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We have considered different estimation procedures for the unknown parameters of the extended exponential geometric
distribution.We introduce different types of estimators such as the maximum likelihood, method of moments, modified moments,
L-moments, ordinary and weighted least squares, percentile, maximum product of spacings, and minimum distance estimators.
The different estimators are compared by using extensive numerical simulations. We discovered that the maximum product of
spacings estimator has the smallest mean square errors and mean relative estimates, nearest to one, for both parameters, proving to
be the most efficient method compared to other methods. Combining these results with the good properties of the method such as
consistency, asymptotic efficiency, normality, and invariance we conclude that the maximum product of spacings estimator is the
best one for estimating the parameters of the extended exponential geometric distribution in comparison with its competitors. For
the sake of illustration, we apply our proposed methodology in two important data sets, demonstrating that the EEG distribution
is a simple alternative to be used for lifetime data.

1. Introduction

Many researches are interested in search distributions which
can be used to describe real data sets. Generalizations of
the standard exponential distribution have been introduced
in the literature for this purpose, such as Gamma, Weibull,
and Generalized Exponential distribution [1]. Another useful
generalization is known as extended exponential geometric
distribution. Initially, the development of such distribution
wasmade byAdamidis and Loukas [2] proposing exponential
geometric distribution with two parameters, in which the
hazard function could be decreasing. In a further paper,
Adamidis et al. [3] explored extended exponential geometric
(EEG) distribution. Let 𝑋 be a random variable representing
a lifetime data, with extended exponential geometric (EEG)
distribution; its probability density function (PDF) is given by

𝑓 (𝑥 | 𝛾, 𝜆) =
𝜆𝛾𝑒
−𝜆𝑥

(1 − (1 − 𝛾) 𝑒−𝜆𝑥)
2

, (1)

for all 𝑥 > 0, 𝛾 > 0, and 𝜆 > 0. One of its peculiarities is
that its hazard function can be increasing or decreasing,
depending on the values of its parameters, giving great
flexibility of fit for real applications.

This model arises naturally in competing risks scenarios.
Let 𝑋 = min(𝑇

1

, 𝑇
2

, . . . , 𝑇
𝑀

), where M is a random
variable with geometrical distribution and 𝑇

𝑖

are inde-
pendent of M and are assumed to be independent and
identically distributed according to exponential distribution;
then the random variable 𝑋 has EEG distribution with
0 < 𝛾 < 1, also known as exponential geometric (EG)
distribution [2]. Considering the same assumptions and
𝑋 = max(𝑇

1

, 𝑇
2

, . . . , 𝑇
𝑀

), the random variable 𝑋 has EEG
distribution with 𝛾 > 1, also known as Complementary
Exponential Geometric distribution [4]. Due to its impor-
tance, some generalizations of the EEGdistributionhave been
proposed, such as the Beta exponential geometric distribu-
tion [5], Exponentiated Exponential-Geometric distribution
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[6], Complementary Exponentiated Exponential Geometric
distribution [7], and Generalized Exponential Geometric
distribution [8].

Despite the fact that EEG distribution has good flexibility,
a few estimation procedures have been proposed in the litera-
ture. Adamidis et al. [3] derived themaximum likelihood esti-
mators (MLE) for the unknown parameters of the EEGdistri-
bution. Ramos et al. [9] developed a Bayesian analysis under
noninformative priors. However, considering the frequentist
approach, it is well known that, usually, for small samples,
the MLE does not perform well. In this paper, we proposed
nine new estimators for the parameters of the EEG distribu-
tion, which are given considering the following estimation
procedures: the method of moments, modified moments,
ordinary least squares, weighted least squares, L-moments,
percentile,maximumproduct of spacings, Cramer-vonMises
type minimum distance, and Anderson-Darling estimator.

The main aim of this paper is twofold. First, it aims to
develop a guideline for choosing themost efficient estimators
among ten different estimation procedures for the EEG dis-
tribution, which would be of interest to applied statisticians.
Second, it aims to demonstrate that the EEG distribution is a
simple alternative to be used in applications in medicine.

The originality of this study comes from the fact that,
for the EEG distribution and considering the frequentist
approach, only the MLE has been presented in the literature.
The performances of the different estimation methods are
compared using extensive numerical simulations. Addition-
ally, these results are analogous for the exponential geometric
distribution and the Complementary Exponential Geometric
distribution. Related studies for other distributions can be
found in Gupta and Kundu [10], Mazucheli et al. [11],
Teimouri et al. [12], and Dey et al. [13].

The paper is organized as follows. In Section 2, we discuss
some properties of the EEG distribution. In Section 3, we
present ten estimation procedures for the parameters of our
proposedmodel. In Section 4, a simulation study is presented
in order to identify themost efficient estimators. In Section 5,
we apply our proposed methodology in two real data sets.
Some final comments are presented in Section 6.

2. Extended Exponential
Geometric Distribution

Let 𝑋 be a random variable with density function (1); the
distribution function is given by

𝐹 (𝑥 | 𝛾, 𝜆) =
1 − 𝑒
−𝜆𝑥

1 − (1 − 𝛾) 𝑒−𝜆𝑥
. (2)

The survival and hazard functions of EEG(𝛾, 𝜆) distribu-
tion is given, respectively, by

𝑆 (𝑥 | 𝛾, 𝜆) =
𝛾𝑒
−𝜆𝑥

1 − (1 − 𝛾) 𝑒−𝜆𝑥
,

ℎ (𝑥 | 𝛾, 𝜆) =
𝜆

1 − (1 − 𝛾) 𝑒−𝜆𝑥
.

