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Abstract—We investigate the stability properties of discrete
and hybrid stochastic nonlinear dynamical systems. More pre-
cisely, we extend the stochastic contraction theorems (which were
formulated for continuous systems) to the case of discrete and
hybrid resetting systems. In particular, we show that the mean
square distance between any two trajectories of a discrete (or
hybrid resetting) stochastic contracting system is upper-bounded
by a constant after exponential transients. Using these results, we
study the synchronization of noisy nonlinear oscillators coupled
by discrete interactions.

Index Terms—Discrete systems, hybrid resetting, stochastic
systems, nonlinear contraction theory, incremental stability, os-
cillator synchronization

I. I NTRODUCTION

Contraction theory is a set of relatively recent tools that
provide a systematic approach to the stability analysis of a
large class of nonlinear dynamical systems [1], [2], [3], [4]. A
nonlinear nonautonomous systemẋ = f(x, t) is contractingif
the symmetric part of the Jacobian matrix off is uniformly
negative definite in some metric. Using elementary fluid dy-
namics techniques, it can be shown that contracting systems
are incrementally stable, that is, any two system trajectories
exponentially converge to each other [1].

From a practical viewpoint, contraction theory has been
successfully applied to a number of important problems, such
as mechanical observers and controllers design [5], chemical
processes control [6], synchronization analysis [2], [7] or
biological systems modelling [8].

Recently, contraction analysis has been extended to the case
of stochasticdynamical systems governed by Itô differential
equations [4]. In parallel, hybrid versions of contractiontheory
have also been developped [3]. A hybrid system is charac-
terized by acontinuousevolution of the system’s state, and
intermittent discrete transitions. Such systems are pervasive
in both artificial (e.g. analog physical processes controlled
by digital devices) and natural (e.g. spiking neurons with
subthreshold dynamics) environments.

This paper benefits from those recent developments, and
provides an exponential stability result for discrete and hybrid
systems governed by stochasticdifference and differential
equations. More precisely, we prove in section II and III that
the mean square distance between any two trajectories of a
discrete (respectively hybrid resetting) stochastic contracting
system is upper-bounded by a constant after exponential tran-

sients. This bound can be expressed as function of the noise
intensities and the contraction rates of the noise-free systems.
In section IV, we briefly discuss a number of theoretical
issues regarding our analysis. In section V, we study, using
the previously developped tools, the synchronization of noisy
nonlinear oscillators that interact by discrete noisy couplings.
Finally, some future directions of research are indicated in
section VI.

Notations The symmetric part of a matrixA is defined
as As = 1

2

(
A + AT

)
. For a symmetric matrixA, λmin(A)

andλmax(A) denote respectively the smallest and the largest
eigenvalue ofA. A set of symmetric matrices(Ai)i∈I is
uniformly positive definite if∃α > 0, ∀i ∈ I, λmin(Ai) ≥ α.

II. D ISCRETE SYSTEMS

We first prove a lemma that makes explicit the initial
“discrete contraction” proof (see section 5 of [1]). Note that a
similar proof for continuous systems can be found in [9].

Lemma 1 (and definition):Consider two metricsMi =
ΘT

i Θi defined overRni (i = 1, 2) and a smooth function
f : R

n1 → R
n2 . The generalized Jacobian off in the metrics

(M1,M2) is defined by

F = Θ2
∂f

∂x
Θ−1

1

Assume now thatf is contractingin the metrics(M1,M2)
with rateβ (0 < β < 1), i.e.

∀x ∈ R
n1 λmax(F(x)T F(x)) ≤ β

Then for allu,v ∈ R
n, one has

dM2
(f(u), f(v))2 ≤ βdM1

(u,v)2

wheredM denotes the distance associated with the metricM.

