
Resolving Database Constraint Collisions Using IIS*Case Tool

Sonja Ristić, Assistant Professor, Ph.D., B.Sc. in Math., B.Sc. in Ecc.,

University of Novi Sad, Faculty of Technical Sciences,

Trg D. Obradovića 6, 21000 Novi Sad, Serbia,

e-mail: sdristic@uns.ns.ac.yu

Ivan Luković, Full Professor, Ph.D., Inf. Eng.,

University of Novi Sad, Faculty of Technical Sciences,

Trg D. Obradovića 6, 21000 Novi Sad, Serbia,

e-mail: ivan@uns.ns.ac.yu

Jelena Pavićević, M.Sc., B.Sc. in Math.,

Internet Crna Gora d.o.o and University of Montenegro, Faculty of Science,

Bulevar Svetog Petra Cetinjskog 2, 81000 Podgorica, Montenegro,

e-mail: jelenap@cg.yu

Pavle Mogin, Senior Lecturer, Ph.D., El. Eng.,

Victoria University of Wellington, School of Mathematical and Computing Sciences,

P.O. Box 600, Wellington, New Zealand

e-mail: pmogin@mcs.vuw.ac.nz

Abstract. IIS*Case (Integrated Information

Systems*Case, R.6.21) is a CASE tool that we

developed to support automated database (db)

schema design, based on a methodology of

gradual integration of independently designed

subschemas into a database schema. It provides

complete intelligent support for developing db

schemas and enables designers to work together

and cooperate reaching the most appropriate

solutions.

The process of independent design of

subschemas may lead to collisions in expressing

the real world constraints and business rules.

IIS*Case uses specialized algorithms for checking

the consistency of constraints embedded in the

database schema and the subschemas. IIS*Case

supports designers in reviewing and validating

results obtained after each step of the design

process. The paper outlines the process of

resolving collisions. A case study based on an

imaginary production system is used to illustrate

the application of IIS*Case. Different outcomes

and their consequences are presented.

Keywords. Database Schema Design and

Integration; CASE tool; Constraint Collisions;

IIS*Case.

1. Introduction
There are two common basic approaches to the

process of database (db) schema design: (a) the

direct approach, and (b) the approach of a gradual

integration of external schemas [3].

In the direct approach, user requirements are

processed all at once and this approach may be

appropriate only in cases of design of small db

schemas.

The second approach is used when the number

and complexity of user requirements are beyond

the designer's power of perception.

IIS*Case (Integrated Information Systems*

Case, R.6.21) is a CASE tool, relying on the

second approach. It is developed to support an

automated database (db) schema design, based on

the concepts end-users are familiar with. It is

based on a methodology of gradual integration of

independently designed subschemas into a db

schema ([4], [5], [3], [18]). IIS*Case is designed

to provide complete support for developing db

schemas and to give an intelligent support during

that process. It enables designers to work together

and cooperate reaching the most appropriate

solutions.

The process of independent design of

subschemas may lead to collisions in expressing

the real world constraints and business rules. If the

collisions exist, at least one subschema is formally

not consistent with the db schema. Programs made

over an inconsistent subschema do not guarantee

safe database updates. IIS*Case uses specialized

algorithms for checking the consistency of

constraints embedded in the database schema and

the subschemas. The nature of the most of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357294642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

collisions is such that the designers must resolve

them themselves, at the conceptual level, but we

believe that IIS*Case may considerably improve

the process of their resolving.

The paper presents a way of applying IIS*Case

in the process of resolving constraint collisions,

for a selected case study. The case study

represents a simplified, imaginary production

system. We discuss in the paper some alternative

designer's decisions and analyze their possible

consequences. Not all of the alternatives are

always applicable, and we highlight such

particular cases in the paper.

Our approach is based on the concept of form

type ([2], [4], [18]). Unlike some other similar

approaches ([6], [13]), we do not use Entity-

Relationship (ER) data model for conceptual

modelling. Instead, we focus on straightforward

generating relational db schemas using form type

specifications. Although the approach is not a sole

one [19], we have not found references covering

all the aspects of our approach. Some crucial

differences between our approach and the other

ones are: (i) IIS*Case generates not only relation

scheme keys and basic referential integrity

constraints, but also unique constraints and other

interrelation constraints; (ii) IIS*Case provides

algorithms for integrating independently designed

subschemas into a unified db schema; (iii) Unified

db schema and subschemas are aimed not only for

queries, but also for safe updates that guarantee

database consistency. A more detailed discussion

of related works may be found in [18].

Apart from Introduction and Conclusion, the

paper consists of three sections. In Section 2 we

discus a survey of the approach. Section 3 is

devoted to the constraint collisions. Section 4

presents a case study, and illustrates applying

IIS*Case in detecting and resolving collisions. We

particularly cover resolving collisions of key,

unique, null value, and referential integrity

constraints.

2. An Outline of the Approach

Generally, design of a complex db schema is

based on a gradual integration of external

schemas. An external schema is a structure that, at

the conceptual level, formally specifies a user

view on a db schema. The first step of a db

schema design process is designing separate

external schema for each group of similar end

users business tasks. Each transaction program

that supports a user requirement is based on an

external schema, which is associated to it.

A db schema design in the IIS*Case

environment is organized by decomposing the

whole project into application systems. An

application system is a specification of a

subsystem of a future information system. The set

of all application systems of an information

system is organized as a tree structure. It is the

application system tree of the information system.

