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An examination of the concept of a microgeometry proposed by Benveniste reveals that the thermal conductivity of the concentric sphere
adopted by generalized self-consistent model (GSCM) is equal to that of the composite. It is also noted that the thermal conductivities of the
composite with spherical fillers predicted by GSCM and modified Eshelby model (MEM) are the same. These equivalencies enable to propose a
simple and alternative approach for determining the thermal conductivity of the composite with multiply coated spherical fillers by applying
MEM repeatedly. The present result is compared and shows the exact agreement with the results from literatures.
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1. Introduction

In composites, the third layer is developed in the form of a
coating, chemical reaction layer, and interfacial gap at the
interface between the matrix and reinforcement regardless of
being intended or not. Its thermo-mechanical properties are
different from those of the basic constituents and are
generally known to severely influence the thermo-mechan-
ical properties of composites. The thermal conductivity of
composites is drastically lowered due to the existence of a
thermal barrier resistance between the matrix and reinforce-
ment which is experimentally confirmed.1) This resistance is
induced by an interfacial gap which is developed by the
combined effect of an imperfect mechanical or chemical
adherence at the interface and a mismatch in the coefficients
of thermal expansion.2) In order to improve the thermal
conductivity of composites, the reinforcement is intention-
ally coated with the third highly conductive material. Models
have been proposed to examine the effect of the coating3–9)

on the thermal conductivity of composites together with the
interfacial thermal barrier.10–14) One class of these mod-
els4–6,9,11–14) is to solve Laplace equation to obtain the
temperature field of composites which is similar to the
generalized self-consistent model (GSCM).15) The other3,10)

is to employ Esehlby’s theory16) modified with Mori-
Tanaka’s mean field approach17) which is called modified
Eshelby model (MEM).

Benveniste and Miloh6,18,19) introduced the concept of a
microgeometry for determining the thermal conductivity of
composites and it is embedded in the effective medium
having composite property. The microgeometry consists of
the matrix and reinforcement whose shape and thermal
conductivity are analytically determined not to disturb the
original temperature field and heat flux of the composite. The
obtained conductivity is thus the exact conductivity of the
composite. By using the microgeometry, Benveniste and
Miloh computed the thermal conductivities of composites18)

and cracked bodies19) and coated short-fiber composites.6)

The shape of the microgeometry for spherical fillers is
exactly the same as that of the concentric sphere, spherical

filler surrounded by spherical matrix, employed by GSCM
and the thermal conductivities predicted by both methods are
consistent.19) Benveniste20) examined the effective thermal
conductivity of composites with a thermal contact resistance
between the constituents by using GSCM and MEM and
concluded that both methods, distinctly different in their
approach, result in the same closed-form simple expression
for the effective thermal conductivity.

Based on these investigations, it is noted that the thermal
conductivity of the microgeometry and concentric sphere can
be derived by MEM. This result is extended to determine the
thermal conductivity of the composite with coated spherical
fillers and imperfect interface. The representative models to
predict the thermal conductivity of this composite are
classified as the two groups, but their derivations are rather
complicated. In this letter, a simple and alternative approach
to determine the thermal conductivity of the composite is
proposed by applying MEM repeatedly. The thermal con-
ductivity predicted by the present model is compared with
other results from literatures.13)

2. Model

2.1 Basic formulation
The thermal conductivity of the composite is computed by

using MEM, where the spherical fillers are assumed to be
perfectly bonded to the matrix. Let’s first consider the
composite consisting of isotropic matrix and spherical fillers
as shown in Fig. 1, where Fig. 1(a) and (b) represent the
models for predicting the effective thermal conductivity of
the composite with spherical fillers by GSCM13,14,20) and
MEM,20) respectively. The thermal conductivities of the
composite, k

mf
eff , predicted by both GSCM and MEM are

proved to be the same and given by

k
mf
eff

km
¼

2ð1� fmf Þ þ ð1þ 2 fmf Þkfm
ð2þ fmf Þ þ ð1� fmf Þkfm

; ð1Þ

where k, f , and subscripts and superscripts m and f stand for
the thermal conductivity, filler volume fraction, and the
matrix and filler, respectively. The detailed derivations by
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both models are omitted here. The thermal conductivity ratio
of the constituents is defined as