(3)

The hazard function (3) is decreasing for 0 < 𝛾 < 1, is
constant for 𝛾 = 1, and is monotonically increasing when
𝛾 > 1. Figure 1 presents different forms for the density
and hazard functions for the EEG distribution considering
different values of 𝛾 and 𝜆.

For the random variable 𝑋 with EEG distribution, the
moment generating function [14] is given by

𝑀
𝑋

(𝑡) = 1 +
𝑡𝛾

𝜆
Φ(1 − 𝛾, 1, 1 −

𝑡

𝜆
) , (4)

for 𝑡 < 𝜆, where Φ(𝑧, 𝑠, 𝑎) = Γ(𝑠)−1 ∫∞
0

𝑡
𝑠−1

𝑒
−𝑎𝑡

(1 − 𝑧𝑒
−𝑡

)
−1

𝑑𝑡,
for 𝑎, 𝑠 > 0, and 𝑧 < 1 is known as Lerch transcendental
function [15]. Note that the Laplace transform of the EEG
distribution can be easily obtained from the relation LT

𝑋

(𝑡) =

𝑀
𝑋

(−𝑡) = 𝐸(𝑒
−𝑡𝑋

).The rawmoments of the EEG distribution
are

𝐸 (𝑋
𝑟

| 𝛾, 𝜆) = 𝑟!𝛾𝜆
−𝑟

Φ(1 − 𝛾, 𝑟, 1) , (5)

for 𝑟 ∈ 𝑁. After some algebraic manipulation, the mean and
variance of the EEG distribution are given, respectively, by

𝐸 (𝑋 | 𝛾, 𝜆) =
𝛾 log (𝛾)
𝜆 (𝛾 − 1)

,

Var (𝑋 | 𝛾, 𝜆) =
𝛾

𝜆2
(
2𝐿
2

(1 − 𝛾)

(1 − 𝛾)
−
𝛾 log2 (𝛾)
(1 − 𝛾)

2

) ,

(6)

where 𝐿
2

(𝑧) is the dilogarithm function given by

𝐿
2

(𝑧) =

∞

∑

𝑘=1

𝑧
𝑘

𝑘2
= −∫

𝑧

0

log (1 − 𝑡)
𝑡

𝑑𝑡

= −∫

1

0

log (1 − 𝑧𝑡)
𝑡

𝑑𝑡.

(7)

The mode and the median of the EEG distribution are

Mode (𝑋 | 𝛾, 𝜆) =
{{

{{

{

0 if 𝛾 ≤ 2

log (𝛾 − 1)
𝜆

if 𝛾 ≥ 2,

Median (𝑋 | 𝛾, 𝜆) =
log (1 + 𝛾)
𝜆

.

(8)

From Marshall and Olkin [16], we have the following
inequality:

Mode (𝑋 | 𝛾, 𝜆) ≤ Median (𝑋 | 𝛾, 𝜆) ≤
𝛾

𝜆

≤ 𝐸 (𝑋 | 𝛾, 𝜆) ,

(9)

where lim
𝛾→∞

Mode(𝑋 | 𝛾, 𝜆)/𝐸(𝑋 | 𝛾, 𝜆) = 1.
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Figure 1: (a) Probability density function of the EEG distribution. (b) Hazard function of the EEG distribution.

Shannon’s Entropy from EEG distribution [9], which
played a central role as a measure of the uncertainty associ-
ated with a random variable, is given by

𝐻
𝑆

(𝜙, 𝜆, 𝛼) = log (𝛾𝜆)

+
2 log (𝛾) − 𝛾2 log (𝛾) 𝜆−1 − 2𝛾 + 2

𝛾 − 1
.

(10)

3. Methods of Estimation

In this section, we discuss ten different estimation methods
to obtain the estimates of the parameters 𝛾 and 𝜆 of the EEG
distribution.

3.1. Maximum Likelihood Estimation. Among the statisti-
cal inference methods, the maximum likelihood method
is widely used due its desirable properties including con-
sistency, asymptotic efficiency, and invariance. Under the
maximum likelihood method, the estimators are obtained
from maximizing the likelihood function (see e.g., [17]). Let
𝑇
1

, . . . , 𝑇
𝑛

be a random sample such that 𝑇 ∼ EEG(𝛾, 𝜆); the
likelihood function from (1) is given by

𝐿 (𝛾, 𝜆; 𝑥) =

𝑛

∏

𝑖=1

𝑓 (𝑥
𝑖

, 𝛾, 𝜆)

= (𝜆𝛾)
𝑛 exp(−𝜆

𝑛

∑

𝑖=1

𝑥
𝑖

)

𝑛

∏

𝑖=1

((1 − (1 − 𝛾) 𝑒
−𝜆𝑥𝑖)
−2

) .

(11)

The logarithm of the likelihood function (11) is given by

𝑙 (𝛾, 𝜆 | 𝑥) = 𝑛 log (𝜆𝛾)

− 𝜆

𝑛

∑

𝑖=1

𝑥
𝑖

− 2

𝑛

∑

𝑖=1

log (1 − (1 − 𝛾) 𝑒−𝜆𝑥𝑖) .
(12)

From 𝜕𝑙(𝛾, 𝜆 | t)/𝜕𝛾 = 0 and 𝜕𝑙(𝛾, 𝜆 | t)/𝜕𝜆 = 0, we get the
likelihood equations

𝑛

𝜆
−

𝑛

∑

𝑖=1

𝑥
𝑖

− 2 (1 − 𝜆)

𝑛

∑

𝑖=1

𝑥
𝑖

𝑒
−𝜆𝑥𝑖

1 − (1 − 𝛾) 𝑒−𝜆𝑥𝑖
= 0, (13)

𝑛

𝜆
− 2

𝑛

∑

𝑖=1

𝑒
−𝜆𝑥𝑖

1 − (1 − 𝛾) 𝑒−𝜆𝑥𝑖
= 0, (14)

whose solutions provide the maximum likelihood estimates,
hereafter, 𝛾MLE and 𝜆MLE. Numerical methods such as
Newton-Raphson are required to find the solution of the
nonlinear system.