Thus, each application system may include one or

more child application systems (application

subsystems). Fig. 1 depicts two different

application system trees in IIS*Case: Factory and

Faculty Organization. Application system

Administration has three apllication subsystems:

Personnel, Working_Unit and Working_Orders.

Figure 1. Application system trees in

IIS*Case

External schemas in IIS*Case are expressed by

sets of the form types. A form type generalizes a

document type, i.e. screen or report forms that

users utilize to communicate with an information

system [18]. Each form type is designed in the

context of an application system. Therefore, a set

of form types is a part of an application system,

and represents an input specification for the

process of the db schema design.

Fig. 2 depicts steps of the db schema design

process in IIS*Case. Texts written in italic style

denote the outputs of the preceding steps.

Conceptual modelling is performed by creating

sets of form types, one for each application

subsystem.

After being created, external schemas should

be integrated into a conceptual db schema. In con-

trast to other (conceptual) data models, relational

data model offers much wider possibilities to

formalize and automate the process of db schema

integration [18]. Therefore, db schema integration

in IIS*Case is done at the implementation level,

where a db schema is expressed by the relational

data model. A db schema is obtained by the

gradual integration of subschemas. A subschema

is obtained by expressing an external schema by

the concepts of the relational data model and

applying the synthesis algorithm [3], [12]. A

formal specification of a subschema may be found

in [16]. Step 2 generates a subschema for each

directly subordinated application subsystem of the

selected application system. Step 3 generates a

relational db schema for the selected application

system. It is called a potential database schema.

Figure 2. Steps of the db schema design
process

The process of independent design of external

schemas may lead to collisions in expressing the

real system constraints. If such collisions exist, at

least one subschema is inconsistent with the

potential database schema. The programs made

over inconsistent subschemas do not guarantee

safe database updates. (The problem of safe

database updates is discussed in [9].) Therefore,

the appropriate procedures for resolving collisions,

which arise as a result of independent modelling

of subschemas, must be applied. The process of

detecting and resolving constraint collisions is

called a consolidation of a db schema and its

subschemas. Shaded rectangles in Fig. 2 represent

steps of the consolidation process.

Db schema design is an iterative process,

ending when all of the subschemas are consistent

with the potential db schema. The potential db

schema becomes a formal specification of an

implementation db schema (Step 6).

IIS*Case supports a designer in reviewing and

validating results obtained after each step of the

design process. For example, the designer may

review generated relation schemes and constraints,

and check the compatibility with the subschemas.

If the designer is not satisfied with generated

results, or there are some incompatibilities, he or

she can go one or more steps back, make changes

in form types and repeat the process.

A more detailed explanation of db design

process in IIS*Case may be found in [18].

3. Collisions of Constraints

Our approach to the integration is based on

detecting and resolving constraint collisions that

may arise among a potential db schema and

subschemas of an application system. In this

section the principles of the process of resolving

constraint collisions are presented.

Let Pk be the subschema from one of the

application subsystems of the selected application

system. In step 3 of the db design process, a

potential database schema for the application

system is generated.

A db schema constraint is said to be relevant

constraint for subschema Pk, if the operation that

might violate it, is allowed in Pk.The operations

that might violate a constraint are called critical

operations.

A database schema constraint is said to be

embedded into subschema Pk if it is a logical

consequence of the set of subschema constraints.

A constraint that is relevant for a subschema Pk

may be embedded, or not embedded into Pk. A

constraint that is relevant for Pk but not embedded

into it, may be:

⋅ Includible, if it can be expressed using the

existing concepts and structure of the subschema

Pk; or

A set of

1. Conceptual modeling

2. Transforming into Relational

Data Model

3. Generating a db schema

Do the Collisions

exist?

5. Resolving Constraint Collisions

4. Detecting Constraint Collisions

6. Potential db schema is

pronounced as final db schema

form type sets

A set of subschemas

A potential database schema

YES

NO

A list of collisions

A set of designers' decisions

Final db schema

Figure 3. Steps of the process of resolving
constraint collisions

⋅ Extending, otherwise.

In order to embed an extending constraint into

a subschema Pk, we must add some new concepts

(new attributes, or even new relation schemes)

into the subschema. Embedding an includible

constraint does not require any changes of the

structure of a subschema.

A database constraint is potentially inconsis-

tent if it is relevant for at least one subschema Pk,

but not embedded into it.

Constraint inconsistencies are also called con-

straint collisions.

The integration process may successfully pass

from step 3 trough step 6 (Fig. 2), only if all the

subschemas contain compatible sets of constraints

i.e. if an empty list of collisions is generated in

step 4. Otherwise, the integration process stops,

and the collisions must be resolved. In the process

of resolving collisions, colliding constraints may

be embedded into subschemas for various reasons.

The main one is independent modelling of their

form types. Thus, the appropriate procedures for

resolving collisions must be applied in step 5 (Fig.

2).

Fig. 3 depicts steps of the process of resolving

constraint collisions. For each potentially

inconsistent constraint (PIC), a designer has to

decide whether it should be embedded into the db

schema. Subschema constraints that are embedded

into the db schema are considered as globally

valid.

