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We investigate the global asymptotic behavior of solutions of the difference equation
xn+1 = (1−∑ k−1

j=0xn− j)(1− e−Axn), n∈N0, where A∈ (0,∞), k ∈ {2,3, . . .}, and the initial
values x−k+1,x−k+2, . . . ,x0 are arbitrary negative numbers. Asymptotics of some positive
solutions of the equation are also found.
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1. Introduction

The necessity for some techniques which can be used in investigating equations arising in
mathematical models describing real-life situations in population biology and economics
has increased the interest in studying nonlinear and rational difference equations for the
last four decades, see, for example, [1–23] and the references therein.

In [8] the authors proposed the following research project.

Research project 6.71. Investigate the oscillatory behavior, the global stability, and peri-
odic character of the solutions of the following equation:

xn+1 =
(

1−
k−1∑

j=0

xn− j

)
(
1− e−Axn), n∈N0, (1.1)

where A∈ (0,∞) and k ∈ {2,3, . . .}.
Equation (1.1) describes a discrete epidemic model. For some other biological models,

see, for example, [6–9, 11, 13, 21] and the references therein.
In [23] Zhang and Shi address the research project for the case when all solutions

are positive. It is easy to see that if x−k+1,x−k+2, . . . ,x0 are positive numbers such that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357295306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Discrete Dynamics in Nature and Society

∑0
i=−k+1 xi < 1, then the corresponding solution of (1.1) is positive, that is, xn > 0 for every

n=−k+ 1, . . . ,−1,0,1 . . . .
When A ∈ (0,1], then it is easy to see that the equation (1− x)(1− e−Ax) = x has a

unique solution x = 0 in the interval [0,1], which implies that for each positive solution
(xn)n∈N of (1.1),

xn+1 =
(

1−
k−1∑

j=0

xn− j

)
(
1− e−Axn) < (1− xn

)(
1− e−Axn) < Axn ≤ xn (1.2)

for n≥ 0 (we have employed here that
∑0

i=−k+1 xi < 1). Hence, every positive solution of
(1.1) decreasingly converges to zero in this case.

They also show that the equation

1 +
A

k
= exp

(
(2k+ 1)A+ k−√A2 + 2k(2k+ 1)A+ k2

2k(2k+ 1)

)

+
(2k+ 1)A+ k−√A2 + 2k(2k+ 1)A+ k2

2k(2k+ 1)

(1.3)

has a unique root A∗ for A > 1.
The main results in [23] can be formulated as follows.

Theorem 1.1. Consider (1.1) with A > 1. The following statements are true.
(a) If 1 < A < A∗, then every positive nonoscillatory solution of (1.1) eventually mono-

tonically converges to a unique positive root x, where x < 1/(k+ 1).
(b) If A= A∗, then every positive nonoscillatory solution of (1.1) eventually increasingly

converges to the equilibrium x.
(c) If A > A∗, then every nontrivial solution of (1.1) is strictly oscillatory about the equi-

librium x.

Based on Theorem 1.1, it is interesting to answer the following question.

Question 1.2. Is there a monotone solution of (1.1) for the case 1 < A≤ A∗?

In this paper, we investigate the global stability of the negative solutions of (1.1). First,
note that if x−k+1,x−k+2, . . . ,x0 are negative numbers, then by the inequality ex > 1 for
x > 0, we have that x1 < 0. If we assume that xj < 0 for −k + 1 ≤ j ≤ n, then from (1.1)
and by the same inequality it follows that xn+1 < 0. Hence, by induction, we have that
xn < 0 for every n∈N. Using the change yn =−xn, (1.1) becomes

yn+1 =
(

1 +
k−1∑

j=0

yn− j

)
(
eAyn − 1

)
, (1.4)

where the initial values y−k+1, y−k+2, . . . , y0 are positive numbers.
Although (1.1) for the case of negative initial conditions (i.e., (1.4) for the case of

positive initial conditions) perhaps does not represent a real life population model, it is
important in its own right and addresses the above-mentioned research problem. It is
also a prototype for the quite general equation appearing in Theorem 2.6, below.
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Lemma 1.3. The following statements are true.
(a) Assume that A≥ 1. Then the equation

(1 + kx)
(
eAx − 1

)= x (1.5)

has a unique nonnegative root x0 = 0.
(b) Assume that A∈ (0,1). Then (1.5) has a unique positive root x̂.

Proof. (a) Let g(x)= (1 + kx)(eAx − 1)− x. Then g(0)= 0 and

g′(x)= (A+Akx+ k)eAx − (k+ 1), g′′(x)= A(A+Akx+ 2k)eAx > 0. (1.6)

Hence g′(x) > g′(0) = A− 1 ≥ 0 for every x > 0, since A ≥ 1, and consequently g(x) >
g(0)= 0 when x > 0, from which the result follows in this case.