For large sample sizes, the obtained estimators are not
biased and asymptotically efficient. The MLE estimates are
asymptotically normally distributed with joint bivariate nor-
mal distribution given by

(�̂�MLE, �̂�MLE) ∼ 𝑁2 [(𝛾, 𝜆) , 𝐼
−1

(𝛾, 𝜆)]

for 𝑛 → ∞,
(15)

where 𝐼(𝛾, 𝜆) is the Fisher information matrix given by (see
[14])
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𝐼 (𝛾, 𝜆) =

[
[
[
[
[

[

𝐼
11

(𝛾, 𝜆)

𝑛 (𝛾 − 1 − 𝛾
2 log (𝛾))

3𝛾𝜆 (𝛾 − 1)
2

𝑛 (𝛾 − 1 − 𝛾
2 log (𝛾))

3𝛾𝜆 (𝛾 − 1)
2

𝑛

3𝛾2

]
]
]
]
]

]

, (16)

𝐼
11

(𝛾, 𝜆) =

{{{{

{{{{

{

𝑛 (3 (1 − 𝛾) − 2 ((1 − 𝛾) − 𝛾𝐿
2

(1 − 𝛾)))

3𝜆2 (1 − 𝛾)
if 0 < 𝛾 < 1

𝑛

3𝜆2 (1 − 𝛾)
(1 − 𝛾(1 +

𝜋
2

3
+ log2 (𝛾) − 2𝐿

2

(
1

𝛾
))) , if 𝛾 > 1.

(17)

3.2. Moments Estimators. The method of moments is one
of the oldest procedures used for estimating parameters
in statistical models. The moment estimators (ME) of the
EEG distribution can be obtained by equating the first two
theoretical moments,

1

𝑛

𝑛

∑

𝑖=1

𝑥
𝑖

=
𝛾 log (𝛾)
𝜆 (𝛾 − 1)

,

1

𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖

=
2𝛾𝐿
2

(1 − 𝛾)

𝜆2 (1 − 𝛾)
,

(18)

with the samplemoments𝑥 = (1/𝑛)∑𝑛
𝑖=1

𝑥
𝑖

and (1/𝑛)∑𝑛
𝑖=1

𝑥
2

𝑖

,
respectively. After some algebraic manipulation, the estimate
for �̂�ME can be obtained by solving

�̂�ME =
𝛾 log (𝛾)
𝑥 (𝛾 − 1)

. (19)

Note that, by substituting �̂�ME in (18), the estimate for �̂�ME
can be obtained by solving

2 (1 − 𝛾) 𝐿
2

(1 − 𝛾) 𝑥
2

𝛾 log (𝛾)2
−
1

𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖

= 0. (20)

Therefore, we firstly compute �̂�ME and, by substituting
such estimate in (19), the estimate �̂�ME is obtained.

3.3. Method of Modified Moments. A simple modification
can be made in the method of moments for estimating the
parameters of the EEG distribution. To obtain the moment
estimators (MME), consider that

𝐸 (𝑋 | 𝛾, 𝜆) =
𝛾 log (𝛾)
𝜆 (𝛾 − 1)

,

Var (𝑋 | 𝛾, 𝜆) =
𝛾

𝜆2
(
2𝐿
2

(1 − 𝛾)

(1 − 𝛾)
−
𝛾 log2 (𝛾)
(1 − 𝛾)

2

) .

(21)

Note that the population coefficient of variation given by

CV (𝑋 | 𝛾, 𝜆) =
√Var (𝑋 | 𝛾, 𝜆)

𝐸 (𝑋 | 𝛾, 𝜆)

= √
2 (𝛾
−1

− 1) 𝐿
2

(1 − 𝛾)

log2 (𝛾)
− 1

(22)

is independent of the scale parameter 𝜆. So the estimate for
�̂�ME can be obtained by solving the nonlinear equation

√
2 (𝛾
−1

− 1) 𝐿
2

(1 − 𝛾)

log2 (𝛾)
− 1 −

𝑠

𝑥
= 0 (23)

and, by substituting �̂�MME in (23), the estimate �̂�MME for 𝜆 can
be obtained by solving

�̂�MME =
𝛾 log (𝛾)
𝑥 (𝛾 − 1)

. (24)

3.4. Percentile Estimators. Thepercentile estimator, originally
suggested by Kao [18, 19], is a statistical method used to
estimate the unknown parameters by comparing the sample
points with the theoretical ones.Thismethod has beenwidely
used in distributions that have the quantile function in a
closed form, such as the Weibull distribution and the Gen-
eralized Exponential distribution. For the EEG distribution,
the quantile function is given by

𝑄 (𝑝 | 𝛾, 𝜆) =
1

𝜆
log(

1 − (1 − 𝛾) 𝑝

1 − 𝑝
) . (25)

The percentile estimates (PCE), �̂�PCE and �̂�PCE, can be
obtained by minimizing

𝑛

∑

𝑖=1

(𝑥
(𝑖)

