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Abstract—Based on the condition for equivalence between
linearly constrained minimum-variance (LCMV) filters and
their generalized sidelobe canceler (GSC) implementations, we
derive the new constrained conjugate gradient (CCG) algorithm.
We discuss the use of orthogonal and nonorthogonal blocking
matrices for the GSC structure and how the choice of this matrix
may affect the relationship with the LCMV counterpart. The
newly derived algorithm was tested in a computer experiment for
adaptive multiuser detection and showed excellent results.

Index Terms—Conjugate gradient algorithms, constrained
adaptive filtering.

I. INTRODUCTION

L INEARLY constrained adaptive filters have been used
in many applications including adaptive beamforming

with sensor arrays and blind adaptive interference cancellation
in multiuser mobile communication systems. The constrained
version of the least mean square (LMS) algorithm (CLMS)
was proposed in [1] for the minimization of the output-error
energy of a finite impulse response (FIR) filter subject to a
set of known linear constraints, i.e., subject to

, where is the length coefficient vector, is
the filter output error, is the constraint matrix, and

is the length gain vector. In [2], an alternative structure
was presented whereby only a smaller set of coefficients are
updated, which are confined to the subspace orthogonal to
the space spanned by the constraint matrix. This structure,
known as the generalized sidelobe canceler (GSC), is able to
transform the linearly constrained minimization problem into
an unconstrained minimization problem, and therefore can
accommodate virtually any adaptation algorithm. Although the
constrained algorithm and its GSC implementation are assumed
to present identical steady-state performance [2] in a stationary
environment, different choices of the blocking matrixsuch
that leads to different results. Moreover, this matrix
determines the computational complexity of the adaptation
algorithm implemented in the GSC structure. This paper
revisits the condition of equivalence between a constrained
adaptive filter and its GSC counterpart and uses this condition
to introduce a new constrained algorithm, the constrained
conjugate gradient (CCG) algorithm.
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II. PRELIMINARIES

The CLMS solution to the linearly constrained minimum-
variance (LCMV) problem is given by [1]

(1)

where
;

projection matrix onto the sub-
space orthogonal to the subspace
spanned by the constraint matrix,
and the output signal;

, output signal.
is the input-signal vector containing present and past input-

signal samples . We recall the
fact that although corresponds to in infinite
precision, the computation as in (1) is necessary in a limited-
precision-arithmetic machine in order to avoid any drift from
the constraint plane [1].

The GSC decomposes the coefficient vector by using a

transformation matrix given by
... where is

called blocking matrix, and it spans the null space of the
constraint matrix . The GSC-transformed coefficient vector

in is partitioned as
... ,

where the upper part is constant and chosen such that
corresponds to , and
is updated according to an unconstrained adaptive filter
such that the overall coefficient vector corresponds to

.
The inverse of the GSC transformation matrix (guaranteed by

linearly independent columns of and , and by

[3]) can be partitioned as
... where

and .
By replacing and in and then in , we

find another expression for the projection matrix, as obtained
in [4]

(2)

III. EQUIVALENCE CONDITION REVISITED

In this section, we obtain the CLMS algorithm from its GSC
implementation in order to find under which circumstances they
are equivalent in infinite precision. The GSC coefficient-vector
update equation using the LMS algorithm relates to the coeffi-
cient-vector update equation for the constrained LMS algorithm
according to

(3)
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TABLE I
CONSTRAINED CONJUGATEGRADIENT ALGORITHM

where and . Moreover,
using to express as

and (2), straightforward
algebraic manipulations lead to

(4)

From (4), (2), and (1), we see that if , then
, and the GSC implementation is equivalent to the con-

strained algorithm. This equivalence condition, mentioned in
[2], is necessary and sufficient for the CLMS algorithm, and
may be extended to the conjugate gradient (CG) algorithm to be
presented in the next section.

IV. THE CONSTRAINED CONJUGATEALGORITHM

Based on the modified CG algorithm detailed in [5] and fol-
lowing the same approach described in the previous section for
the CLMS algorithm, we propose next a constrained version of
the CG algorithm. Condition will be used in the
derivation.

It is worth mentioning that the reference algorithm [5] uses a
degenerated scheme of the CG algorithm in order to have only
one iteration per coefficient-vector update. If we use the expo-
nentially weighted data strategy to estimate the input signal au-
tocorrelation matrix for the unconstrained CG algorithm of the
GSC structure, then

(5)

where with ini-
tialized as in order to force identical results when compared
to the GSC implementation initialized with the identity matrix.