(b) If A∈ (0,1), then g′(0) < 0. Hence g(x) is a convex function on the interval [0,∞),
which decreases from 0 to a unique positive solution x̃ of the equation g′(x) = 0, and
increase from x̃ to∞, implying the result. �

2. Global stability of (1.4)

In this section, we prove some global convergence results concerning positive solutions
of (1.4).

Theorem 2.1. Assume that A≥ 1. Then every positive solution of (1.4) converges monoton-
ically to +∞ as n→∞.

Proof. By the inequality ex − 1 > x for x > 0, it follows that

yn+1 =
(

1 +
k−1∑

j=0

yn− j

)
(
eAyn − 1

)
> Ayn ≥ yn, (2.1)

that is, the sequence (yn)n∈N is monotonous. Hence there is a finite or infinite limn→∞ yn.
The former is impossible according to Lemma 1.3(a), from which the result follows. �

Remark 2.2. Note that from the proof of Theorem 2.1 we see that the following somewhat
stronger result holds: assume that A≥ 1. Then every eventually positive solution of (1.4)
converges eventually monotonically to +∞ as n→∞.

Theorem 2.3. Assume that A∈ (0,1). Then the following statements hold true.
(a) If 0 <max{y−k+1, y−k+2, . . . , y0} < x̂, then the solution of (1.4) converges to zero.
(b) If min{y−k+1, y−k+2, . . . , y0} > x̂, then the solution of (1.4) converges to +∞.
(c) If y−k+1 = y−k+2 = ··· = y0 = x̂, then yn = x̂ for every n∈N.

Proof. (a) Let M0 =max{y−k+1, y−k+2, . . . , y0} and

M1 =
(
1 + kM0

)(
eAM0 − 1

)
. (2.2)
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From this and (1.4), we have

y1 ≤M1 < x̂. (2.3)

On the other hand, by Lemma 1.3(b) g(x) < 0 when x ∈ (0, x̂), which implies that g(M0) <
0, that is, M1 <M0.

From this and (2.3), we have

y2 ≤
(
1 + kM0

)(
eAM0 − 1

)=M1 < x̂ (2.4)

and similarly

yi ≤
(
1 + kM0

)(
eAM0 − 1

)=M1 < x̂, (2.5)

for every i∈ {2,3, . . . ,k}.
Now define a sequence (Mn)n∈N inductively by

Mn+1 =
(
1 + kMn

)(
eAMn − 1

)
. (2.6)

Similar to above, by induction, we can obtain that

0 < ykn+i ≤Mn+1 <Mn < x̂ for n∈N (2.7)

and for every i∈ {1,2, . . . ,k}. As a monotonous and bounded sequenceMn converges, say
to M. By Lemma 1.3, M is equal to zero, which implies that yn converges to zero.

(b) Let m0 =min{y−k+1, y−k+2, . . . , y0}. Then similar to (a), we obtain

yi ≥
(
1 + km0

)(
eAm0 − 1

)=m1 > x̂, i= 1, . . . ,k. (2.8)

Since g(x) > 0 for x > x̂, we have that m1 >m0. Define a sequence (mn)n∈N by

mn+1 =
(
1 + kmn

)(
eAmn − 1

)
. (2.9)

It is easy to see, by induction, that

ykn+i ≥mn+1 >mn > x̂ for n∈N (2.10)

and for each i∈ {1, . . . ,k}. Since mn tends to +∞ as n→∞ (note that by Lemma 1.3(b),
x̂ is a unique equilibrium of (2.9)), we have that limn→∞ yn = +∞, as desired.

(c) This statement is trivial. �

Remark 2.4. By some slight modification of the proofs of Theorem 2.3(a) and (b), it can
be proved that if max{y−k+1, y−k+2, . . . , y0} = x̂ and there is an index i0 ∈ {−k + 1,−k +
2, . . . ,0} such that yi0 < x̂, then Theorem 2.3(a) holds. Also if min{y−k+1, y−k+2, . . . , y0} = x̂
and there is an index i0 ∈ {−k + 1,−k + 2, . . . ,0} such that yi0 > x̂, then Theorem 2.3(b)
holds.

Remark 2.5. Note that Theorem 2.3(a) holds if we allow initial conditions to be nonneg-
ative, that is, if 0 ≤max{y−k+1, y−k+2, . . . , y0} < x̂, then the solution of (1.4) converges to
zero.
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Similar to Theorem 2.3, it can be proved that the following extension of the theorem
holds. The proof will be omitted.