If a designer decided to embed a PIC into a db

schema, it must be also embedded into all the sub-

schemas, for which it is relevant. Therefore, for

each subschema for which selected PIC is relevant

and not embedded into it, designer has two

possible solutions:

⋅ To embed selected PIC into Pk; or

⋅ To exclude all critical operations for selected

PIC from Pk. Accordingly, PIC is no longer

relevant constraint for Pk.

 Otherwise, a PIC must not be embedded into

the set of database constraints. It is important to

emphasize here that subschema constraints must

not be less restrictive than the corresponding

database constraints, but may be more restrictive.

Consequently, some subschema constraints may

not be embedded into the db schema. A

subschema constraint is considered as locally valid

if it is embedded into a subschema, but not

embedded into the db schema. Some constraints

could not be locally valid. Unique constraint is

one of them, as it is illustrated in Section 4.2.

Therefore, a selected PIC has to be

⋅ excluded from, or

⋅ pronounced as locally valid in

1.1.

Exclude all

critical

operations

from Pk

Select a Potentially Inconsistent

Constraint (PIC)

YES

NO Must PIC be

globally valid?

NO YES

1. For each subschema Pk, for

which PIC is RELEVANT and

NOT EMBEDDED into it

Must Pk

contain any

of critical

operations?

1.2.

Embed

PIC into

Pk

2. For each subschema Pk in

which PIC is EMBEDDED

May PIC be

locally valid

in Pk?

2.1.

Exclude

PIC from

Pk

2.2.

Pronounce

PIC as

locally valid

for Pk

YES NO

all the subschemas from which it stems.

In the first iteration of the db schema design

process, all constraints of a subschema are

pronounced as globally valid. Some of them may

be pronounced as locally valid in the subsequent

iterations.

IIS*Case uses specialized algorithms to check

the consistency of constraints embedded in a db

schema and the corresponding subschemas. Each

execution of the consistency checking algorithm

processes all constraints of a selected type.

Therefore, consistency checking should be

performed for each constraint type separately.

Currently, IIS*Case supports detecting collisions

of attribute sets, and the constraints of the

following types: key and unique constraints, null

value constraints, and referential integrity

constraints. It generates the reports on detected

collisions. Resolving collisions may lead to

producing a new version of a db schema. In the

following Section, we demonstrate applying

IIS*Case in detecting collisions, together with an

analysis of related reports and possible designer's

actions.

4. Detecting and Resolving Collisions of

Constraints in IIS*Case – A Case

Study

We use a case study of an imaginary pro-

duction system to illustrate applying IIS*Case in

detecting and resolving collisions. The example is

purposely simplified, in order to clearly present

the process of detecting and resolving constraint

collisions.

We identified three groups of similar user

requirements:

⋅ Personnel – managing personnel data, i.e.

supporting insert, update and delete data about

staff members;

⋅ Working Units (WU) – managing WU data, i.e.

supporting insert, update and delete data about

working units and update some data about staff

members belonging to a particular WU;

⋅ Working Orders (WO) – supporting delete data

about working orders.

For each of those groups, a set of form types is

designed. Descriptions of the sets of form types

designed in IIS*Case for the sake of this case

study may be found in [10]. As an illustration, the

IIS*Case form for specifying form types is shown

in Fig. 4. It presents the form type Staff from the

external schema PERSONNEL.

IIS*Case generates the following non-trivial

inclusion dependencies at the level of the

attributes of a Universal Relation Scheme (URS):

{[ManagWU] ⊆ [SSN], [Sign] ⊆ [SSN],

 [Manag] ⊆ [SSN]},

as a reaction on a designer's decision to introduce

new attributes by the renaming of existing ones, as

follows: ManagWU from SSN (Social Security

Number) for working unit's manager, Manag from

SSN for an employee's manager, and Sign from

SSN for an employee who signed up a working

order.

Figure 4. Form type Staff from external

schema PERSONNEL

For each group of user requirements, IIS*Case

maps form types into a relational subschema by

inferring attributes and constraints from the form

types and embedding them into a relational

subschema. It also generates the appropriate

reports about the db schema design progress. In

this way, we obtain three subschemas: PER-

SONNEL, WORKING_UNIT and WORKING_OR-

DER. Each of them is presented in the following

text, with its sets of relation schemes and

interrelation constraints, where each relation

scheme is represented as a named triple, with the

following components: a set of attributes, a set of

keys, and a set of unique constraints [17].

PERSONNEL

⋅ Staff({IdWU, SurN, DatB, Addr, SSN, Name},

 {SSN}, {})

⋅ NULL values allowed only for the attributes:

SurN, Addr, Name, Datb,

⋅ Operations allowed in the relation scheme Staff:

read, insert, update, delete

⋅ WU({IdWU, NamWU, ManagWU},{IdWU}, {})

⋅ NULL values allowed only for the attributes:

ManagWU

⋅ Operations allowed in the relation scheme WU:

read, insert, update

⋅ WU[ManagWU] ⊆ Staff[SSN]

⋅ Staff[IdWU] ⊆ WU[IdWU]

WORKING_UNIT

⋅ Staff({IdWU, SurN, DatB, Addr, SSN, Name,

 School, IdS, Manag, CelTel},

 {IdWU+IdS, SSN}, {})

⋅ NULL values allowed only for the attributes:

Addr, CelTel

⋅ Operations allowed in the relation scheme Staff:

read, insert, update, delete

⋅ WU({WRoom, IdWU, NamWU, ManagWU},

 {IdWU}, {NamWU})

⋅ NULL values not allowed for all the attributes

⋅ Operations allowed in the relation scheme WU:

read, insert, update, delete

⋅ WU[ManagWU] ⊆ Staff[SSN]

⋅ Staff[IdWU] ⊆ WU[IdWU]

⋅ Staff[Manag] ⊆ Staff[SSN]

WORKING_ORDER

⋅ WO({IdWO, DatWO, Amount, IdPR, Sign},

 {IdWO}, {})

⋅ NULL values allowed only for the attribute: Sign

⋅ Operations allowed in the relation scheme WO:

read, delete. �

IIS*Case produces the first version of a db

schema (i.e. a potential db schema) by using

synthesis algorithm, and independently designed

subschemas. The order of integration is irrelevant.

