http://www.ijarse.com ISSN-2319-8354(E)

PERFORMANCE INVESTIGATION OFMICROSTRIP PATCH ANTENNAS WITH VARIOUS FEEDING PARAMETERS

Er.Shweta Sharma¹,Mrs.Preeti Bansal²

¹PG Student,²A.P,Dept. of ECE, CEC, Landran (Mohali)

ABSTRACT

Proper impedance matching of a microstrip patch antenna to the feed line is paramount for efficient radiation. However, impedance matching in such a system is not easy and consequently most systems suffer from return losses. The variation of the input impedance of a probe-fed and inset-fed rectangular microstrip patch antennas along the longitudinal and transverse lengths is investigated on probe-fed and microstrip-fed antenna operating at 2.4GHz and 2.0GHz respectively. FEKO simulation software is used to evaluate and characterize the behavior of the input resistance for varying values of feeding position. It is observed that the transverse variation in the input resistance is very minimal. The conclusion drawn here is that a cosine squared and shifted cosine squared function can be used to exactly locate the feed point in a probe and inset fed antennas respectively for an impedance matched antenna system.

Keywords: Longitudinal Feeding Position, FEKO, Probe Feeding, Inset Feeding, Input Impedance, Return Loss.

I INTRODUCTION

Modern communication systems require low profile, light weight, high gain and simple antenna structures to goalong with the research in miniaturization of system devices being undertakene.g. in the design of mobile phones (G.Sharma, 2011). These antennas should also possessreliable propagation characteristics as well as high efficiency. Microstrip antennas depicts suchcharacteristics as characterized by relative ease of construction, light weight, lowcost, conformability to the mounting surface and extremely thin protrusion from the surface (T.Huque, 2011), (Rathod, 2010), (Sayeed, 2010) (Reddy, 2009) and (M. F. Bendahmane, 2010). To enjoy the aforementioned advantages, return losses must be mitigated during the design phase in a particular antenna system (D.D. Sandu, 2006). These losses are attributed to impedancemismatch between the radiating patchand the feed line for the contacting feeding techniquesoutlined below.

Numerous methods of analyzing the performance of a microstrip antenna exist. Among these are;Transmission linemodel, Cavity model and those methods based on numerical calculations e.g.MoM, FETD e.t.c (P. Jsoh, 2005). Theantennas designed in this paper are based on thetransmission line model where the patch is considered as a

http://www.ijarse.com ISSN-2319-8354(E)

section f a transmission lineradiating from its two extremities. There are two common contacting microstrip feedingschemes: probe and edge feeding techniques. In the formermethod, (V. Rajeshkumar K.Priyadarshini, 2012), the inner conductor of a coaxial cable penetrates through thesubstrate and is soldered to the radiating patch while the outer conductor is connected to the ground plane. Matching in this technique is achieved by placing the probe at an appropriate longitudinal position. In the edge feeding method, a conducting strip is connected directly to the edge of theradiating patch. Impedance matching in this technique, however, is a challenge since the edge impedance is very high varying between 150Ω - 250Ω . However, it decreases as the feed point approaches the center of the patch. A variation to this scheme is the inset feeding where an inset notch is cut in the patch to enhance matching. Matching is achieved by controlling thelongitudinal length of the notch thus controlling input impedance level. Appropriate positioning of a coaxial probe and determining the appropriate notch length in the probe and inset –fedantennas respectively, is not easy. The main challenge therefore facing the designers ofmicrostrip antennas is how to exactly position these feed lines for matched microstrip antenna systems. As noted in (G. Sharma, 2011), (Balanis, 2005), (Peters, 2010) designers have been using cosine squared functions for both feeding schemes and it's the authors' objective to further explore the behavior of the input resistance in both schemes for various feeding positions.

In this paper, the effects of varying the longitudinal and transversal feeding position on the inputresistance of both probe-fed and inset-fed microstrip antennas is investigated. Resulting curves; h input resistance as a function of feed length are compared with typical functions. Theinvestigation was carried out using FEKO Electromagnetic software. The design involves aprobe-fed and inset-fed Microstrip Patch antenna operating at 2.4GHz and 2.0GHz frequencyrespectively, with the theory behind probe and inset feeding technique discussed in section 2.The design of theabove described antennas and simulations are presented in Section 3 of thispaper. Simulation results are presented and discussed in section 4. Section 5 gives a detailed conclusion and deduction of the investigation and comparison.

