditions,

creating concern that for a given wave energy climate, a

critical level of fragmentation could result that would

lead to a collapse of the bed to a new stable state, if not

complete erosion (sensu Fonseca and Bell 1998). Given

the potential for cumulative injuries to any given location

and injury expansion, and the slow recovery rates

exhibited by the most frequently injured seagrass species

(Thalassia testudinum; Zieman 1976, Williams 1990,

Durako et al. 1992, Dawes et al. 1997, Kenworthy et al.
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2002), persistent degradation and widespread loss of

seagrass habitat has been demonstrated for South
Florida (Sargent et al. 1995, SFNRC 2008). As such,

gap-generating vessel groundings in highly vulnerable
habitats such as the Thalassia testudinum-dominated

shallow seagrass ecosystems of the FKNMS are of
special interest for managers concerned with potential
cumulative impacts to natural resources.

In this study, we investigated natural seagrass
recovery (i.e., gap closure) in severe Type I patch

disturbances associated with vessel groundings in the
FKNMS. We utilized an information-theoretic (IT)

approach to determine the relative importance of
physical and temporal attributes of vessel-grounding

injuries with respect to observed levels of natural
seagrass recovery, selecting environmental factors that

may be measurable under current assessment and
enforcement capabilities. We also evaluated the extent

of seagrass species substitution occurring during the
natural recovery process in the context of successional

theory in seagrass ecosystems (den Hartog 1971,
Williams 1990).

METHODS

Site selection

Study sites were located in the inshore waters of the

Gulf of Mexico and Atlantic Ocean in the Florida Keys,
Monroe County, Florida, USA (Fig. 2). The region is a

carbonate sediment-based, subtropical marine environ-
ment consisting of inshore and offshore coral reefs,

scattered mangrove islands, and extensive seagrass beds
(Fourqurean et al. 2001). Three seagrass species are

vulnerable to vessel groundings due to their prominence
in shallow waters: T. testudinum, Syringodium filiforme,

and Halodule wrightii. T. testudinum is the most
frequently injured, due to its ability to form elevated

banks, effectively creating shallow water that is fre-
quented by vessels operating along bank margins and

outside of navigable channels (Kenworthy et al. 2002).
Sites were chosen from a database of documented

seagrass vessel groundings in the FKNMS provided by
the National Oceanic and Atmospheric Administration,
Damage Assessment Center (NOAA DAC). Forty-four

sites where restoration had yet to be implemented were
evaluated as potential candidates for our study. The

widespread geographic distribution of the grounding
sites (over ;150 km) made it necessary to limit the

number of sites to a manageable subset while capturing
the range of environmental conditions, landscape

settings, and injury characteristics. Sites were initially
grouped by quartiles for injury age (years since time of

occurrence) and representative wave energy (RWE; in
joules/m). While not a part of current seagrass injury

assessment protocols in the FKNMS, we felt it
important to utilize RWE during the site selection

process in order to help eliminate possible bias for
recovery potential as exposure to wind wave events has

been shown to drastically alter the geometry of

grounding injuries (sensu Whitfield et al. 2002). RWE

was computed by the application of the Wave Exposure

Model (WEMo; Malhotra and Fonseca 2007) for the

time period beginning from the date of the first injury

assessment through present day. Within each age 3

RWE quartile, we attempted to obtain a minimum of

two grounding sites; in some instances, this was not

possible due to the absence or limited number of sites

meeting these criteria. In total, 30 sites were included in

our investigation (Fig. 2, Table 1).

Injury recovery assessments

The 30 sites were previously assessed by NOAA DAC

personnel shortly after the time of occurrence of each

injury using established techniques (Kirsch et al. 2005).

These protocols included site mapping with a differential

global positioning system (DGPS), bathymetric surveys,

and characterization of injured habitat vs. adjacent

uninjured habitat using visual assessment methods.

FIG. 1. Oblique photo of an actual vessel-grounding injury
on a shallow seagrass bank in Florida Keys National Marine
Sanctuary (FKNMS). Twin propeller scars, numerous berms,
and two distinct blowhole injury features are visible. For scale,
the rectangular object resting on the left-hand berm is a cement
block, ;39.5 cm in length. The divots in that same berm are
footprints made by the assessment team. Photo courtesy of
NOAA/FKNMS.

June 2011 1367SEAGRASS RECOVERY AND INFORMATION THEORY



During the summer of 2004 and spring of 2005, each

of the injury grounding sites were revisited and

reassessed duplicating the methods of Kirsch et al.

(2005). Given the severity of blowholes relative to other

injury features (i.e., complete removal of above- and

below-ground biomass with acute changes to landscape

grade), we limited our investigation to these features.

Hereafter, ‘‘injury’’ refers only to blowholes and does

not consider the associated berms or propeller scars

(Fig. 1). T. testudinum was the most abundant species at

26 sites, occasionally interspersed with S. filiforme and

H. wrightii. The remaining four sites were dominated by

S. filiforme.

Site mapping.—For shallow sites, injury features were

mapped by walking the perimeter of each feature using

DGPS (Trimble GPS Pathfinder Pro XR receiver and

Trimble TSC1; data collector, Trimble Navigation,

Sunnyvale, California, USA), following Kirsch et al.

(2005). Where deeper water precluded walking, the

DGPS unit was mounted on a small inflatable boat that

was then maneuvered around the injury perimeter by a

snorkeler. Injury feature coordinates were downloaded

to Trimble GPS Pathfinder Office 3.0 software (Trimble

Navigation 2003) and then exported to ESRI’s ArcMap

9.2 software (ESRI 2006) for calculation of injury area

(m2) and perimeter-to-area ratios (P:A).