IIS*Case performs the consistency checking

over the potential db schema and all the specified

subschemas, for each constraint type, separately.

The order of selecting constraint types in the

consistency checking procedure is relevant.

IIS*Case imposes the following order of

constraint types in consistency checking: checking

of the attribute sets, the key and unique

constraints, the null value constraints, and finally

the referential integrity constraints. Successful

execution of the procedure for a selected

constraint type is a prerequisite for initiating the

procedure for the subsequent constraint type. The

consistency checking for the subsequent constraint

types cannot be initiated, whereas the detected

collisions are not resolved. The reports on detected

collisions contain the explanations, how to

interpret collisions. The structure of those reports,

for different constraint types, will be presented in

the following subsections.

The first condition that a db schema and a

subschema have to satisfy is that the set of

attributes of each relation scheme of the

subschema must be a subset of the attribute set of

at least one relation scheme of the db schema. A

selected relation scheme satisfying the

aforementioned condition is called the

corresponding database relation scheme.

Checking the collisions of the sets of attributes is

the first step of the consistency checking process.

Further discussion of the collision is omitted from

the paper. More information and the examples

may be found in [10], [18].

4.1. Key Constraint Collisions

A potential database schema ADMINISTRATION

is generated using the subschemas PERSONNEL,

WORKING_UNIT and WORKING_ORDER. It is

structured as follows:

⋅ Staff({IdWU, SurN, DatB, Addr, SSN, Name,

 School, IdS, Manag, CelTel},

 {IdWU+IdS, SSN}, {})

⋅ WU({WRoom, IdWU, NamWU, ManagWU},

 {IdWU}, {NamWU})

⋅ WO({IdWO, DatWO, Amount, IdPR, Sign},

 {IdWO}, {})

⋅ WU[ManagWU] ⊆ Staff[SSN]

⋅ Staff[IdWU] ⊆ WU[IdWU]

⋅ Staff[Manag] ⊆ Staff[SSN]

⋅ WO[Sign] ⊆ Staff[SSN]. �

The analysis of the attribute set collisions

finishes successfully, and the process continues by

initiating the consistency checking of key

constraints. A key constraint collision is detected,

the process stops, and an appropriate report is

generated. The first part of the report is shown in

Fig. 5.

Figure 5. Report on key collisions

Relation scheme Staff in the subschema PER-

SONNNEL has SSN as the sole key, while its

corresponding relation scheme Staff in the

potential db schema ADMINISTRATION has two

keys: SSN and IdWU+IdS. Operations insert and

update are allowed for Staff in the subschema

PERSONNEL. Since they may violate the key

constraints, the key constraint IdWU+IdS is

relevant for the subschema PERSONNEL, but it is

not embedded into it. Furthermore, it cannot be

expressed using the concepts of subschema

PERSONNEL, since its relation schemes do not

contain the attribute IdS. This constraint is

extending one. A designer initiates the process of

resolving the collision.

According to Fig. 3, a designer may choose

between four alternatives, in common. However,

some of them may be inapplicable in the specific

situation.

1. The key constraint IdWU+IdS needs to be

embedded into the db schema.

Consequently, the subschema PERSONNEL

must be changed in one of the following ways.

1.1. The operations insert and update of IdWU

have to be removed from the relation

scheme Staff in PERSONNEL.

A designer may decide so if he or she

finds that the operations insert and update

of IdWU are obsolete for Staff in

PERSONNEL.

1.2. The key constraint IdWU+IdS must be

embedded into the subschema

PERSONNEL.

A designer may decide so if he or she

finds that the operations insert and update

of IdWU are mandatory for Staff in

PERSONNEL. Since the key constraint

IdWU+IdS is extending one, in order to

embed it into the subschema, a designer

need to add the attribute IdS into the

relation scheme Staff in PERSONNEL.

2. The key constraint IdWU+IdS does not need

to be embedded into the db schema.

Consequently, the subschema WORKING_UNIT

must be changed in one of the following ways.

2.1. The key constraint IdWU+IdS must be

excluded from the relation scheme Staff

in WORKING_UNIT.

A designer may decide so if he or she

finds that the key constraint IdWU+IdS is

obsolete for Staff in WORKING_UNIT.

2.2. The key constraint IdWU+IdS must be

pronounced as a locally valid one for

the relation scheme Staff in

WORKING_UNIT.

A designer may decide so if he or she

finds that the key constraint IdWU+IdS is

mandatory for Staff in WORKING_UNIT.

The case needs an additional explanation.

Namely, if the key constraint would be

embedded into the subschema, but would

not be embedded into the db schema, then

it might cause duplicate values for

IdWU+IdS in a db relation WU. If it

would happen, a Database Management

System (DBMS) could not select the

tuples making the virtual relation over

WU in WORKING_UNIT, unambiguously.