−
1

𝜆
log(

1 − (1 − 𝛾) 𝑝

1 − 𝑝
))

2

, (26)
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with respect to 𝛾 and 𝜆, where 𝑝
𝑖

denotes some estimate of
𝐹(𝑥
(𝑖)

; 𝛾, 𝜆). The estimates of 𝛾 and 𝜆 can also be obtained by
solving the following nonlinear equations:
𝑛

∑

𝑖=1

[𝑥
𝑖

−
1

𝜆
log(

1 − (1 − 𝛾) 𝑝

1 − 𝑝
)](

𝑝

1 − (1 − 𝛾) 𝑝
)

= 0,

(27)

𝑛

∑

𝑖=1

[𝑥
𝑖

−
1

𝜆
log(

1 − (1 − 𝛾) 𝑝

1 − 𝑝
)]

⋅ (
1

𝜆2
log(

1 − (1 − 𝛾) 𝑝

1 − 𝑝
)) = 0,

(28)

respectively. In this paper, we consider 𝑝
𝑖

= 𝑖/(𝑛 + 1).
However, several estimators of 𝑝

𝑖

can be used instead (see
[20]).

3.5. L-Moments Estimators. Hosking [21] proposed an alter-
native method of estimation analogous to conventional mo-
ments, namely, L-moments estimators. These estimators are
obtained by equating the sample L-moments with the pop-
ulation L-moments. Hosking [21] states that the L-moment
estimators aremore robust than the usualmoment estimators
and are also relatively robust to the effects of outliers and
reasonably efficient when compared to the MLE for some
distributions.

For the EEG distribution, the L-moments estimators
(LME) can be obtained by equating the first two sample L-
moments with the corresponding population L-moments.
The first two sample L-moments are

𝑙
1

=
1

𝑛

𝑛

∑

𝑖=1

𝑥
(𝑖)

,

𝑙
2

=
2

𝑛 (𝑛 − 1)

𝑛

∑

𝑖=1

(𝑖 − 1) 𝑥
(𝑖)

− 𝑙
1

,

(29)

and the first two population L-moments are

𝜇
1

(𝛾, 𝜆) = ∫

1

0

𝑄 (𝑝 | 𝛾, 𝜆) 𝑑𝑝 = 𝐸 (𝑋 | 𝛾, 𝜆)

=
𝛾 log (𝛾)
𝜆 (𝛾 − 1)

,

𝜇
2

(𝛾, 𝜆) = ∫

1

0

𝑄 (𝑝 | 𝛾, 𝜆) (2𝑝 − 1) 𝑑𝑝

=
1

𝜆
(
𝛾
2

− 2𝛾 log (𝛾) − 1
2 (𝛾 − 1)

2

+
1

2
) ,

(30)

where 𝑄(𝑝 | 𝛾, 𝜆) is given in (25). After some algebraic
manipulations, the estimate for �̂�LME can be obtained by
solving the nonlinear equation

𝑥

1 − 𝛾
+
𝑥

log (𝛾)
− 𝑙
2

= 0. (31)

Note that, by substituting �̂�LME in (30), the estimate for �̂�LME
can be obtained by solving

�̂�LME =
�̂�LME log (�̂�LME)

𝑥 (�̂�LME − 1)
. (32)

3.6. Ordinary and Weighted Least Squares Estimates. Let
𝑡
(1)

, 𝑡
(2)

, . . . , 𝑡
(𝑛)

denote the order statistics (we assume the
same notation for the next subsections) of the random sample
of size 𝑛 from a distribution function 𝐹(x | 𝛾, 𝜆). The least
square estimators (LSE) �̂�LSE and �̂�LSE can be obtained by
minimizing

𝑆 (𝛾, 𝜆) =

𝑛

∑

𝑖=1

[𝐹 (𝑥
(𝑖)

| 𝛾, 𝜆) −
𝑖

𝑛 + 1
]

2

, (33)

with respect to 𝛾 and 𝜆, where 𝐹(t|𝛾, 𝜆) is given by (2).
Equivalently, they can be obtained by solving the following
nonlinear equations:

𝑛

∑

𝑖=1

[𝐹 (𝑥
(𝑖)

| 𝛾, 𝜆) −
𝑖

𝑛 + 1
]Δ
1

(𝑥
(𝑖)

| 𝛾, 𝜆) = 0,

𝑛

∑

𝑖=1

[𝐹 (𝑥
(𝑖)

| 𝛾, 𝜆) −
𝑖

𝑛 + 1
]Δ
2

(𝑥
(𝑖)

| 𝛾, 𝜆) = 0,

(34)

where

Δ
1

(𝑥
(𝑖)

| 𝛾, 𝜆) =
𝑒
𝜆𝑥(𝑖) − 1

(𝑒
𝜆𝑥(𝑖) − 1 + 𝛾)

2

,

Δ
2

(𝑥
(𝑖)

| 𝛾, 𝜆) =
𝜆𝑥𝑒
𝜆𝑥(𝑖)

(𝑒
𝜆𝑥(𝑖) − 1 + 𝛾)

2

.

(35)

The weighted least squares estimates (WLSE), �̂�WLSE and
�̂�WLSE, can be obtained by minimizing

𝑊(𝛾, 𝜆)

=

𝑛

∑

𝑖=1

(𝑛 + 1)
2

(𝑛 + 2)

𝑖 (𝑛 − 𝑖 + 1)
[𝐹 (𝑡
(𝑖)

| 𝛾, 𝜆) −
𝑖

𝑛 + 1
]

2

.