Bathymetric survey.—Following Kirsch et al. (2005), a

Lowrance LCX-15MT depth sounder (Navico

International, formerly Lowrance Electronics, Tulsa,

Oklahoma, USA) integrated with the DGPS was

mounted on the stern of the inflatable boat. Geo-

referenced depth soundings (0.1 m vertical accuracy)

were logged while the boat was slowly guided back and

forth across the injury by investigators. The resulting

bathymetry file was downloaded to Trimble GPS

Pathfinder Office software and then exported to

ArcMap, where an inverse distance-weighting function

(IDW) was used to create a bathymetric grid layer

enabling the calculation of blowhole volume (m3) using

the ArcMap 3-D Analyst Extension.

Habitat characterization.—A modified Braun-

Blanquet technique (Braun-Blanquet 1932, Kenworthy

et al. 1993, Fourqurean et al. 2001) was used to assess

seagrass species composition and percent cover in the

blowhole and the surrounding undisturbed seagrass bed

(sensu Kirsch et al. 2005). Replicate 0.25-m2 quadrats

were haphazardly tossed both in the blowhole and in the

seagrass immediately adjacent (hereafter referred to as

the ‘‘reference’’) and assigned a Braun-Blanquet cover-

abundance scale value by visual inspection: 0 ¼ not

present, 0.1 ¼ solitary specimen, 0.5 ¼ few specimens

(,5), 1¼ numerous but ,5% cover, 2¼ 5–25% cover, 3

FIG. 2. Location of the 30 vessel-grounding sites examined in the study (gray squares) in the Florida Keys, Florida, USA.
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¼26–50% cover, 4¼51–75% cover, and 5¼.75% cover.

For continuity, the number of quadrats sampled from

within the blowhole and its associated reference area

was kept the same as was sampled during the original

assessment.

Species substitution.—Currently, the desired endpoint

of seagrass vessel-grounding restorations in the FKNMS

is the attainment (within the injury) of reference levels of

aboveground percent cover for each seagrass species

encountered in the adjacent, uninjured community

(NOAA and FDEP 2004). Here, we assumed the injury

and reference area to be in spatial equilibrium (Parker

and Wiens 2005) with a narrow window of temporal

variation (Di Carlo and Kenworthy 2008). We also

assumed that the reference area has not been disturbed

prior and that once the injury attains reference levels, it

is considered to be recovered.

A seagrass abundance estimate (A) was calculated for:

(1) the dominant reference species from the original

assessment data, (2) the dominant reference species from

the original assessment data but sampled from within

the injury at the time of the reassessment, and (3) the

primary colonizing species within the injury at the time

of the reassessment. These were tabulated to determine

the extent of species substitution (if any) during the

natural recovery process. Abundance was calculated

from Braun-Blanquet cover estimates as follows:

Ai ¼
Xn

j¼1

Sij=Ni

where Ai is the abundance of species i; j is the quadrat

number from 1 to n, the total number of quadrats

sampled per injury feature; Sij ¼ the Braun-Blanquet

score for species i in quadrat j, and Ni is the number of

quadrats within the injury feature in which species i was

present (Kenworthy et al. 1993, Fourqurean et al. 2001).

Model development

Predictor variables.—Three injury characteristics and

one physical parameter were considered in the model:

injury age (AGE; in years), original injury volume

(VOL; as m3), original injury perimeter-to-area ratio
(P:A), and RWE. The injury characteristics are included

in established injury assessment protocols (Kirsch et al.

2005), reflecting their influence on seagrass gap closure

dynamics (Fonseca et al. 2004, Olesen et al. 2004,

Hammerstrom et al. 2007), and exposure to wind wave

events has been shown to drastically alter the geometry

TABLE 1. Dependent and independent variable summary for 30 vessel-grounding sites in the
Florida Keys National Marine Sanctuary (FKNMS), Florida, USA.

Site
Seagrass

colonization Contraction Filling
Injury
age (yr) Perimeter : area

Original
volume (m3)

RWE
( joules/m)

1 1 1 1 3.13 0.96 10.0 10 544.8
2 0 0 1 1.82 0.88 17.6 741.7
3 0 1 0 1.95 2.07 16.7 3330.8
4 0 0 0 1.75 1.06 70.4 2194.6
5 0 0 0 3.01 1.17 11.5 1567.6
6 0 1 1 1.65 2.17 1.5 609.8
7 0 0 0 2.14 1.43 4.5 2293.1
8 1 1 1 3.45 0.58 52.1 77.8
9 1 1 1 2.97 0.98 17.2 2196.7
10 0 � � � 1 2.07 1.22 10.9 649.7
11 0 0 1 1.37 1.83 3.0 333.4
12 0 0 0 1.09 1.00 7.2 405.7
13 0 0 1 1.31 1.25 15.6 142.8
14 0 0 0 1.85 0.63 72.3 1500.1
15 1 0 1 2.82 2.43 3.4 6451.2
16 1 0 0 2.04 0.58 17.8 6571.4
17 1 1 1 1.43 2.15 2.7 369.8
18 1 1 1 3.24 1.01 7.2 318.7
19 1 1 1 2.92 0.83 50.5 554.7
20 0 0 0 3.46 0.70 37.8 4360.2
21 1 1 1 2.78 1.16 4.9 970.4
22 1 1 1 2.86 1.13 6.9 2658.0
23 1 1 1 2.07 1.26 21.4 1388.5
24 0 1 � � � 3.24 0.73 � � � 1718.0
25 0 1 0 3.39 0.11 17.1 1132.0
26 0 0 0 2.09 0.82 5.6 1034.0
27 0 0 0 1.89 1.04 87.5 1015.6
28 1 1 1 1.82 0.99 6.7 6989.4
29 1 1 1 1.84 2.14 3.6 837.5
30 0 0 0 1.83 1.32 16.5 3705.5