Proof Consider a smooth pathγ : [0, 1] → R
n1 that

connectsu and v (i.e. γ(0) = u and γ(1) = v). The M1-
length of such a path is given by

LM1
(γ) =

∫ 1

0

√(
∂γ

∂u
(u)

)T

M1

(
∂γ

∂u
(u)

)
du
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Since f is a smooth function,f(γ) is also a smooth path,
with

LM2
(f(γ)) =

∫ 1

0

√(
∂f(γ)

∂u
(u)

)T

M2

(
∂f(γ)

∂u
(u)

)
du

Now the chain rule implies that

∂f(γ)

∂u
(u) =

∂f

∂x

∂γ

∂u
(u)

which leads to

LM2
(f(γ)) =

∫ 1

0

√(
∂γ
∂u

T ∂f
∂x

T
ΘT

2 Θ2
∂f
∂x

∂γ
∂u

)
du

=
∫ 1

0

√(
∂γ
∂u

T
ΘT

1

)
FT F

(
Θ1

∂γ
∂u

)
du

≤
∫ 1

0

√
β
(

∂γ
∂u

T
ΘT

1 Θ1
∂γ
∂u

)
du

=
√

βLM1
(γ)

(1)

Choose now a sequence of paths(γn)n∈N such that
limn→∞ LM1

(γn) = dM1
(u, v). From (1), one has∀n ∈

N, LM2
(f(γn)) ≤

√
βLM1

(γn). By definition of the distance,
one then has∀n ∈ N, dM2

(f(u), f(v)) ≤
√

βLM1
(γn).

Finally, by letting n go to infinity in the last inequality, one
obtains the desired result.�

Using the above lemma, one can prove the discrete contrac-
tion theorem for general time-dependent and state-dependent
metrics (see theorem 3 of [1]). However for stochastic systems,
the proof in the general case is much more difficult. In the
present paper, we shall thus limit ourselves to the case of state-
independent metrics.

In this case, the squaredM-distance between two points is
simply given by

dM(u,v)2 = ‖u − v‖2
M = (u − v)T M(u − v)

Theorem 1 (Discrete stochastic contraction):Consider the
stochastic difference equation

ak+1 = f(ak, k) + σ(ak, k)wk+1 (2)

where f is a R
n × N → R

n function, σ is a R
n × N →

R
nd matrix-valued function and{wk, k = 1, 2, . . .} is a

sequence of independentd-dimensional noise vectors, with
wk ∼ N (0,Qk).

Assume thatf verifies the following two hypotheses

(H1) f(a, k) is contracting in the metrics(Mk,Mk+1),
with contraction rateβ (0 < β < 1), and the metrics
(Mk)k∈N are uniformly positive definite.

(H2) tr
(
σ(a, k)T σ(a, k)

)
Qk is uniformly upper-bounded

by a constantC, i.e.

∀a, k tr
(
σ(a, k)T Mk+1σ(a, k)Qk

)
≤ C

Let ak andbk be two trajectories whose initial conditions
are given by a probability distributionp(x0) = p(a0,b0). Then
for all k ≥ 0

E
(
‖ak − bk‖2

Mk

)
≤ 2C

1 − β
+

βk

∫ [
‖a − b‖2

M0
− 2C

1 − β

]+
dp(a,b) (3)

where[·]+ = max(0, ·).
This implies in particular that for allk ≥ 0

E
(
‖ak − bk‖2

Mk

)
≤ 2C

1 − β
+ βk

E
(
‖a0 − b0‖2

M0

)
(4)

Proof Let x = (a,b)T ∈ R
2n and defineEx(·) = E(·|x0 =

x). We have

Ex

(
(ak+1 − bk+1)

T Mk+1(ak+1 − bk+1)
)

=
Ex

(
(f(ak) − f(bk))T Mk+1(f(ak) − f(bk)) +

2(f(ak) − f(bk))T Mk+1(σ(ak)wk+1 − σ(bk)w′
k+1)+

(wT
k+1σ(ak)T − w′T

k+1σ(bk)T )Mk+1

(σ(ak)wk+1 − σ(bk)w′
k+1)

)

Let us now examine successively the three terms of the right
hand side.