A solution is to pronounce the key

constraint IdWU+IdS as a locally valid in

WORKING_UNIT, and also to embed the

unique constraint IdWU+IdS into the

relation scheme WU in the subschema

PERSONNEL. In order to do that, since

the constraint is extending one, a designer

has to add the attribute IdS into the

relation scheme Staff in PERSONNEL.

Selecting the one of the aforementioned

alternatives depends on a designer's judgment.

After selecting the most appropriate alternative

and modifying the appropriate form types,

IIS*Case generates a new subschema PER-

SONNEL, and/or a new subschema

WORKING_UNIT, and also a new potential db

schema ADMINISTRATION. Suppose that a

designer selects the solution 1.1, in order to

resolve the collision.

4.2. Unique Constraint Collisions

After resolving the key collision, reinitiated

analyses of the attributes sets, and key collisions

finish successfully, and the process continues by

initiating the consistency checking of unique

constraints. A unique constraint collision is

detected, the process stops, and an appropriate

report is generated. The first part of the report is

shown in Fig. 6.

Figure 6 Report on unique constraint

collisions

We may notice that the attribute NamWU in

the relation scheme WU in the potential db schema

ADMINISTRATION must have unique values.

This constraint stems from the subschema

WORKING_UNIT, and has been built into the db

schema. However, it has not been embedded into

the subschema PERSONNEL. There are four

alternatives:

1. The unique constraint NamWU needs to be

embedded into the db schema.

Consequently, the subschema PERSONNEL

must be changed in one of the following ways.

1.1. The operations insert and update of

NamWU have to be removed from the

relation scheme WU in PERSONNEL.

The solution is analogous to the solution

1.1. from Subsection 4.2, and therefore it

is not commented here.

1.2. The unique constraint NamWU must be

embedded into the subschema

PERSONNEL.

Since the unique constraint NamWU is

includible one, it is sufficient to add it in

the appropriate form type in the external

schema PERSONNEL.

2. Unique constraint NamWU does not need to

be embedded into the db schema.

Consequently, the subschema WORKING_UNIT

must be changed in one of the following ways.

2.1. The unique constraint NamWU must be

excluded from the relation scheme WU

in WORKING_UNIT.

A designer may decide so if he or she

finds that NamWU is obsolete for the

relation scheme WU in WORKING_UNIT.

2.2. The unique constraint NamWU must be

pronounced as locally valid in the sub-

schema WORKING_UNIT.

In this particular case, this solution cannot

be applied. Namely, if the unique

constraint would be embedded into the

subschema, but would not be embedded

into the db schema, then it might cause

duplicate values for NamWU in a db

relation WU. If it would happen, a Data-

base Management System (DBMS) could

not select the tuples making the virtual

relation over WU in WORKING_UNIT,

unambiguously.

Therefore, a designer may choose between the

first three alternatives, since the fourth one (2.2) is

not a valid choice in the particular case. After

selecting the most appropriate alternative, and

modifying the appropriate form types, IIS*Case

generates a new subschema PERSONNEL, or a

new subschema WORKING_UNIT, and also a new

potential db schema ADMINISTRATION.

Suppose that the collision is resolved by

excluding the unique constraint over NamWU

from the appropriate form type (2.1), and

consequently from the relation scheme WU in the

application system WORKING_UNIT.

4.3. Null Value Constraint Collisions

After resolving the unique constraint collision,

reinitiated analyses of the attributes sets, key

collisions and unique constraint collisions finish

successfully, and the process continues by

initiating the consistency checking of null value

constraints. Some of the detected null value con-

straint collisions are automatically resolved. In the

appropriate report, those changes are reported by

the messages of type "info" (Fig. 7). The attribute

ManagWU may have null values in the subschema

PERSONNEL, whereas in the subschema

WORKING_UNIT it must not. IIS*Case resolves

the collision automatically by converting attribute

ManagWU in db schema into the attribute with

null values allowed. This change does not affect

the form types from external schemas

PERSONNEL and WORKING_UNIT. The null

value constraint over the attribute ManagWU

becomes a locally valid in the subschema

WORKING_UNIT. Such a solution is formally

valid, because a DBMS can select tuples making

the virtual relation over WU in

WORKING_UNIT, unambiguously.

Figure 7 Report on NULL constraint

collisions

Apart from automatic resolving collisions of

the null value constraints, IIS*Case detects

collisions of the null value constraints with insert

operations, on all the relation schemes in child

application systems that are declared for inserts. A

collision arises if there is a relation scheme in

child application system with insert operation

allowed, but not containing all the not null

attributes from the corresponding relation scheme.

In the appropriate report (Fig. 7), such collisions

are represented with the "collisions" message type.

In the case study, an insert operation is

allowed for the relation scheme WU in the

subschema PERSONNEL. Apparently, WU does

not contain the attribute WRoom, whereas it is a

not null attribute in the corresponding relation

scheme in ADMINISTRATION. Possible designer's

alternatives are:

1. The null value constraint for WRoom must

be preserved in the db schema.

WRoom must be a not null attribute in

ADMINISTRATION. Consequently, the

subschema PERSONNEL must be changed in

one of the following ways.

1.1. The operation insert has to be removed

from the relation scheme WU in

PERSONNEL.