Notes: In columns 2–4, ‘‘1’’ indicates a positive response (presence or yes), while ‘‘0’’ indicates a
negative response (absence or no). Missing values (‘‘� � �’’) are those sites where either no change in
the area occurred (Site 10) or no original volume data were available (Site 24) because the injury
occurred prior to the development of the bathymetric survey technique. RWE stands for
representative wave energy.
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of grounding injuries (sensu Whitfield et al. 2002). Injury

age was computed from the date of the first assessment

of the injury to the date of the reassessment. The volume

of excavated blowholes was obtained directly from the

original bathymetric survey data, while the P:A for each

blowhole was calculated from the original DGPS

perimeter files. RWE was computed by the application

of the Wave Exposure Model (WEMo; Malhotra and

Fonseca 2007) for the time period beginning from the

date of the first injury assessment through the date of the

reassessment, yielding the average RWE over the life of

each injury.

Response variables.—Over time, and barring further

disturbance, seagrass grows inward from the undis-

turbed injury perimeter, creating a progressive band of

clonal expansion that leads to a reduction in injury area

(Olesen et al. 2004). Regrowth of seagrass into

experimental gaps has been shown to track the sediment

deposition trajectory (Hammerstrom et al. 2007). Thus,

we defined and evaluated natural recovery of seagrass

grounding injuries using three binary, dependent vari-

ables: (1) seagrass colonization (recorded as presence/

absence of seagrass, all species combined, within the

boundaries of the original injury area, indicating that at

least the recovery process had initiated), (2) areal

contraction (measured as decrease/increase in injury

area and recorded as yes/no), and (3) sediment in-filling

(measured as decrease/increase in injury volume and

recorded as yes/no). Each response variable was

modeled separately.

To create the seagrass colonization variable

(COLONIZE), we reduced the Braun-Blanquet data to

a dichotomous outcome (Kleinbaum and Klein 2002,

Podani 2006). Although solitary shoots or a handful of

individuals (Braun-Blanquet values of 0.1 or 0.5)

indicate some seagrass colonization, we did not regard

those levels as sufficient to unequivocally signal persis-

tent, long-term establishment; whereas Braun-Blanquet

values . 1.0 suggest recruitment and propagation with

measureable cover (.5%). Consequently, we reclassified

Braun-Blanquet cover abundance scale values of 0.1 and

0.5 as equivalent to zero (absence), while all other scale

values were designated as ‘‘1’’ (presence).

Injury contraction (CONTRACT) was calculated as

the difference between the original blowhole area (m2)

and the area at the time of the reassessment. A positive

difference would indicate contraction (yes), while a

negative difference would indicate expansion (no). The

area for one injury remained unchanged, preventing

calculation of contraction, leaving n ¼ 29.

Sediment in-filling (FILL) was calculated as the

difference between the original blowhole volume (m3)

and the volume at the time of the reassessment. A

positive difference would indicate in-filling (yes), while a

negative difference would indicate scouring (no).

Original volume data was lacking for one injury that

occurred prior to the development of the bathymetric

survey technique, thus preventing calculation of in-

filling for this site, leaving n ¼ 29.

We modeled each of the three response (dependent)
variables separately by evaluating a global model that

included all four predictor (independent) variables and

all possible nested subsets, resulting in a candidate
model set of R ¼ 23 ¼ 16, including the intercept-only

model (Burnham and Anderson 2002). Although
Burnham and Anderson (2002) suggest limiting model

structural parameters to n/10 (here, 3), we considered

models with up to five parameters, one for each
predictor variable and one for the intercept-only

variable. Given the relevance of the predictor variables

in the seagrass injury assessment process and in terms of
seagrass gap dynamics, we felt it was important to retain

all four despite the potential for increased model

‘‘noise.’’ Despite using all possible predictor variable
combinations, R was smaller than n (here, 30), as

recommended by Burnham and Anderson (2002). We

did not consider interactions among the predictor
variables. Following a priori variable selection and

analyses, we conducted exploratory, judgment-based
analyses and model selection with respect to the relative

importance of each predictor variable (sensu Burnham

and Anderson 2002). Variables with negligible predictive
value (our judgement, relative importance weight , 0.3)

were removed in order to both simplify the model and to

amplify the predictive capabilities of the remaining
variables.

Model selection

Traditional statistical tests rely on probability state-

ments (P values) about data given a null hypothesis,
with no information regarding the probability of the

alternative hypothesis. Unlike null hypothesis testing,

the information-theoretic approach does not rely upon
probabilities to evaluate a single model. Rather,

inferences are made from a set of candidate models

developed a priori and evaluated relative to each
competing model given the data at hand. Models can

then be grouped into three categories: (1) a single best

model, (2) models that are obviously inadequate when
compared to the best model and have little utility, and

(3) models that do not fit the data as well as the best

model but cannot be ignored (Holl et al. 2003). The
more nuanced consideration of multiple categories can

be more informative than a single decision to accept or
reject a null hypothesis.