• From (H1) and lemma 1 one has

Ex

(
(f(ak) − f(bk))T Mk+1(f(ak) − f(bk))

)
≤

βEx

(
(ak − bk)T Mk(ak − bk)

)

• Next, sincewk+1 is independent ofak andbk, one has

Ex

(
(f(ak) − f(bk))T Mk+1σ(ak)wk+1

)
=

Ex

(
(f(ak) − f(bk))T σ(ak)

)
Mk+1Ex (wk+1) = 0

(the last equality holds becauseE(wk+1) = 0). Similarly,

Ex

(
(f(ak) − f(bk))T Mk+1σ(bk)w′

k+1

)
= 0

• Finally, by independence ofwk+1 andw′
k+1, one has

Ex

(
(wT

k+1σ(ak)T − w′T
k+1σ(bk)T )Mk+1

(σ(ak)wk+1 − σ(bk)w′
k+1)

)
=

Ex

(
tr(σ(ak)T Mk+1σ(ak)wk+1w

T
k+1)+

tr(σ(bk)T Mk+1σ(bk)w′
k+1w

′T
k+1)

)
=

tr(Ex

(
σ(ak)T Mk+1σ(ak) + σ(bk)T Mk+1σ(bk)

)
Qk)

≤ 2C

If we now setuk = Ex

(
(ak − bk)T Mk(ak − bk)

)
then

the above, together with(H2), implies

uk+1 ≤ βuk + 2C (5)

Define nextvk = uk − 2C/(1 − β). Then replacinguk by
vk + 2C/(1 − β) in (5) yields

vk+1 ≤ βvk

This implies that∀k ≥ 0, vk ≤ v0β
k ≤ [v0]

+βk. Replacing
vk by its expression in terms ofuk then yields

∀k ≥ 0 uk ≤ 2C

1 − β
+ βk

[
u0 −

2C

1 − β

]+

which is the desired result.



Next, integrating the last inequality with respect tox leads
to (3). Finally, (4) follows from (3) by remarking that
∫ [

‖a − b‖2
M0

− C

λ

]+
dp(a,b) ≤

∫
‖a − b‖2

M0
dp(a,b)

= E
(
‖a0 − b0‖2

M0

)
�

III. H YBRID SYSTEMS

For clarity, we consider in this paperconstant dwell-times,
although more elaborate conditions regarding dwell-timescan
be adapted from [3].

Consider now the discrete-continuous stochastic dynamical
system

∀k ≥ 0 a(kτ+) = fd(a(kτ−), k) + σd(a(kτ−), k)wk (6)

∀k ≥ 0, ∀t ∈]kτ, (k + 1)τ [ da = fc(a, t)dt + σc(a, t)dW
(7)

All the contraction properties below will be stated with
respect to a uniformly positive definite time-varying metric
M(t) = Θ(t)T Θ(t). Furthermore, it will be assumed that for
all k ≥ 0, M is continuously differentiable in]kτ, (k + 1)τ [.
Finally, M(kτ−) andM(kτ+) will respectively denote the left
and right limits ofM(t) at t = kτ (and similarly forΘ).

A. The discrete and continuous parts are both contracting

Theorem 2 (Hybrid stochastic contraction):Assume the
following conditions

(i) For all k, the discrete part is stochastically contract-
ing at kτ with rateβ < 1 and boundCd, i.e.

∀a ∈ R
n λmax

(
F(kτ)T F(kτ)

)
≤ β

whereF(kτ) = Θ(kτ+)∂fd
∂a

(a, k)Θ(kτ−), and

∀a ∈ R
n tr

(
σd(a, k)T M(kτ+)σd(a, k)Qk

)
≤ Cd

(ii) For all k, the continuous part is stochastically con-
tracting in ]kτ, (k + 1)τ [ with rateλ > 0 and bound
Cc, i.e. ∀a ∈ R

n, ∀t ∈]kτ, (k + 1)τ [,

λmax

((
d

dt
Θ(t) + Θ(t)