1.2. The null value constraint WRoom must

be embedded into the subschema

PERSONNEL.

Since the null value constraint WRoom is

extending one, in order to embed it into

the subschema, designer needs to add the

attribute WRoom into the relation scheme

WU in the subschema PERSONNEL.

2. The null value constraint for WRoom must

be removed from the db schema.
WRoom must be an attribute with nulls allowed

in ADMINISTRATION. Consequently, the

subschema WORKING_UNIT must be changed

in one of the following ways.

2.1. The null value constraint WRoom must

be removed from the relation scheme

WU in WORKING_UNIT.

The attribute WRoom must be pronounced

as optional one in the appropriate form

type.

2.2. The null value constraint WRoom must

be pronounced as locally valid in the

subschema WORKING_UNIT.

The attribute WRoom may be pronounced

as optional one in the appropriate form

type, but with the operation "nullify a not

null value" disallowed.

Suppose that the alternative (1.2) is chosen.

After modifying the appropriate form types,

IIS*Case generates a new subschema PER-

SONNEL and a new potential db schema ADMINI-

STRATION.

4.4. Referential Integrity Constraint

Collisions

Reinitiated analyses of the attributes sets, key

collisions, unique constraint collisions and null

value collisions finish successfully. The final step

is the consistency checking of the referential

integrity constraints. After detecting collisions,

IIS*Case produces an appropriate report (Fig. 8).

Two different message types may appear in the

report: warnings and collisions. Collisions must be

resolved, while warnings need not.

A warning is generated only if a subschema

contains a referenced relation scheme but not the

referencing one, and delete is an allowed operation

for the referenced relation scheme in the

subschema. There are two possible alternatives to

resolve the warning: (i) disallowing the delete

operation, or (ii) including the referencing relation

scheme in the subschema. Selecting the second

alternative may cause a repetitive including of a

vast number of new relation schemes into the

subschema. It may cause a subschema

"overloading". Therefore, IIS*Case allows a

designer to decide weather to resolve, or to ignore

collisions of type "warning". A more detailed

explanation of this problem may be found in [18].

 In the subschema WORKING_ORDER the

relation scheme WO contains the attribute Sign.

Since the URS inclusion dependency [Sign] ⊆

[SSN] exists, the db schema ADMINISTRATION

contains the referential integrity WO[Sign] ⊆

Staff[SSN], despite that it does not exist in the

subschemas PERSONNEL, WORKING_UNIT and

WORKING_ORDER. Delete is an allowed

operation for the relation scheme Staff in the

subschema PERSONNEL, as well as in the

subschema WORKING_UNIT. A designer decides

not to resolve the warnings, since it does not

reflect either on the database consistency, or

"commodity" of end users.

In the report from Fig.8, there is a collision

concerning referential integrity constraint

R1: Staff[Manag] ⊆ Staff[SSN]. In the subschema

WORKING_UNIT, the relation scheme Staff

contains the attribute Manag, and participates the

constraint R1. Consequently, the db schema

contains the same referential integrity constraint,

and Manag belongs to the set of attributes of the

db relation scheme Staff. The operation delete is

allowed for the relation scheme Staff in the

subschema PERSONNEL. Therefore, the

referential integrity constraint R1 is relevant for

PERSONNEL, and the operation delete may

violate it. Possible designer's alternatives are:

1. The referential integrity constraint R1 must

be preserved in the db schema.
Consequently, the subschema PERSONNEL

must be changed in one of the following ways.

1.1. The operation delete has to be removed

from the relation scheme Staff in

PERSONNEL.

1.2. The referential integrity constraint R1

must be embedded into the subschema

PERSONNEL.

Since the referential integrity constraint

R1 is extending one, in order to embed it

into the subschema, a designer has to add

the attribute Manag into the relation

scheme Staff in the subschema PER-

SONNEL. The referential integrity

constraint R1 is generated automatically,

during the db schema design.

2. The referential integrity constraint R1 must

be removed from the db schema.

Consequently, the subschema WORKING_UNIT

must be changed in one of the following ways.

2.1. The referential integrity constraint R1

must be excluded from the relation

scheme Staff in WORKING_UNIT.

One option is to exclude the attribute

Manag from the relation scheme WU by

changing appropriate form type. Another

one is to delete the URS inclusion

dependency [Manag] ⊆ [SSN], although it is

not advisable, since the set of URS

constraints is changed.

2.2. The referential integrity constraint R1

must be pronounced as locally valid in

the subschema WORKING_UNIT.

In this particular case, this solution cannot

be applied. Namely, the existence of basic

and extended referential integrity

constraints is a consequence of the

primary key propagation [18]. Referential

integrity constraints based on non-trivial

inclusion dependencies arise from the

URS non-trivial inclusion dependencies

that a designer defines at the level of the

set of all information system attributes

[18]. Consequently, it is not possible to

pronounce a referential integrity as locally

valid.

Figure 8 Report on referential integrity

collisions

In this case, a designer may choose only

between first three alternatives. After selecting the

most appropriate alternative, and modifying the

appropriate form types, IIS*Case generates a new

subschema PERSONNEL, and/or a new

subschema WORKING_UNIT, and also a new

potential db schema ADMINISTRATION.

Suppose a designer chooses the alternative 1.2.