We compared models based on Akaike’s information

criteria (AIC; Akaike 1973, Burnham and Anderson

2002) estimated via PROC LOGISTIC (SAS Institute
2002). AIC is defined as

AIC ¼ �2 logðLðĥ j yÞÞ þ 2K

where log(L(ĥ j y)) is the numerical value of the
maximized log-likelihood over the estimated model

parameters (ĥ) given the data (y) and the approximating

model. K is the number of estimable parameters in the
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approximating model. A second-order bias adjustment

was made for small sample size (AICc; Hurvich and Tsai
1989). The model with the smallest AICc is considered

the ‘‘best approximating’’ model and remaining models
are ranked and ordered relative to the best model using

AICc differences (Di ) and Akaike weights (wi ). As a
general rule, models having Di within 1–2 of the best
model have substantial support, those within 4–7 have

less support, and those .10 either have no support or
fail to explain a substantial portion of the variation in

the data (Burnham and Anderson 2002).
An Akaike weight of at least 0.9 is required for any

one model to be accepted as clearly the best (Burnham
and Anderson 2002). When no single model is defini-

tively the best, and many parameters (variables) appear
in more than one model, model averaging is used to base

inferences on the entire set of models (Burnham and
Anderson 2002). Weighted averages of model parameter

estimates (obtained from PROC LOGISTIC; SAS
Institute 2002) were computed by multiplying each

estimate by the model’s associated Akaike weight and
then summing across all models where the parameter

occurred (Buckland et al. 1997). For each model
average, estimators of unconditional variance and

unconditional standard errors were calculated following
Buckland et al. (1997).

As an indicator of how many models have some
plausibility, the wi were summed sequentially beginning

with the best model until the sum was �0.95, resulting in
a 95% confidence set of models, also referred to as the
‘‘prediction set’’ (Burnham and Anderson 2002). To

measure the relative importance of each independent
variable as compared to all others, we summed the wi for

all models that contained a given independent variable.
Evidence ratios were used to compare the estimated

best model to each of the remaining competing models
and were calculated as w1/wj, where w1 is the Akaike

weight for the best model and wj is the Akaike weight for
the subordinate model in question. As evidence ratios

increase, so does support for the best model (Edwards
1992). Evett and Weir (1998) suggested the following

rules of thumb for interpreting evidence ratios: 1–10 ¼
limited model support; 10–100 ¼ moderate model

support; 100–1000 ¼ strong model support; and .1000
¼ very strong model support. What is important to

consider is that the evidence ratio is constant among
applications; a ratio of 10 represents the same strength

of evidence in all contexts, but its implications will vary
according to the application (Royall 1997).

RESULTS

Injury recovery summary

Of the 30 sites examined, 13 (43.3%) had initiated

seagrass colonization with measurable cover (Braun-
Blanquet score � 1.0) and 17 (56.7%) had not (Fig. 3).

Of the 13 sites with initiated colonization, contraction
and filling of blowholes was widespread (Fig. 3). Of the

17 sites where seagrass had yet to colonize, there was a

tendency for blowholes to have expanded and deepened

(Fig. 3). The average percent decrease in injury area for

sites having seagrass present and experiencing contrac-

tion was 76.8% (range 10.6–100%); these sites had an

average original injury area of 69.3 m2. The average

percent increase in area for sites without seagrass

recolonization and experiencing expansion was 218.9%

(range 13.9–587.4); these sites originally averaged 90.4

m2. The average percent decrease in injury volume for

sites both having seagrass and experiencing in-filling was

61.6% (range 9.5–100%); these sites had an average

original volume of 15.5 m3. The average percentage

increase in volume for sites without seagrass recoloni-

zation and experiencing deepening was 221.3% (range

10.9–568.7%); these sites had an average original volume

of 31.5 m3.

Species substitution.—T. testudinum was the dominant

reference species for 10 of the 13 injuries that had

measurable seagrass colonization, but only two of those

had T. testudinum as the primary recovering species

(Table 2). Even so, the contribution of T. testudinum to

injury contraction at these two sites was slight (20%;

Table 2). Of the three injuries where reference samples

were dominated by S. filiforme, two were primarily

recovering with S. filiforme (Table 2). No reference

samples were dominated by H. wrightii, yet this species

was the primary recovering species for five of the 13

injuries with measurable colonization (Table 2).

Model selection

Seagrass colonization.—Overall, sites having measur-

able colonization appeared to be older, shallower, and

have slightly larger P:A than those not experiencing

seagrass colonization (Table 3). In addition, sites with

measurable colonization exhibited considerably higher

RWE (Table 3). The full complement of a priori

information-theoretic criteria for the global model

including all four predictor variables is given in the

Appendix. Given its low relative importance as a

predictor variable (
P

xi ¼ 0.2465; Appendix), VOL

was removed from the analyses and judgment-based

model selection proceeded using AGE, P:A, and RWE.

As a predictor variable, AGE had the highest relative

importance (
P

xi ¼ 0.7090; Table 4).

The weight of evidence (wi ) for all models considered

ranged from a high of 0.2067 down to 0.0487, indicating

considerable model uncertainty. The highest ranked

model included AGE alone; however, the low Akaike

weight (wi ) and evidence ratios indicated that the weight

of evidence in favor of this model being the ‘‘best’’ was

not convincing (Table 4; Evett and Weir 1998, Lukacs et

al. 2007). The top five models were tentatively supported

given each had Di , 2 (Table 4; Burnham and Anderson

2002). To reach a .95% confidence interval required the

inclusion of the top six models, indicating that each of

these models have some plausibility and that model

uncertainty is high (Burnham and Anderson 2002).
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Model averaging resulted in a predicted estimate of

the effect of AGE on COLONIZE of 1.1918, which was

similar to the predicted estimate based on the fitted best

model (0.9680). However, the corresponding standard

errors (SE) were 1.8637 and 0.5690, respectively. This

substantial increase in SE reflected uncertainty in the

AGE-alone model with regard to its estimated effect on

COLONIZE.