(36)

These estimates can also be obtained by solving the following
nonlinear equations:

𝑛

∑

𝑖=1

(𝑛 + 1)
2

(𝑛 + 2)

𝑖 (𝑛 − 𝑖 + 1)
[𝐹 (𝑥
(𝑖)

| 𝛾, 𝜆) −
𝑖

𝑛 + 1
]

⋅ Δ
1

(𝑥
(𝑖)

| 𝛾, 𝜆) = 0,

𝑛

∑

𝑖=1

(𝑛 + 1)
2

(𝑛 + 2)

𝑖 (𝑛 − 𝑖 + 1)
[𝐹 (𝑥
(𝑖)

| 𝛾, 𝜆) −
𝑖

𝑛 + 1
]

⋅ Δ
2

(𝑥
(𝑖)

| 𝛾, 𝜆) = 0.

(37)

3.7. Method of Maximum Product of Spacings. Themaximum
product of spacings (MPS) method is a powerful alternative
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to MLE for the estimation of the unknown parameters of
continuous univariate distributions. Proposed by Cheng and
Amin [22, 23], thismethodwas also independently developed
by Ranneby [24] as approximation to the Kullback-Leibler
measure of information.

Let 𝐷
𝑖

(𝛾, 𝜆) = 𝐹(𝑥
(𝑖)

| 𝛾, 𝜆) − 𝐹(𝑥
(𝑖−1)

| 𝛾, 𝜆), for 𝑖 =
1, 2, . . . , 𝑛 + 1, be the uniform spacings of a random sample
from the EEG distribution, where 𝐹(𝑥

(0)

| 𝛾, 𝜆) = 0 and
𝐹(𝑥
(𝑛+1)

| 𝛾, 𝜆) = 1. Clearly∑𝑛+1
𝑖=1

𝐷
𝑖

(𝛾, 𝜆) = 1. The maximum
product of spacings estimates, �̂�MPS and �̂�MPS, are obtained
by maximizing the geometric mean of the spacings,

𝐺 (𝛾, 𝜆) = [

𝑛+1

∏

𝑖=1

𝐷
𝑖

(𝛾, 𝜆)]

1/(𝑛+1)

, (38)

with respect to 𝛾 and 𝜆, or, equivalently, by maximizing the
logarithm of the geometric mean of sample spacings:

𝐻(𝛾, 𝜆) =
1

𝑛 + 1

𝑛+1

∑

𝑖=1

log𝐷
𝑖

(𝛾, 𝜆) . (39)

The estimates �̂�MPS and �̂�MPS of the parameters 𝛾 and 𝜆
can be obtained by solving the following nonlinear equations

𝜕𝐻 (𝛾, 𝜆)

𝜕𝛾
=
1

𝑛 + 1

⋅

𝑛+1

∑

𝑖=1

1

𝐷
𝑖

(𝛾, 𝜆)
[Δ
1

(𝑥
(𝑖)

| 𝛾, 𝜆) − Δ
1

(𝑥
(𝑖−1)

| 𝛾, 𝜆)]

= 0,

𝜕𝐻 (𝛾, 𝜆)

𝜕𝜆
=
1

𝑛 + 1

⋅

𝑛+1

∑

𝑖=1

1

𝐷
𝑖

(𝛾, 𝜆)
[Δ
2

(𝑥
(𝑖)

| 𝛾, 𝜆) − Δ
2

(𝑥
(𝑖−1)

| 𝛾, 𝜆)]

= 0,

(40)

where Δ
1

(⋅ | 𝛾, 𝜆) and Δ
2

(⋅ | 𝛾, 𝜆) are given in (35).
Note that if 𝑥

(𝑖+𝑘)

= 𝑥
(𝑖+𝑘−1)

= ⋅ ⋅ ⋅ = 𝑥
(𝑖)

we get
𝐷
𝑖+𝑘

(𝛾, 𝜆) = 𝐷
𝑖+𝑘−1

(𝛾, 𝜆) = ⋅ ⋅ ⋅ = 𝐷
𝑖

(𝛾, 𝜆) = 0. Therefore, the
MPS estimators are sensitive to closely spaced observations,
especially ties.When the ties are due tomultiple observations,
𝐷
𝑖

(𝛾, 𝜆) should be replaced by the corresponding likelihood
𝑓(𝑥
(𝑖)

, 𝛾, 𝜆), since 𝑥
(𝑖)

= 𝑥
(𝑖−1)

.
Cheng and Amin [23] proved desirable properties of the

MPS such as asymptotic efficiency and invariance; they also
proved that the consistency of maximum product of spac-
ings estimators holds under much more general conditions
than for maximum likelihood estimators. The authors also
present an interesting proof that the MPS estimates converge
asymptotically to the ML estimates. Therefore, for the EEG
distribution, theMPS estimators are asymptotically normally

distributed (see [25] for more details) with joint bivariate
normal distribution given by

(�̂�MPS, �̂�MPS) ∼ 𝑁2 [(𝛾, 𝜆) , 𝐼
−1

(𝛾, 𝜆)]

for 𝑛 → ∞,
(41)

where 𝐼(𝛾, 𝜆) is the Fisher information matrix.

3.8. The Cramer-von Mises Minimum Distance Estimators.
The Cramer-von Mises estimator (CME) is a type of mini-
mum distance estimators (also called maximum goodness-
of-fit estimators) which is based on the difference between
the estimate of the cumulative distribution function and the
empirical distribution function (see, [26, 27]).