The following final versions of subschemas

PERSONNEL, WORKING_UNIT and WORKING-

_ORDER, and the final db schema

ADMINISTRATION are obtained, where the

differences with respect to the previous version are

written in bold style:

PERSONNEL

⋅ Staff({IdWU, SurN, DatB, Addr, SSN, Name,

 Manag}, {SSN}, {})

⋅ NULL values allowed for the attributes: SurN,

Addr, Name

⋅ Operations allowed in the relation scheme:

read, delete

⋅ WU({WRoom, IdWU, NamWU, ManagWU},

 {IdWU}, {})

⋅ NULL values allowed for the attributes:

ManagWU

⋅ Operations allowed in the relation scheme:

read, insert, update

⋅ WU[ManagWU] ⊆ Staff[SSN]

⋅ Staff[IdWU] ⊆ WU[IdWU]

⋅ Staff[[[[Manag]]]] ⊆⊆⊆⊆ Staff[[[[SSN]]]]

WORKING_UNIT

⋅ Staff({IdWU, SurN, DatB, Addr, SSN, Name,

 School, IdS, Manag, CelTel},

 {IdWU+IdS, SSN}, {})

⋅ NULL values allowed for the attributes: Addr

⋅ Operations allowed in the relation scheme Staff:

read, insert, update, delete

⋅ WU({WRoom, IdWU, NamWU, ManagWU}

 {IdWU}, { }),

⋅ Operations allowed in the relation scheme WU:

 read, insert, update, delete

⋅ WU[ManagWU] ⊆ Staff[SSN]

⋅ Staff[IdWU] ⊆ WU[IdWU]

⋅ Staff[Manag] ⊆ Staff[SSN]

WORKING_ORDER

⋅ WO({IdWO, DatWO, Amount, IdPR, Sign},

 {IdWO}, {})

⋅ NULL values allowed for the attributes: Sign

⋅ Operations allowed in the relation scheme WO:

read, delete

ADMINISTRATION

⋅ Staff({IdWU, SurN, DatB, Addr, SSN, Name,

 School, IdS, Manag, CelTel},

 {IdWU+IdS, SSN}, {})

⋅ NULL values allowed for the attributes: SurN,

Addr, Name

⋅ Operations allowed in the relation scheme Staff:

read, insert, update, delete

⋅ WU({WRoom, IdWU, NamWU, ManagWU},

 {IdWU}, {})

⋅ NULL values allowed for the attributes: ManagWU

⋅ Operations allowed in the relation scheme WU:

read, insert, update, delete

⋅ WO({IdWO, DatWO, Amount, IdPR, Sign},

 {IdWO}, {})

⋅ NULL values allowed for the attributes: Sign

⋅ Operations allowed in the relation scheme WO:

read, delete

⋅ WU[ManagWU] ⊆ Staff[SSN]

⋅ Staff[IdWU] ⊆ WU[IdWU]

⋅ Staff[Manag] ⊆ Staff[SSN]

⋅ WO[Sign] ⊆ Staff[SSN]. �

During the consolidation process, designers

may also change the structure of application

systems, i.e. the sets of form types (i.e. external

schemas). Afterwards, IIS*Case generates

subschemas and integrates them into a db schema.

Therefore, when the consolidation process

successfully finishes, a consistent set of

subschemas and consistent sets of form types are

obtained. IIS*Case consolidates not only the

attribute sets and the constraint sets, but also the

sets of allowed operations and modifiable

attributes. Form types carry additional information

about transaction programs and their screen forms.

Consequently, transaction programs generated

over such form types will be in accordance with

the designed db schema.

5. Conclusion

IIS*Case supports collaborative work of

designers so as to reach the most appropriate

solutions through their cooperation. A designer

may devote his or her time and power to analysis

and modelling business processes and rules. The

db design of even complex information systems

may be an easier task if it would be based on this

approach and IIS*Case, because the process of

modelling is raised to the level, which is closer to

the users without an advanced knowledge of the

database design.

IIS*Case is developed on the basis of the

results of а theoretical research presented in [2],

[3], [4], [5], [8], [10] and [18]. The principles of

database updates using subschemas are introduced

in [9], and we argue that a subschema and the

corresponding db schema must satisfy certain

formal conditions to allow safe database updates

using a program utilizing the concepts of a sub-

schema. Such conditions are formulated at the

abstraction level of instances. Using them, we

were able to formulate the conditions of formal

consistency, and develop the algorithm for

checking the formal consistency of db schema

constraints. The algorithm is embedded into

IIS*Case. Therefore, detecting and resolving

collisions is an important activity in the db schema

design process supported by IIS*Case. The

specificity of our approach is in that the collisions

are not detected between different subschemas, but

between a db schema and a set of subschemas,

since the integration process is not mere unifying

of subschemas. The process of detecting and resol-

ving collisions may also help designers to

recognize new database constraints, which have

not been previously identified.

The collisions are resolved by interrupting the

process of a db schema integration and making

changes in the subschemas, i.e. application

subsystems. Therefore, the integration process

must be restarted from the point of origin of a

collision. Sometimes, it must be restarted from the

very beginning, and this is a side effect of our

approach. Also, the resolving of some collisions

may cause new collisions. Even more, such new

collisions may concern constrains of the different

types that were already successfully passed

consistency checking. However, our primary goal

of proposing the approach presented here was not

only to make the design process of complex db

schemas easy. Instead, we intended to make such a

tool and the approach that would considerably

improve the quality of resulting db schemas, in

contrast to applying an intuitive approach, and

make the design process faster and easier, at the

same time.