Areal contraction.—Where contraction occurred, in-

juries appeared to be older, shallower, and had slightly

higher P:A, but RWE was similar (Table 3). The full

complement of a priori information-theoretic criteria for

the global model including all four predictor variables is

given in the Appendix. Given its low relative importance

as a predictor variable (
P

xi¼ 0.2973; Appendix), RWE

was removed from the analyses and judgment-based

model selection proceeded using AGE, VOL, and P:A.

As a predictor variable, AGE again had the highest

relative importance (
P

xi ¼ 0.8690; Table 4).

Model uncertainty was apparent as the Akaike

weights ranged from 0.2735 to 0.0231 (Table 4). The

top four models were tentatively supported given each

had Di , 2 (Table 4; Burnham and Anderson 2002). The

top-ranked model included the predictor variables AGE

FIG. 3. Hierarchical relationship among dependent variables irrespective of independent variable effects. One injury did not
have original volume measurements and so was eliminated from the comparison. No colonization was observed at this site. As
such, the ‘‘fill/no fill’’ level is reduced by 1 in this case.

TABLE 2. Shifts in seagrass species abundance (shown in parentheses), calculated from Braun-Blanquet cover estimates, for 13
vessel-grounding sites having measurable seagrass cover during reassessment sampling.

Site
Abundance of dominant

species in reference
Abundance of first

species recovering in injury
Abundance of reference

dominant species observed in injury

1 Thalassia (2.2) Thalassia (1.75) Thalassia (1.75)
8 Syringodium (2) Halodule (2) Syringodium (0)
9 Syringodium (1.9), Thalassia (1.8) Syringodium (1.8) Syringodium (1.8), Thalassia (1)
15 Thalassia (1.9) Halodule (1.6) Thalassia (0.67)
16 Thalassia (1.9) Syringodium (1.1) Thalassia (0.7)
17 Syringodium (2.5) Syringodium (3.6) Syringodium (3.6)
18 Thalassia (2.3) Syringodium (1.75) Thalassia (1.25)
19 Thalassia (3.8) Thalassia (1) Thalassia (1)
21 Thalassia (2.1), Halodule (2) Halodule (5) Thalassia (0)
22 Thalassia (2.9) Halodule (4.6) Thalassia (0.1)
23 Thalassia (2) Syringodium (1) Thalassia (0.6)
28 Thalassia (1.7) Syringodium (1.25) Thalassia (0.75)
29 Thalassia (2.5) Halodule (1.8) Thalassia (0.4)

Note: Abundance was calculated from Braun-Blanquet cover estimates as described in Methods: Species substitution.
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and VOL (wi¼ 0.2735). Evidence ratios suggested weak

support for this model, particularly when compared to

the second best model (AGE), which had a nearly

identical Akaike weight (0.2711) and the third model

(AGE and P:A), which had a similar weight of evidence

(0.2224; Table 4). An approximate 95% confidence

interval was reached by summing the Akaike weights for

the top five models (0.9468), indicating that each of these

models have some plausibility, reenforcing model

uncertainty (Burnham and Anderson 2002).

The model-averaged estimate of the effect of AGE on

CONTRACT was very similar to the predicted estimate

based upon the best model (1.385 vs. 1.2904). The

substantial increase in the unconditional standard error

TABLE 4. Information-theoretic criteria for all models in rank order based upon AICc model
selection methods.

Model Ki AICc Di xi ER
P

xj

Seagrass colonization

INTERCEPT ONLY 1 43.0540
AGE 2 42.3444 0 0.2067 1.00 0.7090
AGE, P:A 3 42.5171 0.1727 0.1896 1.09
RWE 2 42.6094 0.2650 0.1810 1.14 0.5550
AGE, RWE 3 42.7521 0.4077 0.1686 1.23
AGE, RWE, P:A 4 43.0650 0.7206 0.1441 1.43
P:A, RWE 3 44.7751 2.4307 0.0613 3.37
P:A 2 45.2344 2.8900 0.0487 4.24 0.4437

Areal contraction

INTERCEPT ONLY 1 42.1680
AGE, VOL 3 40.1190 0 0.2735 1.00
AGE 2 40.1365 0.0175 0.2711 1.01 0.8690
AGE, P:A 3 40.5330 0.4140 0.2224 1.23
AGE, VOL, P:A 4 42.0907 1.9717 0.1021 2.68
VOL 2 42.6345 2.5155 0.0778 3.52 0.4764
P:A 2 44.5285 4.4095 0.0302 9.07 0.3776
VOL, P:A 3 45.0650 4.9460 0.0231 11.86

Sediment in-filling

INTERCEPT ONLY 1 41.3360
VOL 2 40.0095 0 0.2679 1.00 0.5877
P:A 2 40.5315 0.5220 0.2064 1.30 0.5908
AGE, P:A 3 41.0250 1.0155 0.1612 1.66
VOL, P:A 3 41.3050 1.2955 0.1402 1.91
AGE, VOL 3 42.0510 2.0415 0.0965 2.78
AGE, VOL, P:A 4 42.3517 2.3422 0.0831 3.23
AGE 2 43.5905 3.5810 0.0447 5.99 0.3855

Notes: Abbreviations are: Ki, number of estimable parameters in the model including the
intercept; Di, AIC difference; xi, Akaike weights; ER, evidence ratios; and

P
xi, relative variable

importance weight. The best model will have an AIC difference (Di )¼ 0. Models having Di within
1–2 of the best model have substantial support. The larger the Akaike weight (xi ), the greater the
evidence that model i is the best model out of the candidate set. As evidence ratios (ER) increase, so
does the support for the estimated best model over the model it is indexed against. The larger theP

xj, the more important variable j is relative to the other variables. See Table 3 and Model
development: Predictor variables for more information.