MacDonald [28] motivates the choice of Cramer-von
Mises typeminimumdistance estimators providing empirical
evidence that the bias of the estimator is smaller than the
other minimum distance estimators. The Cramer-von Mises
estimates, �̂�CME and �̂�CME, are obtained by minimizing

𝐶 (𝛾, 𝜆) =
1

12𝑛
+

𝑛

∑

𝑖=1

(𝐹 (𝑥
(𝑖)

| 𝛾, 𝜆) −
2𝑖 − 1

2𝑛
)

2

, (42)

with respect to 𝛾 and 𝜆. These estimates can also be obtained
by solving the following nonlinear equations:

𝑛

∑

𝑖=1

(𝐹 (𝑥
(𝑖)

| 𝛾, 𝜆) −
2𝑖 − 1

2𝑛
)Δ
1

(𝑥
(𝑖)

| 𝛾, 𝜆) = 0,

𝑛

∑

𝑖=1

(𝐹 (𝑥
(𝑖)

| 𝛾, 𝜆) −
2𝑖 − 1

2𝑛
)Δ
2

(𝑥
(𝑖)

| 𝛾, 𝜆) = 0,

(43)

where Δ
1

(⋅ | 𝛾, 𝜆) and Δ
2

(⋅ | 𝛾, 𝜆) are given in (35).

3.9. Methods of Anderson-Darling. Another type of min-
imum distance estimators is based on Anderson-Darling
statistic (see [27]) and is known as the Anderson-Darling
estimator (ADE).The Anderson-Darling estimates, �̂�ADE and
�̂�ADE, of the parameters 𝛾 and 𝜆 are obtained by minimizing,
with respect to 𝛾 and 𝜆, the function

𝐴 (𝛾, 𝜆) = −𝑛 −
1

𝑛

𝑛

∑

𝑖=1

(2𝑖 − 1)

⋅ (log𝐹 (𝑥
(𝑖)

| 𝛾, 𝜆) + log 𝑆 (𝑥
(𝑛+1−𝑖)

| 𝛾, 𝜆)) .

(44)

These estimates can also be obtained by solving the following
nonlinear equations:
𝑛

∑

𝑖=1

(2𝑖 − 1) [
Δ
1

(𝑥
(𝑖)

| 𝛾, 𝜆)

𝐹 (𝑥
(𝑖)
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Δ
1

(𝑥
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| 𝛾, 𝜆)

𝑆 (𝑥
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| 𝛾, 𝜆)
]

= 0,

𝑛
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(2𝑖 − 1) [
Δ
2

(𝑥
(𝑖)

| 𝛾, 𝜆)

𝐹 (𝑥
(𝑖)

| 𝛾, 𝜆)
−
Δ
2

(𝑥
(𝑛+1−𝑖)

| 𝛾, 𝜆)

𝑆 (𝑥
(𝑛+1−𝑖)

| 𝛾, 𝜆)
]

= 0,

(45)

where Δ
1

(⋅ | 𝛾, 𝜆) and Δ
2

(⋅ | 𝛾, 𝜆) are in (35).
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4. Simulation Study

In this section,we develop a simulation study viaMonteCarlo
methods. The main goal of these simulations is to compare
the efficiency of the different estimation methods for the
parameters of the EEG distribution.The following procedure
was adopted:

(1) Set the sample size 𝑛 and the vector of parameter
values 𝜃 = (𝜆, 𝛾).

(2) Generate values of EEG(𝜆, 𝛾) with size 𝑛.

(3) Using the values obtained in step (2), compute �̂� and
�̂� via MLE, ME, MME, LSE, WLSE, PCE, MPS, CME,
and ADE.

(4) Repeat steps (2) and (3)𝑁 times.

(5) Using �̂� and 𝜃, compute the mean relative estimates
(MRE) ∑𝑁

𝑗=1

((�̂�
𝑖,𝑗

/𝜃
𝑖

)/𝑁) and the mean square errors
(MSE) ∑𝑁

𝑗=1

((�̂�
𝑖,𝑗

− 𝜃
𝑖

)
2

/𝑁), 𝑖 = 1, 2.

We expect that, considering this approach, the MREs are
closer to one with smaller MSEs. The results were computed
using the software R (R Core Development Team). The seed
used to generate the random values was 2015. The chosen
values to perform this procedure were 𝜃 = ((0.5, 2), (2, 4)),
𝑁 = 10,000, and 𝑛 = (15, 20, 25, . . . , 130). The values of
𝜃 were selected to allow, respectively, the decreasing and
increasing shape in the hazard function. Another motivation
comes from the fact that, for 𝜃 = (0.5, 2), we have analogous
results for the exponential geometric distribution [2] and, for
𝜃 = (2, 4), the results are analogous for the Complementary
Exponential Geometric distribution [4].

Figures 2 and 3 present the MREs and MSEs for the
estimates of 𝜃 for𝑁 simulated samples considering different
values of 𝑛.The horizontal lines in Figures 2 and 3 correspond
to MREs and MSEs being, respectively, one and zero.

It is worth noting that we only considered the samples in
which all estimation procedures had converged, getting at the
end 𝑁 simulated samples for different values of 𝑛. Figure 4
presents the proportion of failure from each method.

Based on these figures, the MSEs of all estimates tend
to zero for large 𝑛 and also, as expected, the values of
MREs tend to one; that is, the estimates are asymptotically
unbiased for the parameters.TheMEand theCMEestimators
have, respectively, the largest MREs and MSEs among all the
considered estimators. The percentile and the LSE estimators
have, respectively, the largest proportion of failure for esti-
mating the parameters of the EEG distribution.