II CONTACT BASED FEEDING TECHNIQUES

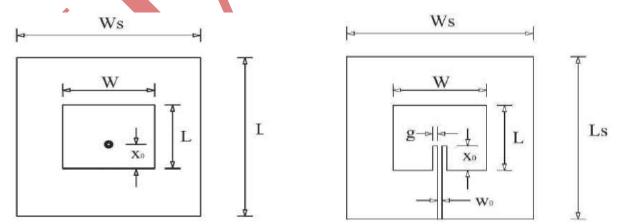


Fig.1 Geometrical Detail of Probe FedFig. 2 Geometrical Detail of Inset Fed Micro Stripline FedPatch AntennaPatch Antenna.

www.ijarse.com

http://www.ijarse.com ISSN-2319-8354(E)

Micro strip Patch feeding can be classified into contact based or contact-less methods. In the contact based method, a microstrip line or coaxial-line is used to directly excite the radiating patch. This feature makes this technique easy to fabricate and easy to model simulate. The main advantage of this technique is that the Impedance matching is easy because the coaxial probe or microstrip line can be placed at any desired position.

2.1 Probe feeding

This scheme involves drilling a hole through the ground plane and the substrate and extending the inner conductor of acoaxial cable through the hole. This conductor is then soldered to the radiating patch whiletheouter conductor of the coaxial cable is connected to the ground plane. Control of the input impedance is achieved by positioning of the probe. Thismethod result in minimal spurious radiation but is very complicated since it involves precise drillingboth on the ground plane and the substrate in terms of position and size.

2.2 Inset feeding

This is a variation of the edge feeding where the fed line is in direct contact with one of the radiating edges of thepatch. Impedance control is achieved by cutting out a notch from the radiating edge and extending the feed line into the notch. This scheme has the advantage that the feed line and the radiating patch can be etched on the samesubstrate making design and realization easier and highly suited for array design. However, conflicting substraterequirement for feed line and radiating element results in reduced system efficiency.

Figures 1 and 2 show both probe and inset fed microstrip antenna configuration. For efficient radiation, the dimensions of the patch as captured in the figures are governed by the following relations derived from the transmission line model.

$$W = \frac{c}{2f_r} \sqrt{\frac{2}{\varepsilon_r + 1}}$$
$$L = \frac{c}{2f_r \sqrt{\varepsilon_{eff} + 1}} - 2\Delta L$$
$$\Delta L = 0.412h \frac{\varepsilon_{eff} + 0.3}{\varepsilon_{eff} - 0.258} \left[\frac{\frac{W}{h} + 0.264}{\frac{W}{h} + 0.8}\right]$$
$$\varepsilon_{eff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[1 + 12\frac{h}{w}\right]^{-\frac{1}{2}}$$

The feed line width w_0 is evaluated from equation given below:

$$Z = \frac{120\pi}{\sqrt{\epsilon_r} \left[\frac{h}{w} + 1.393 + 0.667 \ln\left(\frac{h}{w} + 1.444\right)\right]}$$

www.ijarse.com

http://www.ijarse.com ISSN-2319-8354(E)

S. No	Symbol	Parameter	Probe-fed	Inset-fed
1.	Ls	Substrate length	100mm	100mm
2.	Ws	Substrate width	100mm	100mm
3.	Н	Substrate thickness	3.175mm	3.81mm
4.	L	Patch length	31.778	33.28mm
5.	W	Patch width	42.7540	42.3050mm
6.	w0	Feedline width		9.0273mm

Table-1 Dimensions of Patch Antenna.

Substrate dimensions as well as those obtained from the above equations are tabulated in Table- 1 above for a Center frequency of 2.0GHz for the inset feeding and 2.4GHz for the probe feeding. The substrateemployed in this design isRogers TMM3 with a dielectric constant =3.27, loss tangent $\tan \delta = 0.004$.

III SIMULATION & ANALYSIS

Below is a brief description of how the simulation & analysis were carried out for both feeding schemes.

3.1 Probe-Fed Microstrip Patch Antenna

A probe-fed microstrip antenna was designed in FEKO with dimensions as tabulated in Table 1. Starting from one of the radiating edge of the patch and sequentially changing the feed position in definite steps along the center line all the way to the opposite edge, and for each position the input resistance was evaluated. The procedure above was repeated but this time along 5mm, 10mm and 15mm offset of the center line with the input resistance being evaluated for each case.

Again stating from one of the non-radiating edges and at 5mm from the one radiating edge, probe feeding positionswere sequentially moved in a transversal manner from one edge to the other. This was repeated along a line 10mmand 15mm from the radiating edge.