Theorem 2.6. Consider the difference equation

xn+1 = f
(
xn, . . . ,xn−k+1

)
, (2.11)

where f is a positive continuous function on (0,∞)k increasing in each variable, the function
h(x)= f (x, . . . ,x)− x has a unique positive root x∗, and

h(x)
(
x− x∗) > 0, x 	= x∗. (2.12)

Then the following statements hold true.
(a) If max{x−k+1,x−k+2, . . . ,x0} ≤ x∗, and there is an index i0 ∈ {−k + 1,−k + 2, . . . ,0}

such that xi0 < x
∗, then the solution of (2.11) converges to zero.

(b) If min{x−k+1,x−k+2, . . . ,x0} ≥ x∗, and there is an index i0 ∈ {−k + 1,−k + 2, . . . ,0}
such that xi0 > x

∗, then the solution of (2.11) converges to +∞.
(c) If x−k+1 = x−k+2 = ··· = x0 = x∗, then xn = x∗ for every n∈N.

Question 2.7. What can we say about global stability of those solutions of (1.4) whose
initial values do not satisfy any of the three conditions mentioned in Theorem 2.3, that
is, if some of them are strictly below x̂ and some of them are strictly above x̂?

A partial answer to this question is given by the following result. Before formulating
the result, we define x∗1 as a unique positive root of the equation

(1 + x)
(
eAx − 1

)− x = 0, (2.13)

where A ∈ (0,1). The existence and uniqueness of the root follows from the proof of
Lemma 1.3(b).

Theorem 2.8. Assume that A∈ (0,∞) and that (yn) is a solution of (1.4) such that there is
an n0 ≥ 0 such that yn0 ≥ x∗1 . Then yn→∞ as n→∞.

Proof. Let a sequence (zn), n≥ n0, be defined as follows:

zn+1 =
(
1 + zn

)(
eAzn − 1

)
, (2.14)

zn0 = yn0 .
Assume first that yn0 > x

∗
1 . From this, (1.4), and (2.14), it follows that yn0+1 > zn0+1. By

induction, it can be easily proved that

yn > zn for n≥ n0 + 1. (2.15)

Since zn0 > x
∗
1 , by Theorems 2.1 and 2.3, case k = 1, it follows that limn→∞ zn = +∞.

From this and (2.15), the result follows in the case.
If yn0 = x∗1 , then from (1.4) we have that

yn0+1 =
(

1 +
k−1∑

j=0

yn0− j

)
(
eAyn0 − 1

)
>
(
1 + yn0

)(
eAyn0 − 1

)= x∗1 . (2.16)
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So we can choose a sequence (zn), n ≥ n0 + 1 defined by (2.14) with zn0+1 = yn0+1 and
repeat the above procedure.

We now return to consideration of positive solutions to (1.1).

3. Asymptotics of some positive solutions of (1.1) for the case A∈ (0,1]

As we noted in Section 1, when A ∈ (0,1] all positive solutions of (1.1) are decreasing
and converge to zero. Moreover, we know that xn+1 < Axn for n≥ 0, hence xn < Anx0. An
interesting question is whether there is a solution which satisfies the following asymptotic
relationship:

xn ∼An. (3.1)

This will be considered by making use of a recent inclusion theorem due to Berg [3].
For closely related results, see, for example, [1–5, 10–17, 19].

Consider a general real nonlinear difference equation of order m≥ 1, of the form

F
(
xn, . . . ,xn+m

)= 0, (3.2)

where F : Rm+1 → R, n ∈N0. Also, let ϕn and ψn be two sequences such that ψn > 0 and
ψn = o(ϕn) as n→∞. Then, under some conditions posed on the function F, for arbitrary
ε > 0, there exist a solution xn of (3.2) and an n0(ε)∈N, such that

ϕn− εψn ≤ xn ≤ ϕn + εψn, (3.3)

for n ≥ n0(ε). The set of all sequences xn satisfying (3.3) is called an asymptotic stripe
X(ε), that is, yn ∈ X(ε) implies the existence of a real sequence Cn with yn = ϕn +Cnψn
and |Cn| ≤ ε for n≥ n0(ε). Hints for the construction of the pairs ϕn, ψn can be found in
[1–3].