The MPS estimators have the smallest MSEs and the
MREs nearest to one for both parameters proving to be the
most efficient procedure for estimating the unknown param-
eters. Moreover, the MPS estimators have good theoretical
properties [23] such as consistency, asymptotic efficiency,
normality, and invariance. Therefore, we conclude that the
MPS estimators should be used for estimating the parameters
of the EEG distribution.

Table 1: Data set related to the ages of 18 patients who died from
other causes than cancer.

0.3 4 7.4 15.5 23.4 46 46 51 65
68 83 88 96 110 111 112 132 162

5. Applications

In this section, we considered two real data sets. The first
one is presented by Boag [29] and is related to the ages (in
months) of 18 patients who died from other causes than
cancer. The second data set is presented by Silva [30] and
refers to the serum-reversal time (in days) of 143 children
born to HIV-infected mothers who did not receive anti-HIV
treatment (Table 4).

In Section 4, our simulation study indicated that theMPS
estimators should be used for estimating the parameters of
the EEG distribution. Initially, we compared the estimates
obtained from the different procedures with theMPS estima-
tor in terms ofMREs.Then, we compared the results obtained
from the EEG distribution fitted by the MPS estimators with
some common lifetime models, such as Weibull, Gamma,
Lognormal, and Generalized Exponential distributions.

The Kolmogorov-Smirnov (KS) test is considered to
check the goodness of fit. This procedure is based on the KS
statistic 𝐷

𝑛

= sup
𝑥

|𝐹
𝑛

(𝑥) − 𝐹(𝑥; 𝜃, 𝜆)|, where sup𝑥 is the
supremum of the set of distances, 𝐹

𝑛

(𝑥) is the empirical dis-
tribution function, and 𝐹(𝑥; 𝜃, 𝜆) is cumulative distribution
function. In this case, we test the null hypothesis that the
data comes from 𝐹(𝑥; 𝜃, 𝜆), and, with significance level of 5%,
we will reject the null hypothesis if 𝑝 value is smaller than
0.05. As discrimination criterion method, we considered the
AIC (Akaike Information Criteria), AICc (Corrected Akaike
Information Criteria), HQIC (Hannan-Quinn Information
Criteria), and the CAIC (Consistent Akaike Information
Criteria) computed, respectively, by AIC = −2𝑙(Θ̂, 𝑥) + 2𝑘,
AICc = AIC + 2𝑘(𝑘 + 1)/(𝑛 − 𝑘 − 1), HQIC = −2𝑙(Θ̂, 𝑥) +
2𝑘 log(log(𝑛)), and CAIC = −2𝑙(Θ̂, 𝑥)+𝑘 log(𝑛)+1, where k is
the number of parameters to be fitted and Θ̂ is the estimate of
Θ. Given a set of candidate models for t, the preferred model
is the one which provides the minimum values.

5.1. Boag Data Set. Table 1 presents the data set related to the
ages (in months) of 18 patients who died from other causes
than cancer extracted from Boag [29], which considered the
Lognormal distribution to describe such data.

Considering the MPS estimators, we obtain �̂�MPS =
0.02101 and CI

95%(𝜆) = (0.00618; 0.03583) and �̂�MPS =
2.46430 and CI

95%(𝛾) = (0.00000; 6.28060). In Table 2,
we compared the estimates obtained from the different
procedures with the MPS estimator in terms of MREs.

Table 2 confirmed the results obtained from our simula-
tion study, inwhich for small sample sizes the obtained results
may differ depending on the estimation procedure. For
example, considering the method of moments, the estimate
for 𝛾 is 52% smaller than �̂�MPS. Table 3 presents the results
from KS test (𝑝 value), AIC, AICc, HQIC, and CAIC, for
the EEG distribution adjusted by the MPS procedure and
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Figure 2:MREs andMSEs related from the estimates of 𝜆 = 2 and 𝛾 = 0.5 for𝑁 simulated samples, considering different values of 𝑛 obtained
using the following estimationmethods: (1) MLE, (2) ME, (3) MME, (4) LME, (5) LSE, (6)WLSE, (7) PCE, (8) MPS, (9) CME, and (10) ADE.

Table 2:TheMREs of the estimates obtained from the different procedures compared to the MPS considering the data set related to the ages
of 18 patients who died from other causes than cancer.

�̂�MPS/�̂� MLE ME MME LME LSE WLSE PCE CME ADE
𝜆 0.8033 0.7057 0.7397 0.8650 1.0365 0.9689 0.8192 0.8966 1.0112
𝛾 0.6281 0.4883 0.5537 0.8226 0.9630 0.8908 0.6186 0.7219 1.0222

Table 3: Results of the KS test (𝑝 value), AIC, AICc, HQIC, and
CAIC for the different probability distributions considering the data
set related to the ages of 18 patients who died from other causes than
cancer.

Test EEG Weibull Gamma Lognormal GE
KS 0.9303 0.5185 0.3361 0.0561 0.3156
AIC 189.809 191.447 191.801 201.695 191.798
AICc 190.609 192.247 192.601 202.495 192.598
HQIC 190.054 191.692 192.047 201.940 192.044
CAIC 193.589 195.227 195.582 205.475 195.579

for different probability distributions. In Figure 5, we have
the survival function adjusted by different distributions and
nonparametric survival estimator.