3.2 Inset Feeding Technique

Simulation in this scheme involved extending the feed line to the edge where the notch has been cut out. This way, the simulated input resistance is that of the edge where the notch has been cut out. For values of the longitudinal notch length varying from zero to L/2, the procedure above was again used to evaluate the input resistance along thecenter line. This was repeated along a line 5mm, 10mm and 15mm offset of the center line. Starting from one of the non-radiating edges with the notch length set to 0mm, the feed position was changed transversally to the opposite edge with the input resistance being evaluated for each position. This was repeated feedposition 4mm, 8mm, and 12mm from the radiating edge and along the transverse centerline.

http://www.ijarse.com ISSN-2319-8354(E)

To characterize the behavior of the input resistance with notch gap, simulation was repeated along the longitudinal centerline for the following notch gap g (as a fraction of the feed line width w₀): g=0.3.w₀, 0.5w₀, 0.7w₀ and w₀.

IV RESULTS AND DISCUSSION

The antenna models with both feeding arrangements & dimensions provided in table-1 & table-2 given earlier were simulated and analyzed to study the input resistance variations. The brief description of the results analysis of both models is presented here.

4.1 Longitudinal and Transverse Variations

Fig. 3 and 4 shows the longitudinal and transverse variations of input resistance in both probe-fed and insetfedscheme. In both figures agreement in the longitudinal and transverse variations can be clearly observed. In figure 3,it can be seen that the transverse variations are minimal especially at the center but deviates from this behavior asthe probe approaches the radiating edges. For the inset-fed antenna, from figure 4, the transverse variations are notconstant and the input resistance reduces as the feedlineapproach the center.

4.2 Characterization of Input Resistance in Probe and Inset Feeding Schemes

The simulation results are as captured in Fig. 5 for the probe-fed antenna and Fig. 6 for the inset-fed antennas forvarying values of notch gap *g*. From figure 5, the simulated input resistance exactly follows the cosine squaredfunction. As the probe feed approach edge edges of the patch however, the curve deviates from the cosine squaredbehavior. Defining the resonant frequency as the frequency at which S11 is minimum, fig. 5 shows the variation in the resonant frequency with feeding position. It can be seen that the variation in frequency with feed position is very minimal as the probe approaches the center of the radiating patch.

For inset-fed antenna, results show that the trace follows cosine squared behavior. However, the minima are not atthe center but shifted towards the feeding edge which is not the case with cosine squared function. It is also observed that the shift is a function of the gap width as depicted in fig. 6. Fig. 7captures all traces for various values of g from $0.3w_0$ to w_0 . From this, it can be observed how the degree of the shift increases with the notch gap. From this, the Input Impedance therefore, can be modeled as

$$R_{in(x=x_0)} = R_{in(x=0)} \cos^2\left[\frac{\pi}{L}(x_0 - x_g)\right]$$

Where, x_g is the notch-gap dependent variable. Tabulated below in Table-2 are values of gap width g and the corresponding values of x_g .

http://www.ijarse.com ISSN-2319-8354(E)

S. No	g(in terms of w ₀)	g(mm)	Xg
1.	0.3	2.7390mm	1.5271mm
2.	0.5	4.5650mm	2.2906mm
3.	0.7	6.3910mm	2.5451mm
4.	1	9.1299mm	3.1814mm