The next theorem is the main result in [3]. (See also [4], for a correction of the proof.)
�

Theorem 3.1 (see [3, Theorem 2.1]). Let F(w0,w1, . . . ,wm) be continuously differentiable
when wi = yn+i, for i= 0,1, . . . ,m, and yn ∈ X(1). Let the partial derivatives of F satisfy

Fwi
(
yn, . . . , yn+m

)
∼ Fwi

(
ϕn, . . . ,ϕn+m

)
(3.4)

as n→∞ uniformly in Cj for |Cj| ≤ 1, n≤ j ≤ n+m, so far as Fwi 	≡ 0. Assume that there
exist a sequence fn > 0 and constants A0,A1, . . . ,Am such that both

F
(
ϕn, . . . ,ϕn+m

)= o( fn
)
,

ψn+iFwi
(
ϕn, . . . ,ϕn+m

)
∼Ai fn

(3.5)

for i= 0,1, . . . ,m as n→∞, and suppose there exists an integer l, with 0≤ l ≤m, such that

∣
∣A0

∣
∣+ ···+

∣
∣Al−1

∣
∣+

∣
∣Al+1

∣
∣+ ···+

∣
∣Am

∣
∣ <

∣
∣Al
∣
∣. (3.6)

Then, for sufficiently large n, there exists a solution (xn)n∈N0 of (3.2) satisfying (3.3).
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Using Theorem 3.1, now we find the asymptotics of some solutions of (1.1) for the
case A∈ (0,1).

Theorem 3.2. Let A∈ (0,1). Then (1.1) has a solution with the following asymptotics:

xn = tn + bt2n + o
(
t2n
)

(3.7)

for some t ∈ (0,1) and some b 	= 0.

Proof. In order to apply Theorem 3.1, we write (1.1) in the following form:

F
(
xn, . . . ,xn+k

)= xn+k −
(

1−
k∑

j=1

xn+k− j

)
(
1− e−Axn+k−1

)= 0. (3.8)

Assume that a solution of (1.1) has the first two members in its asymptotic as follows:

ϕn = tn + bt2n. (3.9)

Thus, we calculate F(ϕn,ϕn+1 . . . ,ϕn+k)= Fn. We have

Fn = tn+k + bt2n+2k −
(

1−
k−1∑

j=0

(
tn+ j + bt2(n+ j))

)

×
(

A
(
tn+k−1 + bt2(n+k−1))− A2

2
t2(n+k−1) + o

(
t2(n+k−1))

)

= tn+k−1(t−A) + t2n
(

bt2k −
(

Ab− A2

2

)

t2k−2 +A
k−1∑

j=0

tk+ j−1

)

+ o
(
t2n
)
.

(3.10)

Taking t =A and putting it into (3.10), we have that

Fn = A2n

(

bA2k−1(A− 1) +
1
2
A2k +

k−1∑

j=0

Ak+ j

)

+ o
(
A2n). (3.11)

If we choose

b = (1/2)A2k +
∑k−1

j=0A
k+ j

A2k−1(1−A)
, (3.12)

we obtain that

Fn = o
(
A2n). (3.13)
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The partial derivatives of the function

F = F(w0,w1, . . . ,wk
)=wk −

(

1−
k∑

j=1

wk− j

)
(
1− e−Awk−1

)
(3.14)

are

Fwi =
(
1− e−Awk−1

)
, i∈ {0,1, . . . ,k− 2},

Fwk−1 =
(
1− e−Awk−1

)−A
(

1−
k∑

j=1

wk− j

)

e−Awk−1 , Fwk = 1.
(3.15)

From this, it is easy to see that

Fwi
(
yn, . . . , yn+k

)
∼ Fwi

(
ϕn, . . . ,ϕn+k

)
(3.16)

as n→∞, uniformly in Cj for |Cj| ≤ 1, n ≤ j ≤ n+ k, for every yn = ϕn +Cnψn, where
ψn = A2n.

Further we have

ψn+iFwi
(
ϕn, . . . ,ϕn+k

)
∼A3n+2i+k, (3.17)

when i∈ {0,1, . . . ,k− 2},

ψn+k−1Fwk−1

(
ϕn, . . . ,ϕn+k

)
∼−A2n+2k−1, (3.18)

ψn+kFwk
(
ϕn, . . . ,ϕn+k

)= A2n+2k. (3.19)

Hence, it is natural to choose fn = A2n, from which it follows that Ai = 0, i∈ {0,1, . . . ,k−
2}, Ak−1 =−A2k−1, and Ak =A2k.

From (3.16)–(3.19), we see that all conditions of Theorem 3.1 are satisfied with ϕn =
An + bA2n, ψn =A2n, and l = k− 1, which implies that (1.1) has a solution xn satisfying the
inequalities in (3.3) with such chosen ϕn and ψn. From this, it follows that the following
asymptotics hold:

xn = An + bA2n + o
(
A2n), (3.20)

where b is given by (3.12).
In view of our results in [17], the following question is interesting for the case A= 1.

�

Question 3.3. Assume that A = 1. Is there a solution of (1.1) with the following asymp-
totic:

xn = a

n
+
b lnn+ c

n2
+
d ln2n+ e lnn

n3
+ o
(

1
n3

)

(3.21)

for some real numbers a, b, c, d, and e?
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