Comparing the empirical survival function with the
adjusted distributions, a better fit for the EEG distribution

among the chosen models can be observed. This result is
confirmed from AIC, AICc, HQIC, and CAIC, since EEG
distribution has the minimum values and 𝑝 values returned
from the KS test are greater than the chosen models. From
our proposed methodology, we observe that the extended
exponential geometric distribution has superior fit among the
chosenmodels. In this case, each of the causes of the death can
be described by exponential distribution; since the lifetime
associated with a particular risk is not observable (latent
variables), we observe only the maximum lifetime (𝛾 > 1)
value among all risks, where the number of causes follows
geometric distribution.

5.2. Children Exposed to the Vertical Transmission of HIV.
The data set related to the serum-reversal time (in days) of
143 children born to HIV-infected mothers is presented in
Table 3.
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Figure 3: MREs and MSEs related from the estimates of 𝜆 = 4 and 𝛾 = 2 for𝑁 simulated samples, considering different values of 𝑛 obtained
using the following estimationmethods: (1) MLE, (2) ME, (3) MME, (4) LME, (5) LSE, (6)WLSE, (7) PCE, (8) MPS, (9) CME, and (10) ADE.
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Figure 4: Rate of convergence considering different values of 𝑛 obtained using the following estimationmethods: (1)MLE, (2)ME, (3)MME,
(4) LME, (5) LSE, (6) WLSE, (7) PCE, (8) MPS, (9) CME, and (10) ADE.
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Table 4: Data set related to the serum-reversal time (in days) of 143 children born to HIV-infected mothers.

2 2 2 5 9 9 19 32 32 46 50 56 56 78 91 95
106 129 129 148 149 156 175 176 191 192 204 209 211 225 229 230
238 254 271 274 276 290 291 292 297 297 322 334 334 334 344 346
353 353 359 365 366 367 370 378 378 382 382 385 398 400 402 414
422 424 428 434 435 440 443 446 448 448 451 454 459 460 461 473
480 481 484 487 493 497 498 502 511 511 513 514 516 521 524 526
537 538 541 543 544 544 545 549 551 553 553 554 556 559 571 576
577 578 582 588 590 596 609 610 615 619 626 627 648 653 678 680
687 696 729 744 748 777 847 848 867 874 894 901 907 974 1021

Table 5: The MREs of the estimates obtained from the different procedures compared to the MPS considering the data set related to the
serum-reversal time (in days) of 143 children born to HIV-infected mothers.

�̂�MPS/�̂� MLE ME MME LME LSE WLSE PCE CME ADE
𝜆 0.9922 0.9726 0.9774 1.0007 0.9481 0.9587 0.9580 0.9352 1.0259
𝛾 0.9910 1.0169 1.0341 1.1184 0.8039 0.8684 0.9253 0.7682 1.1007
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Figure 5: Survival function adjusted by different distributions and a
nonparametric method considering the data sets related to the ages
of 18 patients who died from other causes than cancer.

Considering the MPS estimators, we obtain �̂�MPS =
0.0065 and CI

95%(𝜆) = (0.0054; 0.0077) and �̂�MPS = 14.2279
and CI

95%(𝜆) = (5.6714; 22.7843). In Table 5, we compared
the estimates obtained from the different procedures with the
MPS estimator in terms of MREs.

From Table 5, we observed that for large samples sizes
the estimates are very closer independently of the chosen
method. Moreover, due to the large sample size, the MPS
estimates and ML estimates are almost the same; such the-
oretical result is well supported by Cheng and Amin [23]. In
Table 6, we have the results fromKS test (𝑝 value), AIC, AICc,
HQIC, and CAIC, for different probability distributions.
Figure 6 presents the survival function adjusted by different
distributions and nonparametric survival estimator.

Comparing the empirical survival function with the
adjusted distributions, a better fit for the extended expo-
nential geometric distribution among the chosen models
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Figure 6: Survival function adjusted by different distributions and
a nonparametric method considering the data sets related to the
serum-reversal time (in days) of 143 children born to HIV-infected
mothers.

Table 6: Results of the KS test (𝑝 value), AIC, AICc, HQIC, and
CAIC for the different probability distributions considering the data
set related to the serum-reversal time (in days) of 143 children born
to HIV-infected mothers.

Test EEG Weibull Gamma Lognormal GE
KS 0.6413 0.0067 0.0000 0.0000 0.0000
AIC 1950.82 1981.31 2001.92 2088.90 2005.43
AICc 1950.91 1981.39 2002.01 2088.98 2005.52
HQIC 1953.23 1983.71 2004.33 2091.31 2007.84
CAIC 1958.75 1989.23 2009.85 2096.82 2013.36

can be observed. This result is confirmed from AIC, AICc,
HQIC, and CAIC, since EEG distribution has the minimum
values among the chosen models. Moreover, considering a
significance level of 5%, the EEG distribution was the only
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model in which 𝑝 values returned from the KS test were
greater than 0.05.

6. Conclusions

In this paper, we derived and compared, via intensive sim-
ulation study, the estimations of the parameters of the EEG
distribution using ten estimationmethods.Most importantly,
from our simulations, we discovered that the estimates are
asymptotically unbiased for the parameters regardless of
the estimation method. However, while the ME and CME
estimators have, respectively, the largest MREs and MSEs
among all the considered estimators, the MPS estimator
has the smallest MSEs and the MREs nearest to one, for
both parameters, proving to be the most efficient method
compared to others for estimating the unknown parameters.
As a final advise, combining these results with the good
properties of themethod such as consistency, asymptotic effi-
ciency, normality, and invariance, we conclude that the MPS
estimator is the best one for estimating the parameters of the
EEG distribution in comparison with its competitors. Finally,
we apply our proposed methodology in two important data
sets, demonstrating that the EEG distribution is a simple
alternative to be used for lifetime applications.
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