The derivation starts with the updating equation of the GSC
CG algorithm [5]

(6)

where
and

with [5]. Moreover, completing the equations
of the GSC-CG, we have

(7a)

(7b)

where .
For the new CCG algorithm, if we make

and , the new and will be equal
to and , respectively, or

(8a)

(8b)

where and a small number
was introduced to avoid division by zero.
The new search direction is easily obtained, and the result is

(9)

Note that the above definitions of and in (6) result
in the updating equation of the new algorithm given by

(10)

Furthermore, it can be easily verified that the search direction
and the residual are such that and
for every . From (7a) and the observations above, it follows that
the updating equation of the residual is carried out as

(11)

with, for the case of orthogonal blocking matrix where
, such that

.
Table I shows the resulting CCG algorithm. Note that in this

table, the more general case of reference signal not equal to zero
was addressed. The same result can alternatively be obtained
using the fact that the constrained algorithm can be viewed as a
special case of the GSC structure with the projection matrix
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Fig. 1. Mean squared error (MSE).

used instead of the blocking matrix, as pointed out in [4] for
the constrained LMS algorithm.

V. SIMULATION RESULTS

In order to test the new algorithm, we applied the CCG al-
gorithm to a single-user detection in a DS-CDMA mobile com-
munication system. For this experiment, we assumed a simple
model for a downlink synchronous transmission ofusers.

The received continuous-time signal is passed through a chip-
matched filter and is sampled at a chip rate such that the re-
ceived discrete time input-signal vector may be expressed as

where is the
spreading matrix containing the sampled spreading sequences
of users 1 to , contains the ampli-
tudes of signals for each user,
contains the information bits, and is the sampled noise se-
quence. For this example, the constraint is such that ,
and 1. The number of users was set to 5, with Gold
codes of length 7 used for spreading. The SNR for user one was
made equal to 8 dB, and the relative power of interfering users
was set to 20 dB, i.e., 10 20.

The results are depicted in Fig. 1, where we show the mean
squared error (MSE) for the CLMS and the new CCG algo-
rithms as well as their GSC implementations with three different
blocking matrices: one orthogonal obtained via SVD and the
other two nonorthogonal built with plus and minus ones such
that one has linearly independent and the other one linearly de-
pendent columns. The parameters used in the adaptive filters
were 0.0005, 0.9, and 0.6.

From the results of this experiment, we could verify the equiv-
alence between the constrained algorithms and their GSC im-
plementations with an orthogonal blocking matrix. Moreover,

the degradation of the GSC results with nonorthogonal blocking
matrices are clear, and the fast convergence of the CG algorithm
compared to the LMS algorithm is observed. This improvement
in performance is typical for the input signal used is highly cor-
related.

It is worth mentioning that due to the use of an exponentially
decaying data window, the proposed algorithm has a tracking
capability and a convergence performance comparable to the
RLS algorithm. In addition to these features, the misadjustment
of the new algorithm is expected to be equal to the misadjust-
ment of the GSC-RLS algorithm, for they minimize equivalent
cost functions [5]. The computational complexity of the pro-
posed algorithm may be expressed by
multiplications and two divisions, where is the number of
coefficients [size of ], and is the number of constraints.
In rough comparison (number of operations without any refine-
ment or optimization in the computation of each formula), this
computational load is higher than the CLMS algorithm (

multiplications), slightly smaller than the GSC-CG al-
gorithm using orthogonal blocking matrix [

multiplications and two divisions], and consider-
ably smaller than the GSC-RLS algorithm [

multiplications and one division].

VI. CONCLUSIONS

The property that a GSC implementation of an adaptive filter
may be equivalent to its constrained version through proper ini-
tialization and choice of the blocking matrix was discussed and
applied to the derivation of the CCG algorithm. The new algo-
rithm tested favorably against the CLMS algorithm in a com-
puter experiment for multiuser detection. For the particular case
where the blocking matrix was chosen to be orthogonal, the
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CLMS and the CCG algorithms showed better results in terms
of speed of convergence and misadjustment when compared to
their GSC counterparts, employing nonorthogonal blocking ma-
trices. This result was somehow expected because the deriva-
tion of a constrained adaptive filter imparts a criteria of opti-
mality that is only shared by the GSC counterpart with orthog-
onal blocking matrices. Finally, we can infer from the equiva-
lence in infinite precision between the CCG and the GSC-CG
algorithms and the convergence criterion established in [5] for
the CG algorithm that the proposed algorithm imparts the same
stability properties.
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