At present, IIS*Case R.6.21 produces a formal

specification of an implementation database

schema. It also has an SQL generator that supports

generating SQL specifications of a database

schema for different DBMSs. Further research and

development efforts are oriented towards

extending current functionality. In the scope of the

approach presented in the paper, we are planning

to make further improvements of the algorithms

for consistency checking and db schema

integration. Those improvements should cover

consistency checking for the following constraint

types: check constraints, extended referential

integrity constraints, and inverse referential

integrity constraints [3].

R e f e r e n c e s

MONOGRAPHS

[1] Date C. J., Darwen H., Foundation for Ob-

ject/Relational Databases: The Third Mani-

festo, Addison-Wesley Professional, 1998.

[2] Govedarica M., An Automated Development

of Information System Application Prototypes,

PhD Thesis, University of Novi Sad, Faculty

of Technical Sciences, Novi Sad, Serbia and

Montenegro, 2002.

[3] Mogin P., Lukovic I., Govedarica M., Data-

base Design Principles, 2
nd

 Edition, Univer-

sity of Novi Sad, Faculty of Technical Sci-

ences, Novi Sad, Serbia and Montenegro,

2004.

[4] Pavicevic J., Development of A CASE Tool for

Automated Design and Integration of

Database Schemas, M.Sc. Dissertation, Uni-

versity of Montenegro, Faculty of Science,

Podgorica, Serbia and Montenegro, 2005.

[5] Ristic S., Research of Subschema Consolida-

tion Problem, PhD Thesis, University of Novi

Sad, Faculty of Economics, Subotica, Serbia

and Montenegro, 2003.

COLLECTIONS

[6] Diet J., Lochovsky F., Interactive Specifica-

tion and Integration of User Views Using

Forms, Proceedings of the Eight International

Conference on Entity-Relationship Approach

Toronto, Canada 18-20. October, 1989,

pp.171-185.

[7] Gálvez S., Guevara A., Caro J. L., Gómez I.,

Aguayo A., Collaboration Techniques to De-

sign a Database, Universidad de Málaga,

Spain, 2004.

[8] Lukovic I., Ristic S., Mogin P., A Methodolo-

gy of A Database Schema Design Using The

Subschemas, IEEE International Conference

on Computational Cybernetics, Siofok,

Hungary, August 29-31, 2003

[9] Ristić S., Luković I., Mogin P., Specifying

Database Updates Using a Subschema 7
th

IEEE International Conference on Intelligent

Engineering Systems INES 2003, Assiut-

Luxor, Egypt, 4–6 March, 2003, Proceedings

Vol. 1, pp. 203–212.

[10] Ristic S., Lukovic I., Mogin P., Pavicevic J.,

Integrating a Database Schema Using

IIS*Case Tool, 13
th

 Scientific Conference on

Industrial Systems IS'05, Herceg Novi, Sep-

tember 07 – 09, 2005.

[11] Schmalz M. S., Hammer J., Wu M., Topsakal

O., EITH – A Unifying Representation for

Database Schema and Application Code in

Enterprise Knowledge Extraction, Pro-

ceedings of the 22
nd

 International Conference

on Conceptual Modeling, Chicago, IL,

November 2003.

JOURNAL ARTICLES

[12] Beeri C., Bernstein P. A., Computational

Problems Related to the Design of Normal

Form Relational Schemas, ACM Transactions

on Database Systems, Vol.4, No.1, March,

1979, pp. 30-59.

[13] Choobinch J., Mannio V. M., Nunamaker F.

J., Konsynski R. B., An Expert Database De-

sign System Based on Analysis of Forms,

IEEE Transactions on Software Engineering,

Vol.14, No 2, Feb. 1988, pp. 242-253.

[14] Date C. J., Composite Foreign Keys and

Nulls, In C.J. Date and H. Darwen Relational

Database Writings 1989-1991, Addison-

Wesley Publishing Company, Reading,

Massachusetts, 1992.

[15] Govedarica M., Lukovic I., Mogin P., Generating

XML Based Specifications of Information Sys-

tems, Computer Science and Information Systems

(ComSIS), Belgrade, Serbia and Montenegro, Vol.

1, No. 1, 2004, pp. 117-140.

[16] Lukovic I., Govedarica M., Mogin P., Ristic

S., The Structure of A Subschema and Its

XML Specification, Journal of Information

and Organizational Sciences, Varazdin,

Croatia, Vol. 26, No. 1-2, 2002, pp. 69-85.

[17] Lukovic I., Ristic S., Mogin P., Pavicevic J.

Database Schema Integration Process – A

Methodology and Aspects of Its Applying,

Novi Sad Journal of Mathematics (Formerly

Review of Research, Faculty of Science,

Mathematic Series), Novi Sad, 2006,

pp. 115 – 140.

[18] Lukovic I, Mogin P, Pavicevic J, Ristic S, An

Approach to Developing Complex Database

Schemas Using Form Types, Software:

Practice and Experience, John Wiley & Sons

Inc, Hoboken, USA, ISSN: 0038-0644,

Accepted for publication, February 11, 2007.

WEB SOURCES

[19] ARTech, DeKlarit
TM

 (The Model-Driven Tool

for Microsoft Visual Studio 2005), Chicago,

USA, Available: http://www.deklarit.com,

current: December 2006.