∂f

∂a

)
Θ−1(t)

)

s

≤ −λ

(8)
tr
(
σc(a, t)T M(t)σc(a, t)

)
≤ Cc

Let a(t) and b(t) be two trajectories whose initial con-
ditions are given by a probability distributionp(x(0)) =
p(a(0),b(0)). Then for allt ≥ 0

E

(
‖a(t) − b(t)‖2

M(t)

)
≤

C1 + E

(
‖a(0) − b(0)‖2

M(0)

)
β⌊t/τ⌋e−2λt

whereC1 = 2λCd+(1−β)(1+β−r1)Cc

λ(1−β)(1−r1)
andr1 = βe−2λτ .

Proof For all t ≥ 0, let u(t) = E

(
‖a(t) − b(t)‖2

M(t)

)
and

let us study the evolution ofu(t) betweenkτ+ and(k+1)τ+.
Condition (ii) and theorem 2 of [4] yield

u((k + 1)τ−) ≤ Cc

λ + u(kτ+)e−2λτ (9)

Next, condition (i) and theorem 1 above yield

u((k + 1)τ+) ≤ 2Cd

1−β + βu((k + 1)τ−) (10)

Substituting (9) into (10) leads to

u((k + 1)τ+) ≤ 2Cd

1−β + β
(

Cc

λ + βu(kτ+)e−2λτ
)

= 2Cd

1−β + βCc

λ + βe−2λτu(kτ+)

DefineD1 = 2Cd

1−β + βCc

λ andvk = u(kτ+)−D1/(1− r1).
Then, similarly to the proof of theorem 1, we havevk+1 ≤
r1vk, and thenvk ≤ rk

1 [v0]
+, which implies

u(kτ+) ≤ D1

1 − r1
+

[
u(0+) − D1

1 − r1

]+
rk
1

≤ D1

1 − r1
+ u(0+)rk

1

Now, for anyt ≥ 0, choosek = ⌊t/τ⌋. Then

u(t) ≤ Cc

λ
+ u(kτ+)e−2λ(t−kτ)

≤ Cc

λ
+

D1e
−2λ(t−kτ)

1 − r1
+ u(0+)βke−2λt

≤ Cc

λ
+

D1

1 − r1
+ u(0+)βke−2λt

which leads to the desired result after some algebraic manip-
ulations.�

B. Only the discrete part is contracting

Let us examine now the more interesting case when the
continuous part is not contracting, more precisely whenλ ≤ 0
in (8). For this, we shall need to revisit the proof of theorem2
in [4].

Theorem 3 (Caseλ = 0): Assume all the hypotheses of
theorem 2 except thatλ = 0 in (8). Then for allt ≥ 0

E

(
‖a(t) − b(t)‖2

M(t)

)
≤

C2 + E

(
‖a(0) − b(0)‖2

M(0)

)
β⌊t/τ⌋

whereC2 = 2Cd+2β(1−β)Ccτ
(1−β)2 .

Proof As in the proof of theorem 2 in [4], let

V (x, t) = V ((a,b)T , t) = (a − b)T M(t)(a − b)

Lemma 1 of [4] remains unhanged, and one thus has (see [4]
for more details)

∀t ∈]kτ, (k + 1)τ [ ÃV (x(t), t) ≤ 2Cc

where Ã is the infinitesimal operator associated with the
processx(t) (see section 2.1.2 of [4] or p. 15 of [10] for
more details).