TABLE 3. Mean values of predictor variables for each of the three seagrass recovery-dependent
variables on the basis of whether or not recovery was occurring.

Variable AGE (yr) VOL (m3) P:A RWE ( joules/m)

Colonization

Yes 2.57 15.7 1.25 3071.5
No 2.11 24.7 1.14 1572.6

Contraction

Yes 2.58 15.6 1.22 2246.5
No 2.03 26.5 1.15 2308.3

In-filling

Yes 2.33 13.8 1.35 2107.9
No 2.21 30.4 1.00 2425.9

Note: The predictors are: injury age (AGE), original injury volume (VOL), original injury
perimeter-to-area ratio (P:A), and representative wave energy (RWE). See Model development:
Predictor variables for more information.
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(2.4331) over the conditional standard error from the

best model (0.6238) reflects considerable model uncer-

tainty in the estimated effect of AGE on CONTRACT.

The model-averaged estimate of the effect of VOL on

CONTRACT was very similar to the predicted estimate

based upon the best model vs. (�0.0292 vs. �0.0326).
The unconditional standard error (0.0409) nearly

doubled over the conditional standard error from the

approximated best model (0.0238), which reflected

considerable model uncertainty in the estimated effect

of VOL on CONTRACT.

Sediment in-filling.—Injuries where natural sediment

in-filling occurred appeared to be much shallower and

have higher P:A than those where in-filling did not occur

(Table 3). The means for AGE were similar in

comparing sites with in-filling vs. those without, as were

the means for RWE (Table 3). The full complement of a

priori information-theoretic criteria for the global model

including all four predictor variables is given in the

Appendix. Given its low relative importance as a

predictor variable (
P

xi ¼ 0.2646; Appendix), RWE

was removed from the analyses and judgment-based

model selection proceeded using AGE, VOL, and P:A.

As predictor variables, P:A and VOL had similar

relative importance weights (0.5908 and 0.5877, respec-

tively), which were greater than the importance of AGE

(Table 4).

Model uncertainty was reflected in the range of

Akaike weights (0.2679–0.0447; Table 4). The top four

models were tentatively supported given each had Di , 2

(Table 4; Burnham and Anderson 2002). The highest

ranked model included the single variable VOL with an

Akaike weight of 0.2679 (Table 4). However, evidence

ratios suggested that the top model was not convincingly

the best (Table 4). The second model, which included

P:A alone, had an Akaike weight of 0.2064 (Table 4). It

required six models to reach a .95% confidence interval

(0.9553), indicating that each of these models have some

plausibility and reflecting model uncertainty (Burnham

and Anderson 2002).

The predicted and model-averaged parameter esti-

mates of the effect of VOL on FILL were nearly

identical (�0.0349 and �0.0316, respectively). The

unconditional standard error (0.0520) was more than

double the conditional standard error (0.0202) from the

approximated best model.

DISCUSSION

There was considerable model uncertainty when

making inferences regarding seagrass injury recovery

leading to weak, but not uninformative, predictions. For

seagrass colonization, the model including AGE alone

was selected as the best approximating model and AGE

was the variable with the highest relative importance,

suggesting that gaps created by vessel groundings in

South Florida do not necessarily persist into perpetuity

but can colonize, mostly with pioneering species when

those species are available for recruitment into the

disturbance (Duarte and Sand-Jensen 1990, Thayer et al.

1994, Bell et al. 1999, Whitfield et al. 2002, Di Carlo and

Kenworthy 2008), but also when those species (e.g., H.

wrightii ) were not obviously available. To describe

injury areal contraction, there was support for models

combining AGE with either VOL or P:A, as well as for a

model including AGE alone. For sediment in-filling, the

best approximating model included VOL alone, but was

closely followed by the model that included P:A alone;

both variables had similar relative importance.

The majority of blowholes that had some measurable

natural seagrass colonization taking place also exhibited

areal contraction and sediment in-filling (Fig. 3). These

recovering injuries were on average, smaller in area from

the start than those injuries where recovery was not

occurring, a tendency that has been observed elsewhere

for small vs. large gaps in seagrass beds (Rollon et al.

1998, Bell et al. 1999). Recovering injuries were also

initially shallower than injuries that showed little or no

recovery. Hammerstrom et al. (2007) reported that

regrowth of T. testudinum into experimental excavations

tracked the sediment filling trajectory, a trend that was

observed in the current study as well, with 70% of

naturally filling sites demonstrating measurable sea-

grass colonization, largely with pioneering species.