kij ¼
ki

kj
; ð2Þ

where subscripts i and j represent the constituent materials,
respectively. The volume fraction of the fillers is fmf defined
as

fmf ¼
Vf

Vm þ Vf

; ð3Þ

where V denotes the volume.
According to GSCM,13–15,20) the thermal conductivity of a

composite is derived by embedding a concentric sphere into
an infinite medium having that of the composite. The
concentric sphere is the spherical filler surrounded by the
same shape of the matrix, where the volume fraction of the
filler is the same as the volume fraction of the filler in the
entire composite under investigation. Since the thermal
conductivity of the concentric sphere represents that of the
composite itself19) and the thermal conductivities of the
composite predicted by GSCM and MEM are the same as
mentioned in the above,20) the thermal conductivity of the
concentric sphere can be easily computed by MEM.

2.2 Thermal conductivity of coated filler
Let’s focus on the determination of the effective thermal

conductivity of a coated filler only. According to the model
for GSCM shown in Fig. 1(a), the coated filler can be
simulated to be embedded into the composite having the
conductivity of the coated filler. Based on the analogy
between GSCM and MEM shown in Fig. 1, Fig. 1(a) is
converted into Fig. 1(b) for the computation of the thermal
conductivity by MEM. In Fig. 1(b), the composite is treated
as that the matrix is coating material and the reinforcement is
filler. The thermal conductivity of the coated filler, kcfeff , can
be obtained by replacing km, fmf , and the subscript m in
Eq. (1) with kc, fcf , and the subscript c and is expressed as

k
cf
eff

kc
¼

2ð1� fcf Þ þ ð1þ 2 fcf Þkfc
ð2þ fcf Þ þ ð1� fcf Þkfc

; ð4Þ

where fcf and subscript c represent the filler volume fraction
in the coated filler and coating material, respectively and fcf
is related with the volume of the coating material and fillers,
Vc and Vf :

fcf ¼
Vf

Vc þ Vf

: ð5Þ

The thermal conductivity of the coated filler so derived is
consistent with the result by Benveniste.6)

2.3 Thermal conductivity of coated filler with imperfect
interface

Once the thermal conductivity of the coated filler is
given, the thermal conductivity of the coated filler with an
imperfect interface is obtained. Three interfacial conductance
such as fiber-matrix contact, heat transfer through gas
filling any interfacial gap, and heat transfer by radiation
can be simulated as a thin layer between the filler and matrix.
It is assumed for simplicity of analysis that the layer is a
material placed between the matrix and filler and whose
effective thermal conductivity and thickness are ki and ti,
respectively. The thermal contact conductance h is related
with ki and ti:

ki ¼ hti: ð6Þ

The coated fillers with the imperfect interface are considered
as a composite consisting of the coated fillers and interfacial
layers. Following the aforementioned procedure, it can be
schematically represented for the computation of the thermal
conductivity by GSCM which is shown in Fig. 2(a).
Figure 2(a) is further transformed to Fig. 2(b) by using the
analogy between GSCM and MEM. In Fig. 2(b), the
composite is treated as that the matrix is the interface
material and the reinforcement is the coated filler. The
thermal conductivity of the coated fillers with imperfect
interface, kicfeff , is computed by replacing km, kf and fmf in
Eq. (1) with ki, k

cf
eff in Eq. (4) and ficf , respectively. It is

represented as

k
icf
eff

ki
¼

2ð1� ficf Þ þ ð1þ 2 ficf Þkcfeff =ki
ð2þ ficf Þ þ ð1� ficf Þkcfeff =ki

; ð7Þ

where ficf stands for the volume fraction of the coated fillers
in the composite and is defined as

ficf ¼
Vc þ Vf

Vi þ Vc þ Vf

: ð8Þ

After the rearrangement of Eq. (7) with Eq. (4), the
closed-form solution of the thermal conductivity k

icf
eff is

expressed as

(a) (b)

Composite

Matrix

Filler

Fig. 1 Models for predicting the thermal conductivity of composites with spherical fillers; (a) generalized self-consistent model, and