By Dynkin’s formula [10], one then obtains for allx ∈ R
2n

ExV (x(t), t) − V (x, kτ+) = Ex

∫ t

kτ
ÃV (x(s), s)ds

≤ Ex

∫ t

kτ
2Ccds

= 2Cc(t − kτ)

Integrating the above inequality with respect tox then yields

∀t ∈]kτ, (k + 1)τ [ u(t) ≤ 2Cc(t − kτ) + u(kτ+)



In particular, (9) becomes

u((k + 1)τ−) ≤ 2Ccτ + u(kτ+)

which leads to, after substition into (10),

u((k + 1)τ+) ≤ 2Cd

1 − β
+ 2βCcτ + βu(kτ+)

This finally implies

u(kτ+) ≤
2Cd

1−β + 2βCcτ

1 − β
+ u(0+)βk

The remainder of the proof can be adapted from that of
theorem 2.�

Theorem 4 (Caseλ < 0): Assume all the hypotheses of
theorem 2 except thatλ < 0 in (8). Let k = ⌊t/τ⌋. There
are two cases:

• If β < e−2|λ|τ , then letr2 = βe2|λ|τ < 1. For all t ≥ 0

E

(
‖a(t) − b(t)‖2

M(t)

)
≤

C3 + E

(
‖a(0) − b(0)‖2

M(0)

)
e2|λ|τrk

2

whereC3 = 2|λ|Cd+(1−β)(1+β−r2)e
2|λ|τ Cc

|λ|(1−β)(1−r2)
.

• If β ≥ e−2|λ|τ , then there is – in general – no finite bound
on E

(
‖a(t) − b(t)‖2

M(t)

)
as t → +∞.

Proof One has now for allt ∈]kτ, (k + 1)τ [,

ÃV (x(t), t) ≤ 2|λ|V (x(t), t) + 2Cc

with |λ| > 0. By Dynkin’s formula, one has, for allx ∈ R
2n

ExV (x(t), t)−V (x, kτ+) ≤ Ex

∫ t

kτ

(2|λ|V (x(s), s)+2Cc)ds

Let now g(t) = ExV (x(t), t). The above equation then yields

g(t) = V (x, kτ+) + 2Cc(t − kτ) + 2|λ|
∫ t

kτ

g(s)ds

Applying the classical Gronwall’s lemma [11] tog(t) leads
to

g(t) ≤ V (x, kτ+) + 2Cc(t − kτ)+

2|λ|
∫ t

kτ
(V (x, kτ+) + 2Ccs) exp

(∫ t

s
2|λ|du

)
ds

= Cc

|λ|
(
e2|λ|(t−kτ) − 1

)
+ V (x, kτ+)e2|λ|(t−kτ)

Integrating the above inequality with respect tox then yields
∀t ∈]kτ, (k + 1)τ [,

u(t) ≤ Cc

|λ|
(
e2|λ|(t−kτ) − 1

)
+ u(kτ+)e2|λ|(t−kτ)

which implies

u((k + 1)τ+) ≤ D2 + βe2|λ|τu(kτ+) (11)

whereD2 = 2Cd

1−β + βCc

|λ|
(
e2|λ|τ − 1

)
.

There are three cases:

• If β < e−2|λ|τ , then r2 = βe2|λ|τ < 1. By the same

reasoning as in theorem 1, one obtains

u(kτ+) ≤ D2

1 − r2
+ u(0+)rk

2

The remainder of the proof can be adapted from that of
theorem 2

• If β = e−2|λ|τ , then (11) reads

u((k + 1)τ+) ≤ D2 + u(kτ+)

which implies∀k ≥ 0, u(kτ+) ≤ kD2 + u(0+). From
this, it is clear that there is – in general – no finite bound
for u(kτ+).

• If β > e−2|λ|τ , then r2 = βe2|λ|τ > 1. By the same
reasoning as in theorem 1, one obtains

u(kτ+) ≤
(

u(0+) +
D2

r2 − 1

)
rk
2 − D2

r2 − 1

Since r2 > 1 in this case, it is clear that there is – in
general – no finite bound foru(kτ+). �

Remarks Theorems 3 and 4 show that it is possible to
stabilize an unstable system by discrete resettings. If the
continuous system isindifferent (λ = 0), thenany contracting
resetting is stabilizing. However, it should be noted that the
asymptotic boundC2 → ∞ when β → 1. In contrast,
if the continuous system isstrictly unstable(λ < 0), then
specific contraction rates (depending on the dwell-time and
the “expansion” rate of the continuous system) of the resetting
are required. Finally, note that in both cases, the asymptotic
boundsC2 andC3 are increasing functions of the dwell-timeτ .