Conversely, large, deep blowholes demonstrated re-

duced capacities for colonization, contraction, and in-

filling, particularly for T. testudinum, given the tendency

of such deep injuries to exhibit steep edges that can

impede seagrass regrowth (Kenworthy et al. 2002,

Whitfield et al. 2002, Hammerstrom et al. 2007, Di

Carlo and Kenworthy 2008). Although a few injuries

with natural sediment accumulation did not experience

measurable colonization, the mean reduction in volume

for those injuries was half that exhibited by injuries with

measurable seagrass cover, suggesting that natural in-

filling processes play a role in facilitating subsequent

seagrass colonization. Substrate stabilization is critical

to the recovery process (McNeese et al. 2006), and it is

possible that these sites may have been too dynamic for

effective seagrass colonization. Filling of injuries with

crushed limestone rock is a recommended course of

action in many restoration plans for vessel groundings in

the FKNMS (NOAA ORR 2009). However, the high

number of expanded injuries observed in our study

suggests that a protracted lag time between injury

occurrence and restoration implementation may leave

the site vulnerable to secondary disturbance (i.e.,

storms; Whitfield et al. 2002). Given that some of our

blowholes were able to begin to naturally fill with

sediment and sustain seagrass coverage over the course

of one to three years post-occurrence, management

would be best served by implementing restoration fill

activities as quickly as possible, especially for blowholes

greater than 14–16 m3 (average volume of injuries

experiencing colonization, contraction, and natural in-

filling; Table 3).
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P:A ratios were slightly higher for recovering sites, a

trend consistent with simulation models by Fonseca et

al. (2004) that examined recovery as a function of injury

P:A. Those injuries exhibiting recovery tended to be

older, similar to small, naturally occurring and experi-

mentally created seagrass gaps (Williams 1990, Rollon

et al. 1998, Rasheed 1999, Kenworthy et al. 2002, Olesen

et al. 2004, Uhrin et al. 2005, Hammerstrom et al. 2007,

Di Carlo and Kenworthy 2008). Consistent with

previous studies, it appears that, over time and barring

further disturbance, seagrass is expected to grow inward

from the undisturbed injury perimeter, creating a

progressive band of clonal expansion that leads to a

reduction in injury area (Marba and Duarte 1998, Creed

and Amado Filho 1999, Rasheed 1999, Olesen et al.

2004; A. V. Uhrin, W. J. Kenworthy, and M. S.

Fonseca, personal observation).

Wave energy (RWE) was a moderately important

variable with regard to seagrass colonization, but not so

for areal contraction or sediment in-filling; sites exhib-

iting seagrass colonization had nearly double the wave

energy of those not exhibiting colonization. We expected

that as a first-order response, RWE would contribute

negatively, not positively, to seagrass colonization,

suggesting that our assessments captured a second- or

third-order response. We posit that seagrass coloniza-

tion was not directly enhanced by wave energy, but by

the influence of wave energy in preparing the site for

colonization by accelerating sediment in-filling.

Similarly, we suspect that RWE did not adequately

explain sediment in-filling because sediment movement

probably commenced at RWE intensities that were

either reached routinely, or occurred in one episodic

event (we have observed extremely large blowholes in

the back reef environment of the FKNMS to in-fill with

sediment in a matter of hours during exposure to a

tropical storm event; M. S. Fonseca, personal observa-

tion). Thus, areal contraction may be a third-order

response to RWE after sediment in-filling and the

initiation of seagrass colonization, which would also

explain the low predictive strength of RWE.

Vessel groundings often disrupt seagrass belowground

biomass (Di Carlo and Kenworthy 2008), impeding

recovery and creating persistent gaps similar to those

resulting from natural-disturbance events (tropical

storms [Birch and Birch 1984, Poiner et al. 1989],

manatee grazing [Lefebvre et al. 2000]). The blowholes

examined in our study persisted for a number of years as

documented for other vessel-grounding injuries in the

region (Sargent et al. 1995, Whitfield et al. 2002, 2004,

SFNRC 2008) and consistent with modeled recovery

rates that predict full recovery on a decadal scale (Uhrin

et al. 2009). However, in H. wrightii-dominated beds in

Tampa Bay, Bell et al. (1999) observed high rates of

natural gap closure and limited gap expansion, with

gaps rarely persisting beyond six months; a response not

unexpected for a species with high rhizome extension

rates and therefore rapid colonization capabilities

(Fonseca et al. 1987, Gallegos et al. 1994, Kenworthy

et al. 2002). Similarly, dugong feeding areas in Moreton

Bay, Australia, were found to completely recolonize

with Zostera capricorni within one year post-disturbance

(Peterken and Conacher 1997). Z. capricorni forms seed

banks, and dugong grazing activities essentially plow the

sediment leading to seed burial and abrasion of seed

coats, which has been shown to stimulate germination

(Conacher et al. 1994). In contrast, vessel-grounding

injuries in the FKNMS typically occur in areas where

the climax species, T. testudinum, dominates

(Kenworthy et al. 2002). In the current study, T.

testudinum was the most abundant seagrass species for

26 of the 30 injuries. T. testudinum is adapted to grow

vertically upward rather than downward, according to

the branching architecture of its dimorphic rhizomes

(Tomlinson 1974). This species has strongly lignified,

inflexible rhizomes, with inherently slow elongation

rates (Marba and Duarte 1998), and apical meristems

that are inhibited by exposure to light, showing very

little tendency to reorient downward along the steeply

graded margins exhibited by blowholes (Kenworthy et

al. 2002, Whitfield et al. 2002).

Much of the observed natural seagrass colonization

was dominated by H. wrightii and another early

colonizer, S. filiforme, which is consistent with the

current paradigm of Caribbean seagrass bed succession

(Williams 1990, Gallegos et al. 1994, Kenworthy et al.

2002, Di Carlo and Kenworthy 2008), as well as other

studies that have examined gap colonization in seagrass

beds (den Hartog 1971, 1977, Walker et al. 1989,

Rasheed 1999, Olesen et al. 2004). These two species

have flexible rhizomes with rapid rates of rhizome

elongation (Marba and Duarte 1998) that permit

downward vegetative colonization into blowholes.