(b) modified Eshelby model.
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k
icf
eff

ki
¼

2ð1� ficf Þ½ð2þ fcf Þki þ ð1� fcf Þkfcki� þ ð1þ 2 ficf Þ½2ð1� fcf Þkc þ ð1þ 2 fcf Þkf �
ð2þ ficf Þ½ð2þ fcf Þki þ ð1� fcf Þkfcki� þ ð1� ficf Þ½2ð1� fcf Þkc þ ð1þ 2 fcf Þkf �

: ð9Þ

2.4 Thermal conductivity of composite
Finally, the thermal conductivity of the composite con-

sisting of the matrix and the coated spherical fillers with the
imperfect interface is simply derived using the above result
k
icf
eff . The composite can be schematically represented for the
computation of the thermal conductivity by GSCM which is
shown in Fig. 3(a). Figure 3(a) is further reduced to Fig. 3(b)
by using the analogy between GSCM and MEM. In Fig. 3(b),
the composite is treated as that the matrix is the matrix
material and the reinforcement is the coated fillers with the
imperfect interface. The thermal conductivity of the compo-
site, kmicfeff , is computed by replacing kf and fmf in Eq. (1) with
k
icf
eff in Eq. (7) and fmicf in Eqs. (4) and (5), respectively and
given by

k
micf
eff

km
¼

2ð1� fmicf Þ þ ð1þ 2 fmicf Þkicfeff =km

ð2þ fmicf Þ þ ð1� fmicf Þkicfeff =km
¼

N

D
; ð10Þ

where fmicf stands for the volume fraction of the coated fillers
with interfacial layers in the composite and is defined as

fmicf ¼
Vi þ Vc þ Vf

Vm þ Vi þ Vc þ Vf

; ð11Þ

N ¼ 2ð1� fmicf Þð2þ ficf Þ½ð2þ fcf Þ þ ð1� fcf Þkfc�km
þ 2ð1� fmicf Þð1� ficf Þ½2ð1� fcf Þkc þ ð1þ 2 fcf Þkf �kmi
þ 2ð1þ 2 fmicf Þð1� ficf Þ½ð2þ fcf Þki þ ð1� fcf Þkfcki�
þ ð1þ 2 fmicf Þð1þ 2 ficf Þ½2ð1� fcf Þkc þ ð1þ 2 fcf Þkf �;

ð12Þ
D ¼ ð2þ fmicf Þð2þ ficf Þ½ð2þ fcf Þ þ ð1� fcf Þkfc�km

þ ð2þ fmicf Þð1� ficf Þ½2ð1� fcf Þkc þ ð1þ 2 fcf Þkf �kmi
þ 2ð1� fmicf Þð1� ficf Þ½ð2þ fcf Þki þ ð1� fcf Þkfcki�
þ ð1� fmicf Þð1þ 2 ficf Þ½2ð1� fcf Þkc þ ð1þ 2 fcf Þkf �:

ð13Þ

Since the thickness of the interfacial layer approaches 0, the
third terms in both equations, Eqs. (12) and (13), vanish and
the second terms in these equations can be further simplified
as

lim
ti!0

1� ficf

ki
¼ lim

ti!0

ðrc þ tiÞ3 � r3c

ðrc þ tiÞ3
1

hti
¼

3

hrc
; ð14Þ

where rc is the radius of coated filler and Eq. (6) is used.
After the rearrangement of Eq. (10) with Eq. (14), the
closed-form solution of the thermal conductivity k

micf
eff is

expressed as

(a) (b)

Interfacial layer

Filler

Coat

Composite

Fig. 2 Models for predicting the thermal conductivity of the coated spherical fillers with the interfacial layer; (a) generalized self-

consistent model, and (b) modified Eshelby model.