IV. COMMENTS

A. Modelling issue: distinct driving noise

In the same spirit as [4], and contrary to previous works on
the stability of stochastic systems [12], thea and b systems
considered in sections II and III are driven bydistinct and
independent noise processes. This approach enables us to
study the stability of the system with respect to variations
in initial conditionsand to random perturbations: indeed, two
trajectories of any real-life system are typically affected by
distinct realizations of the noise. In addition, this approach
leads very naturally to nice results regarding the comparison
of noisy and noise-free trajectories (see section IV-B), which
are particularly useful in applications (see e.g. section V).

However, because of the very fact that the two trajectories
are driven by distinct noise processes, we cannot expect the
influence of noise to vanish when the two trajectories get very
close to each other. As a consequence, the asymptotic bounds
2C/(1− β) (for discrete systems) andC1, C2, C3 (for hybrid
systems) are strictly positive. These bounds are nevertheless
optimal, in the sense that they can be attained (adapt the
Ornstein-Uhlenbeck example in section 2.3.1 of [4]).

B. Noisy and noise-free trajectories

Instead of considering two noisy trajectoriesa andb as in
theorem 1, we assume now thata is noisy, whileb is noise-



free. More precisely, for allk ∈ N

ak+1 = f(ak, k) + σ(ak, k)wk+1

bk+1 = f(bk, k)

To show the exponential convergence ofa and b to each
other, one can follow the same reasoning as in the proof of
theorem 1, withC is replaced byC/2. This leads to the
following result

Corollary 1: Assume all the hypothesis of theorem 1 and
consider a noise-free trajectorybk and a noisy trajectoryak

whose initial conditions are given by a probability distribution
p(a0). Then, for allk ∈ N

E
(
‖ak − bk‖2

Mk

)
≤ C

1 − β
+

βk

∫ [
‖a − b0‖2

M0
− C

1 − β

]+
dp(a) (12)

Remarks
• The above derivation of corollary 1 is only permitted by

our choice of considering distinct driving noise processes
for systemsa andb (see section IV-A).

• Based on theorems 2, 3 and 4, similar corollaries can be
obtained for hybrid systems.

• These corollaries provide a robustness result for con-
tracting discrete and hybrid systems, in the sense that
any contracting system isautomaticallyprotected against
noise, as quantified by (12). This robustness could be
related to the exponential nature of contraction stability.

V. A PPLICATION: OSCILLATOR SYNCHRONIZATION BY

DISCRETE COUPLINGS

Using the above developped tools, we study in this section
the synchronization of nonlinear oscillators in presence of
random perturbations. The novelty here is that the interactions
between the oscillators occur atdiscretetime instants, contrary
to many previous works devoted to synchronization in the
state-space1 [14], [7].

Specifically, consider the Central Pattern Generator (CPG)
delivering2π/3-phase-locked signals of section 5.3 in [7]. This
CPG consists of a network of three Andronov-Hopf oscillators
xi = (xi, yi)

T , i = 1, 2, 3. We construct below a discrete-
couplings version of this CPG.

At instantst = kτ, k ∈ N, the three oscillators are coupled
in the following way (assuming noisy measurements)

xi(kτ+) = xi(kτ−)

+ γ
(
R
(
xi+1(kτ−) + σd√

2
wk

)
− xi(kτ−)

)

with x4 = x1 and

R =

(
− 1

2 −
√

3
2√

3
2 − 1

2

)

1Discrete couplings are more frequent in the literature devoted to phase
oscillators synchronization, wherephase reductiontechniques are used [13].
However, contrary to our approach, these techniques are only applicable in
the case of weak coupling strenghs and small noise intensities.