Because these species are less sensitive to blowhole edge

height and steepness (as compared with T. testudinum),

the sensitivity of the COLONIZE variable was poten-

tially obscured as pioneer species colonization likely

began before the injury edges were sufficiently smoothed

to accommodate T. testudinum. Restoration plans

designed for vessel-grounding injuries in the FKNMS

often incorporate what is termed ‘‘compressed succes-

sion’’ (Derrenbacker and Lewis 1982, Fonseca et al.

1987), whereby pioneering seagrass species such as H.

wrightii are planted in the injury footprint (following

restoration fill activities) to rapidly stabilize sediments

and contribute to the establishment of functional

seagrass habitat (NOAA ORR 2009). Despite the

abundance of H. wrightii and S. filiforme in naturally

colonizing injuries, T. testudinum was present in small

quantities, suggesting that full recovery was underway.

This initial trajectory of pioneering species recovery has

been offered as evidence that injuries may indeed recover

to full baseline values (from a seagrass cover stand-

point), given time measured in decades (Fonseca et al.

2008, Uhrin et al. 2009). Indeed, it would appear as if

the majority of the injuries examined in this study are
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recovering naturally, but probably in episodic stages

(Uhrin et al. 2009) and, in terms of the injured reference

species, quite slowly, particularly regarding the associ-

ated belowground components (Di Carlo and

Kenworthy 2008).

Just as gaps in terrestrial grasslands may serve as

potential seed recruitment sites (Grubb 1977), fragment

or seedling recruitment into seagrass injuries may result

in a scattered distribution of plants and clonal fragments

that could speed the recovery process (Olesen et al. 2004,

Whitfield et al. 2004). Seeds of S. filiforme and H.

wrightii are more persistent than those of T. testudinum,

which may allow for the accumulation of substantial

seed banks (see review by Orth et al. 2000); germination

of Halodule spp. sediment seed reserves has led to rapid

recolonization in areas with extensive, natural seagrass

loss (Robblee et al. 1991, Inglis 2000). Although T.

testudinum seedlings have been shown to recruit, survive,

and grow in vessel-grounding injuries in FKNMS, said

recruitment has been found to sometimes be highly

episodic with low survivorship (Whitfield et al. 2004).

Recruitment of T. testudinum seedlings also appears to

be limited by injury size with reduced seedling densities

in smaller injuries (Kaldy and Dunton 1999, Whitfield et

al. 2004), a response that invokes gap size-dependent

recruitment limitations as seen for other marine

ecosystems (Sousa 1985). In the present study, two

injuries had expanded but also had initiated seagrass

colonization, suggesting recruitment. However, we did

not observe individual seedlings of any seagrass species

in any of our injuries. Therefore, the observed coloni-

zation at these two sites was either due to fragment

recruitment or represents seedlings that had begun to

branch and form small patches, indicating that gap

closure of our vessel-grounding sites is proceeding

almost exclusively from vegetative propagation of

adjacent, undisturbed seagrass sources (but see

Whitfield et al. 2004).

At this time, injury recovery assessments for seagrass

injuries in the FKNMS do not consider the influence of

post-injury disturbances (Kirsch et al. 2005).

Nonetheless, severe wind events have demonstrated the

capacity to both further erode injuries (Whitfield et al.

2002; A. V. Uhrin, unpublished data) as well as to cause

low to moderate sediment accumulation (United States

v. Kane Fisher and Salvors 1997, Whitfield et al. 2002;

A. V. Uhrin, unpublished data). In fact, in 2005,

following our reassessment surveys, our sites experi-

enced a procession of tropical storms and hurricanes

that resulted in both erosion and accumulation of

sediment in various injuries (A. V. Uhrin, unpublished

data), supporting our suspicion that episodic, extreme

storm events may also be drivers of sediment accumu-

lation in gaps (sensu Bell et al. 1999, Whitfield et al.

2002, Bell et al. 2006, Fonseca et al. 2008), which in turn

appears to be the key factor promoting seagrass

colonization in vessel-grounding injuries. However,

because our understanding of the linkages between site

recovery and wind event characteristics remain to be

resolved (i.e., first-, second-, or third-order interactions),
we do not recommend that RWE be added to the

seagrass injury assessment process at this time.

Management implications

Restoration plans in the FKNMS currently call for a
five-year schedule of monitoring to assess the success of

seagrass primary restoration, which is the minimum
recommended monitoring period (Fonseca et al. 1998,

NOAA ORR 2009). This is based on the expectation
that a short period of monitoring will accurately depict

the beginning of a recovery process that may otherwise
be decades in duration. The initial shape of the recovery

curve (percent recovery as a function of time) will have
profound consequences for the remainder of the

trajectory; therefore, determining whether colonization
and injury contraction are underway are important

milestones. Without having achieved these initial stages
of recovery within the five-year period following injury

formation, we have limited expectation of long-term
recovery and in fact, may instead be witnessing a new,

enduring landscape pattern. Our data suggest that to
arrest gap expansion and set vessel groundings on a
trajectory for recovery, it is critical that sediment

elevations in blowholes be quickly restored to the level
of the adjacent, undisturbed grade, especially for those

blowholes with a volume .14–16 m3. Reconstruction of
sediment elevation is critical because recovery, when

measured as injury contraction, was governed exclusive-
ly by in-growth from the undisturbed, adjacent seagrass

bed (vs. seed or fragment recruitment) and even small
differences in elevation across colonizing faces have been

shown to retard seagrass colonization (Rasheed 1999,
Kenworthy et al. 2002, Hammerstrom et al. 2007).

Because claims cases often do not result in sufficient
resources to sustain five years of restoration, we also

suggest that monitoring be limited to subsampling of
representative injuries to derive guidance on restoration

performance.
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