(a) (b)

Coat

Interfacial layer

Filler

Composite

Matrix

Fig. 3 Models for predicting the thermal conductivity of the composites with coated spherical fillers and interfacial layer; (a) generalized

self-consistent model, and (b) modified Eshelby model.
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k
micf
eff

km
¼

2ð1� fmicf Þ� þ ��N

ð2þ fmicf Þ� þ ��D

; ð15Þ

where � ¼ hrc=kc,

� ¼ ½2ð1� fcf Þ þ ð1þ 2 fcf Þkfc�; ð16Þ

�N ¼ 2ð1� fmicf Þ½ð2þ fcf Þ þ ð1� fcf Þkfc�
þ ð1þ 2 fmicf Þ½2ð1� fcf Þkcm þ ð1þ 2 fcf Þkfm�;

ð17Þ

�D ¼ ð2þ fmicf Þ½ð2þ fcf Þ þ ð1� fcf Þkfc�
þ ð1� fmicf Þ½2ð1� fcf Þkcm þ ð1þ 2 fcf Þkfm�:

ð18Þ

The thermal conductivity of the composite with the coated
spherical fillers and imperfect interface derived by succes-
sively using MEM, Eq. (15), is exactly the same as the results
from the literature.13) The symbols in the present study, fcf ,
fmicf , km, kfc, kfm, and kcm correspond to the symbols in the
reference,13) 1=vf3, vf , k1, k32, k21, and k31, respectively. It can
be inferred from the present result that instead of solving the
complicated Laplace equation for the composite with multi-
ply coated spherical fillers and imperfect interface, its
thermal conductivity can be easily predicted by the present
approach.

3. Conclusions

The observed equivalency of the thermal conductivities of
the concentric sphere and the composite itself adopted for
GSCM and the same result predicted by both GSCM and
MEM enable the simple and alternative approach to predict
the thermal conductivity of the composite with the coated
spherical fillers and imperfect interface. The present model

predicts the thermal conductivity by repeatedly using MEM
and its closed-form solution is shown to be the same as the
other results from literatures. It is clear that the present
approach can be easily extended to composites with multiply
coated spherical fillers and imperfect interfaces.

REFERENCES

1) B. R. Powell Jr., G. E. Youngblood, D. P. H. Hasselman and L. D.

Bentsen: J. Am. Ceram. Soc. 63 (1980) 581–586.

2) D. P. H. Hasselman and L. F. Johnson: J. Comp. Mater. 21 (1987) 508–

515.

3) H. Hatta and M. Taya: J. Appl. Phys. 59 (1986) 1851–1860.

4) M. Milgrom and S. Shtrikman: J. Appl. Phys. 66 (1989) 3429–3436.

5) Y. Benveniste, T. Chen and G. J. Dvorak: J. Appl. Phys. 67 (1990)

2878–2884.

6) Y. Benveniste and T. Miloh: J. Appl. Phys. 69 (1991) 1337–1344.

7) P. D. Chinh: Mech. Mater. 27 (1998) 249–260.

8) S. Mercier, A. Molinari and M. E. Mouden: J. Appl. Phys. 87 (2000)

3511–3519.

9) E. Herve: Int. J. Solids and Struct. 39 (2002) 1041–1058.

10) M. L. Dunn and M. Taya: J. Appl. Phys. 73 (1993) 1711–1722.

11) Y. Lu, K. Y. Donaldson, D. P. H. Hasselman and J. R. Thomas Jr.:

J. Comp. Mater. 29 (1995) 1719–1724.

12) S. Y. Lu and J. L. Song: J. Appl. Phys. 79 (1996) 609–618.

13) J. D. Felske: Int. J. Heat & Mass Transfer 47 (2004) 3453–3461.

14) Y. M. Lee, R. B. Yang and S. S. Gau: Int. Comm. in Heat & Mass

Transfer 33 (2006) 142–150.

15) R. M. Christensen and K. H. Lo: J. Mech. Phys. Solids 27 (1979) 315–

330.

16) J. D. Eshelby: Proc. R. Soc. Lond. A241 (1957) 376–396.

17) T. Mori and K. Tanaka: Acta Metall. 21 (1973) 571–574.

18) T. Miloh and Y. Benveniste: J. Appl. Phys. 63 (1988) 789–796.

19) Y. Benveniste and T. Miloh: J. Appl. Phys. 66 (1989) 176–180.

20) Y. Benveniste: J. Appl. Phys. 61 (1987) 2840–.

736 Y. K. Park, J.-K. Lee and J.-G. Kim