Between two interaction instants, the oscillators follow the
uncoupled, noisy, dynamics

dxi = f(xi)dt +
σc√
2
dW

where

f(xi) = f

(
xi

yi

)
=

(
xi − yi − x3

i − xiy
2
i

xi + yi − y3
i − yix

2
i

)

We apply now the projection technique developped in [7],
[4]. We recommend the reader to refer to these papers for more
details about the following calculations.

Consider first the (linear) subspaceM of the global state
space (the global state is defined by⌢

x = (x1,x2,x3)
T ) where

the oscillators are2π/3-phase-locked

M =
{(

R2(x),R(x),x
)T

: x ∈ R
2
}

Let V andU be two orthonormal projections onM⊥ and
M respectively and consider⌢

y = V
⌢

x. Since the mapping
is linear, using It̂o differentiation rule yields the following
dynamics for⌢y

∀k ∈ N
⌢

y(kτ+) = gd(
⌢

y(kτ−)) + γ
σd√

2
wk (13)

∀t ∈]kτ, (k + 1)τ [ d
⌢

y = gc(
⌢

y)dt +
σc√
2
dW (14)

with

gd(
⌢

y) = VL
⌢

x = VL(VT ⌢

y + UT U
⌢

x) = VLVT ⌢

y

gc(
⌢

y) = V
⌢

f(VT ⌢

y + UT U
⌢

x)

where

L =




(1 − γ)I2 γR 0

0 (1 − γ)I2 γR

γR 0 (1 − γ)I2




⌢

f(
⌢

x) = (f(x1), f(x2), f(x3))
T

Remark thatgd(0) = 0 and gc(0) = 0 (the last equality
holds because of the symmetry off : ∀x, f(Rx) = R(f(x))).
Thus,0 is a particular solution to the noise-free version of the
discrete-continuous stochastic system (13,14).

Let us now examine the contraction properties of equations
(13) and (14).

We have first

∂gd

∂
⌢

y

T ∂gd

∂
⌢

y
= VLT VT VLVT = (3γ2 − 3γ + 1)I4

so thatλmax

(
∂gd

∂
⌢
y

T ∂gd

∂
⌢
y

)
= 3γ2−3γ+1 < 1 (for 0 < γ < 1).

Second,

∂gc

∂
⌢

y
= V

∂
⌢

f

∂
⌢

x
VT = V




∂f
∂x

(x1) 0 0

0 ∂f
∂x

(x2) 0

0 0 ∂f
∂x

(x3)


VT

Now observe thatλmax

(
∂f
∂x

)
s

= 1−x2 − y2 ≤ 1. SinceV

is an orthonormal projection, one then hasλmax

(
∂gc

∂
⌢
y

)

s
≤ 1.



Therefore, if

3γ2 − 3γ + 1 < e−2τ (15)

then theorem 4 together with the corollaries of section IV-B
imply that, after exponential transients,

E
(
‖⌢

y‖2
)
≤ 2γ2σ2

d + (1 − β)(1 + β − βe2τ )e2τσ2
c

2(1 − β)(1 − βe2τ )

whereβ = 3γ2 − 3γ + 1.
To conclude, observe that

‖⌢

y‖2 = ‖V⌢

x‖2 =
1

3

3∑

i=1

‖Rxi+1 − xi‖2

Define thephase-locking qualityδ by

δ =

3∑

i=1

‖Rxi+1 − xi‖2

then one finally obtains

E(δ) ≤ 6γ2σ2
d + 3(1 − β)(1 + β − βe2τ )e2τσ2

c

2(1 − β)(1 − βe2τ )
(16)

after exponential transients.
A numerical simulation is provided in Fig. 1.

VI. PERSPECTIVES

We are now focusing on the following directions of re-
search:

• extending of the stochastic contraction theorems to the
case of state-dependent metrics,

• developping hybridswitchedversions of the theorems,
with more elaborate conditions on dwell-times,

• applying the synchronization-by-discrete-couplings anal-
ysis to other types of coupled dynamical systems,

• studying the robustness of hybrid controllers and ob-
servers against random perturbations (for instance, the
discrete observer for inertial navigation developped in
[16]).
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