Table 2 Variation of Notch Length With Gap

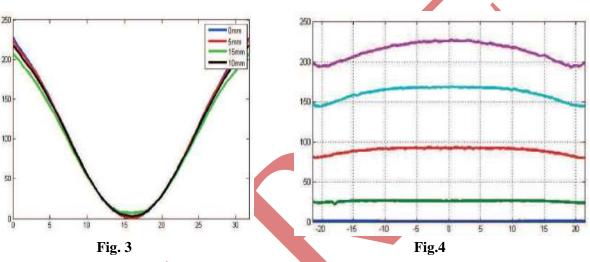


Fig. 3 Longitudinal Variations of Input Resistance for Probe Feeding

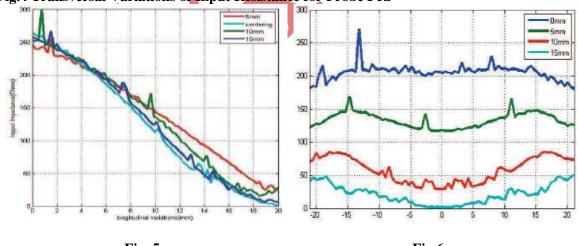
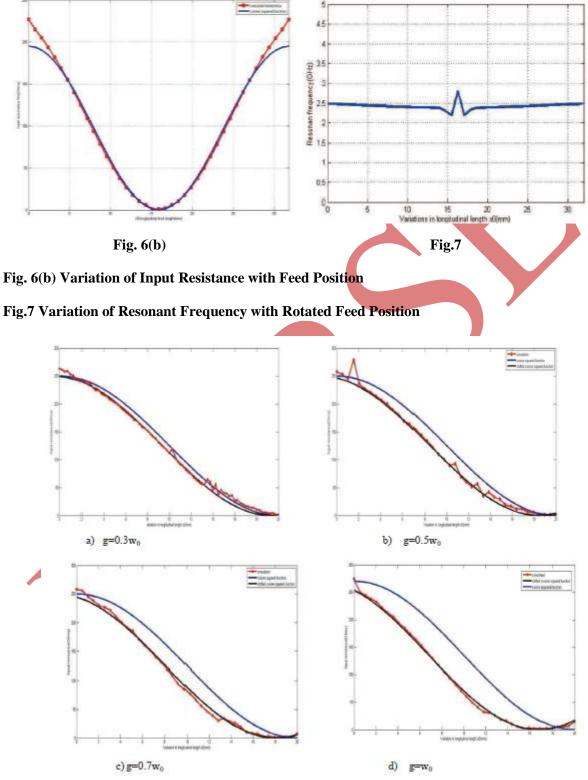


Fig.4 Transversal Variations of Input Resistance for Probe Fed


Fig.6

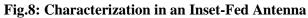


Fig.6(a) transversal Variations of Input Resistance for Inset Feeding

www.ijarse.com

http://www.ijarse.com ISSN-2319-8354(E)

www.ijarse.com

58 | Page

http://www.ijarse.com ISSN-2319-8354(E)

V CONCLUSION& FUTURE SCOPE

The behavior of the input resistance of a rectangular microstrip patch antenna with contacting feeding techniqueswas investigated. For coaxial feeding scheme, it was concluded that cosine squared function fully characterize thevariation of the input resistance along the resonant length of the patch. Variation of the input resistance in aninsetfed though following cosine squared behavior was shifted towards feeding edge. The phase shift wasfound to vary with the gap between the feed line and the radiating patch.

REFERENCES

- [1] Balanis, C.A. (2005) Antenna Theory, Analysis and Design, 3rd edition, John Wiley & Sons,
- [2] D.D. Sandu, O.G.Avadanei, A.Ioachim and D.Ionesi (2006) 'Contribution to the cavity model for analysis of microstrip patch antenna', *journal of optoelectronics and advanced materials*, vol. 8, february, pp. 339-344.
- [3] G. Sharma, D.Shama and A.Katariya (2011) 'An approach to design and optimization of WLAN patch antennas of wi-fi applications', *International Journal of Wireless Communication*, vol. 1, pp. 9-14.
- [4] M. F. Bendahmane, M.Abri, F.T.Bendimerad and N.Boukli-Hacene (2010) 'A simple modified transmission linemodl for inset fed antenna design', *International journal of computer science issues*, vol. 7, september, pp. 331-335.
- [5] P. Jsoh, M.K.Rahim, A. Asrokin and M. Z.Aziz (2005) 'Comparative radiation performance of different feedingtechniques for a microstrip patch antenna', 205 Asia-Pacific conferences on applied electromagnetcs, *IEEE*, pp. 25-40.
- [6] J.R.Ojha and M. Peters (2010) ' patch antennas and microstrip lines', in Minin, P.I. Modern UWB antennas and equipments, Microwave and millimeter wave technologies, 1st edition, Vukovar, Croatia: In-Tech Publishers.
- [7] Rathod, J.M. (2010) 'Comparative study of microstrip patch antenna for wireless communication application', *International journal of innovation and tech nology*, vol. 1, pp. 194-197.
- [8] V. R.Anitha and S.N. Reddy (2009) Design of an 8X1 square microstrip patch antenna array', *International journal of electronic engineering research*, vol. 1, no. 1, pp. 71-77.
- [9] M. A.Matin and A. I. Sayeed, (2010) "A design for inset fed rectangular microstrip patch antenna", *WSEAStransaction on communications*, vol. 9, January, pp. 63-72.
- [10] T. Huque, K. Hosain, S.Islam and A.Chowdhury (2011) 'Design and performance analysis ofmicrostrip arrayantennas with optimum parameters for X-Band applications', *International journal of advanced computer scienceand applications*, vol. 2, pp. 81-87.
- [11] V. Rajeshkumar, K. Priyadarshini, G.Devakirubai, C.Anitha and P.Snekha (2012) 'Design and comparative study ofpin fed and line fed microstrip patch antenna for X-Band applications', *International journal of applied informationsystems(IJAIS)*, vol. 5, pp. 21-25.